Реферат сырье используемое для микробиологических процессов

Обновлено: 02.07.2024

МИКРОБИОЛОГИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ, производство какого-либо продукта с помощью микроорганизмов. Осуществляемый микроорганизмами процесс называют ферментацией; емкость, в которой он протекает, называется ферментером (или биореактором).

Процессы, протекающие при участии бактерий, дрожжей и плесневых грибов, человек применял сотни лет для получения пищевых продуктов и напитков, обработки текстиля и кожи, но участие в этих процессах микроорганизмов было четко показано только в середине 19 в.

В 20 в. промышленность использовала все разнообразие замечательных биосинтетических способностей микроорганизмов, и теперь ферментация занимает центральное место в биотехнологии. С ее помощью получают разнообразные химикалии высокой степени чистоты и лекарственные препараты, изготавливают пиво, вино, ферментированные пищевые продукты. Во всех случаях процесс ферментации разделяется на шесть основных этапов.

Создание среды.

Прежде всего необходимо выбрать соответствующую культуральную среду. Микроорганизмы для своего роста нуждаются в органических источниках углерода, подходящем источнике азота и различных минеральных веществах. При производстве алкогольных напитков в среде должны присутствовать осоложенный ячмень, выжимки из фруктов или ягод. Например, пиво обычно делают из солодового сусла, а вино – из виноградного сока. Помимо воды и, возможно, некоторых добавок эти экстракты и составляют ростовую среду.

Среды для получения химических веществ и лекарственных препаратов намного сложнее. Чаще всего в качестве источника углерода используют сахара и другие углеводы, но нередко масла и жиры, а иногда углеводороды. Источником азота обычно служат аммиак и соли аммония, а также различные продукты растительного или животного происхождения: соевая мука, соевые бобы, мука из семян хлопчатника, мука из арахиса, побочные продукты производства кукурузного крахмала, отходы скотобоен, рыбная мука, дрожжевой экстракт. Составление и оптимизация ростовой среды являются весьма сложным процессом, а рецепты промышленных сред – ревниво оберегаемым секретом.

Стерилизация.

Получение культуры.

Прежде чем начать процесс ферментации, необходимо получить чистую высокопродуктивную культуру. Чистые культуры микроорганизмов хранят в очень небольших объемах и в условиях, обеспечивающих ее жизнеспособность и продуктивность; обычно это достигается хранением при низкой температуре. Ферментер может вмещать несколько сотен тысяч литров культуральной среды, и процесс начинают, вводя в нее культуру (инокулят), составляющей 1–10% объема, в котором будет идти ферментация. Таким образом, исходную культуру следует поэтапно (с пересеваниями) растить до достижения уровня микробной биомассы, достаточного для протекания микробиологического процесса с требуемой продуктивностью.

Совершенно необходимо все это время поддерживать чистоту культуры, не допуская ее заражения посторонними микроорганизмами. Сохранение асептических условий возможно лишь при тщательном микробиологическом и химико-технологическом контроле.

Рост в промышленном ферментере (биореакторе).

Промышленные микроорганизмы должны расти в ферментере при оптимальных для образования требуемого продукта условиях. Эти условия строго контролируют, следя за тем, чтобы они обеспечивали рост микроорганизмов и синтез продукта. Конструкция ферментера должна позволять регулировать условия роста – постоянную температуру, pH (кислотность или щелочность) и концентрацию растворенного в среде кислорода.

Обычный ферментер представляет собой закрытый цилиндрический резервуар, в котором механически перемешиваются среда и микроорганизмы. Через среду прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника. Такой ферментер с перемешиванием используется в тех случаях, когда ферментативный процесс требует много кислорода. Некоторые продукты, напротив, образуются в бескислородных условиях, и в этих случаях используются ферментеры другой конструкции. Так, пиво варят при очень низких концентрациях растворенного кислорода, и содержимое биореактора не аэрируется и не перемешивается. Некоторые пивовары до сих пор традиционно используют открытые емкости, но в большинстве случаев процесс идет в закрытых неаэрируемых цилиндрических емкостях, сужающихся книзу, что способствует оседанию дрожжей.

В основе получения уксуса лежит окисление спирта до уксусной кислоты бактериями Acetobacter. Процесс ферментации протекает в емкостях, называемых ацетаторами, при интенсивной аэрации. Воздух и среда засасываются вращающейся мешалкой и поступают на стенки ферментера.

Выделение и очистка продуктов.

По завершении ферментации в бульоне присутствуют микроорганизмы, неиспользованные питательные компоненты среды, различные продукты жизнедеятельности микроорганизмов и тот продукт, который желали получить в промышленном масштабе. Поэтому данный продукт очищают от других составляющих бульона. При получении алкогольных напитков (вина и пива) достаточно просто отделить дрожжи фильтрованием и довести до кондиции фильтрат. Однако индивидуальные химические вещества, получаемые путем ферментации, экстрагируют из сложного по составу бульона. Хотя промышленные микроорганизмы специально отбираются по своим генетическим свойствам так, чтобы выход желаемого продукта их метаболизма был максимален (в биологическом смысле), концентрация его все же мала по сравнению с той, которая достигается при производстве на основе химического синтеза. Поэтому приходится прибегать к сложным методам выделения – экстрагированию растворителем, хроматографии и ультрафильтрации.

Переработка и ликвидация отходов ферментации.

При любых промышленных микробиологических процессах образуются отходы: бульон (жидкость, оставшаяся после экстракции продукта производства); клетки использованных микроорганизмов; грязная вода, которой промывали установку; вода, применявшаяся для охлаждения; вода, содержащая в следовых количествах органические растворители, кислоты и щелочи. Жидкие отходы содержат много органических соединений; если их сбрасывать в реки, они будут стимулировать интенсивный рост естественной микробной флоры, что приведет к обеднению речных вод кислородом и созданию анаэробных условий. Поэтому отходы перед удалением подвергают биологической обработке, чтобы уменьшить содержание органического углерода.

ПРОМЫШЛЕННЫЕ МИКРОБИОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Промышленные микробиологические процессы можно разбить на 5 основных групп: 1) выращивание микробной биомассы; 2) получение продуктов метаболизма микроорганизмов; 3) получение ферментов микробного происхождения; 4) получение рекомбинантных продуктов; 5) биотрансформация веществ.

Микробная биомасса.

Микробные клетки сами по себе могут служить конечным продуктом производственного процесса. В промышленном масштабе получают два основных типа микроорганизмов: дрожжи, необходимые для хлебопечения, и одноклеточные микроорганизмы, используемые как источник белков, которые можно добавлять в пищу человека и животных. Пекарские дрожжи выращивали в больших количествах с начала 20 в. и использовали в качестве пищевого продукта в Германии во время Первой мировой войны.

Однако технология производства микробной биомассы как источника пищевых белков была разработана только в начале 1960-х годов. Ряд европейских компаний обратили внимание на возможность выращивания микробов на таком субстрате, как углеводороды, для получения т.н. белка одноклеточных организмов (БОО). Технологическим триумфом было получение продукта, добавляемого в корм скоту и состоящего из высушенной микробной биомассы, выросшей на метаноле. Процесс шел в непрерывном режиме в ферментере с рабочим объемом 1,5 млн. л. Однако в связи с ростом цен на нефть и продукты ее переработки этот проект стал экономически невыгодным, уступив место производству соевой и рыбной муки. К концу 80-х годов заводы по получению БОО были демонтированы, что положило конец бурному, но короткому периоду развития этой отрасли микробиологической промышленности. Более перспективным оказался другой процесс – получение грибной биомассы и грибного белка микопротеина с использованием в качестве субстрата углеводов.

Продукты метаболизма.

После внесения культуры в питательную среду наблюдается лаг-фаза, когда видимого роста микроорганизмов не происходит; этот период можно рассматривать как время адаптации. Затем скорость роста постепенно увеличивается, достигая постоянной, максимальной для данных условий величины; такой период максимального роста называется экспоненциальной, или логарифмической, фазой. Постепенно рост замедляется, и наступает т.н. стационарная фаза. Далее число жизнеспособных клеток уменьшается, и рост останавливается.

Следуя описанной выше кинетике, можно проследить за образованием метаболитов на разных этапах. В логарифмической фазе образуются продукты, жизненно важные для роста микроорганизмов: аминокислоты, нуклеотиды, белки, нуклеиновые кислоты, углеводы и т.д. Их называют первичными метаболитами.

Многие первичные метаболиты представляют значительную ценность. Так, глутаминовая кислота (точнее, ее натриевая соль) входит в состав многих пищевых продуктов; лизин используется как пищевая добавка; фенилаланин является предшественником заменителя сахара аспартама. Первичные метаболиты синтезируются природными микроорганизмами в количествах, необходимых лишь для удовлетворения их потребностей. Поэтому задача промышленных микробиологов состоит в создании мутантных форм микроорганизмов – сверхпродуцентов соответствующих веществ. В этой области достигнуты значительные успехи: например, удалось получить микроорганизмы, которые синтезируют аминокислоты вплоть до концентрации 100 г/л (для сравнения – организмы дикого типа накапливают аминокислоты в количествах, исчисляемых миллиграммами).

В фазе замедления роста и в стационарной фазе некоторые микроорганизмы синтезируют вещества, не образующиеся в логарифмической фазе и не играющие явной роли в метаболизме. Эти вещества называют вторичными метаболитами. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии. Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам. Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи – ростовыми факторами, многие обладают фармакологической активностью. Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.

Ферменты микробного происхождения.

В промышленных масштабах ферменты получают из растений, животных и микроорганизмов. Использование последних имеет то преимущество, что позволяет производить ферменты в огромных количествах с помощью стандартных методик ферментации. Кроме того, повысить продуктивность микроорганизмов несравненно легче, чем растений или животных, а применение технологии рекомбинантных ДНК позволяет синтезировать животные ферменты в клетках микроорганизмов. Ферменты, полученные таким путем, используются главным образом в пищевой промышленности и смежных областях. Синтез ферментов в клетках контролируется генетически, и поэтому имеющиеся промышленные микроорганизмы-продуценты были получены в результате направленного изменения генетики микроорганизмов дикого типа.

Рекомбинантные продукты.

Первым рекомбинантным белком, полученным в промышленных масштабах, был человеческий гормон роста. Для лечения гемофилии используют один из белков системы свертывания крови, а именно фактор VIII. До того как были разработаны методы получения этого белка с помощью генной инженерии, его выделяли из крови человека; применение такого препарата было сопряжено с риском заражения вирусом иммунодефицита человека (ВИЧ).

Долгое время сахарный диабет успешно лечили с помощью инсулина животных. Однако ученые полагали, что рекомбинантный продукт будет создавать меньше иммунологических проблем, если его удастся получать в чистом виде, без примесей других пептидов, вырабатываемых поджелудочной железой. Кроме того, ожидалось, что число больных диабетом будет со временем увеличиваться в связи с такими факторами, как изменения в характере питания, улучшение медицинской помощи беременным, страдающим диабетом (и как следствие – повышение частоты генетической предрасположенности к диабету), и, наконец, ожидаемое увеличение продолжительности жизни больных диабетом. Первый рекомбинантный инсулин поступил в продажу в 1982, а к концу 1980-х годов он практически вытеснил инсулин животных.

Многие другие белки синтезируются в организме человека в очень небольших количествах, и единственный способ получать их в масштабах, достаточных для использования в клинике, – технология рекомбинантных ДНК. К таким белкам относятся интерферон и эритропоэтин. Эритропоэтин совместно с миелоидным колониестимулирующим фактором регулирует процесс образования клеток крови у человека. Эритропоэтин используется для лечения анемии, связанной с почечной недостаточностью, и может найти применение как средство, способствующее повышению уровня тромбоцитов, при химиотерапии раковых заболеваний.

Биотрансформация веществ.

Микроорганизмы можно использовать для превращения тех или иных соединений в структурно сходные, но более ценные вещества. Поскольку микроорганизмы могут проявлять свое каталитическое действие в отношении лишь каких-то определенных веществ, протекающие при их участии процессы более специфичны, чем чисто химические. Наиболее известный процесс биотрансформации – получение уксуса в результате превращения этанола в уксусную кислоту. Но среди продуктов, образующихся при биотрансформации, есть и такие высокоценные соединения, как стероидные гормоны, антибиотики, простагландины. См. также ГЕННАЯ ИНЖЕНЕРИЯ.

При добавлении питательной среды в процессе культивирования происходит изменение ее объема. С целью сохранения его постоянства и снижения концентрации микробных метаболитов часть культуральной жидкости можно через определенные промежутки времени удалять из аппарата и добавлять равное количество питательной среды. Такой периодический метод получил название объемно-доливного. При этом основные… Читать ещё >

Микробиологическое производство лекарственных средств ( реферат , курсовая , диплом , контрольная )

Содержание

Требования, предъявляемые к микроорганизмам, используемым для производства Сырье для микробиологического производства Приготовление сред Ферментаторы Основы роста и культивирования микроорганизмов Основные стадии технологического процесса Хранение культуры и размножение посевного материала в лаборатории 11

Получение посевного материала в цехе чистой культуры Основная ферментация Биотехнологические процессы Выделение продукта из культуральной жидкости Асептика, антиконтаминационная защита в биотехнологии

Однако этот способ культивирования не позволяет в полной мере реализовать способности микроорганизмов к безграничному размножению. Период самой активной жизнедеятельности — логарифмическая фаза занимает лишь небольшую часть производственного цикла, а значительная часть уходит на лаг-фазу и период замедленного роста.

Периодическое культивирование предполагает существование клеток микроорганизмов в постоянно меняющихся условиях. Концентрация источников питания и продуктов жизнедеятельности — регуляторы скорости роста микроорганизмов. Постепенным введением питательных веществ в течение всего процесса можно избежать ингибирования роста микроорганизмов. Такой метод получил название культивирования микроорганизмов с дробным дозированием субстрата.

При добавлении питательной среды в процессе культивирования происходит изменение ее объема. С целью сохранения его постоянства и снижения концентрации микробных метаболитов часть культуральной жидкости можно через определенные промежутки времени удалять из аппарата и добавлять равное количество питательной среды. Такой периодический метод получил название объемно-доливного. При этом основные параметры процесса — объем, скорость разбавления, удельная скорость роста — не являются постоянными.

Модификацией периодического культивирования является культивирование с диализом, при котором питательный субстрат постоянно поступает в реактор через специальную мембрану. Диализ ведет к снижению концентрации продуктов жизнедеятельности клеток, неблагоприятно влияющих на их жизнедеятельность. Помимо этого, диализ удаляет из культуры часть жидкости, что позволяет получать в конце процесса концентрированную биомассу.

Все варианты периодического культивирования с дробным дозированием субстрата дают возможность несколько увеличить время пребывания на одной из фаз развития. Однако добиться стабильности физиологического состояния клеток в периодических процессах невозможно.

Непрерывный метод культивирования. Этот способ выращивания заключается в непрерывной подаче питательных веществ в ферментатор в таком количественном и качественном соотношении, которое необходимо для поддержания микроорганизмов в экспотенциальной фазе. При этом клетки непрерывно и однородно размножаются со скоростью, соответствующей притоку питательных веществ. Основным принципом непрерывных процессов является точное соблюдение равновесия между приростом биомассы вследствие деления клеток и их убылью в результате разбавления содержимого свежей средой.

В настоящее время метод непрерывного культивирования микроорганизмов получил глубокое теоретическое обоснование и широкое практическое применение можно классифицировать по принципам действия системы непрерывного культивирования. Классифицируются на открытые и закрытые. Главное различие между ними в том, что в открытых — клетки постоянно вымываются вытекающей средой со скоростью образования в системе новых клеток. А в замкнутой системе клетки в какой-то мере задерживаются в системе, их количество возрастает. Открытой одноступенчатой гомогенно-непрерывной системой называется система, состоящая из одного биореактора с постоянной подачей питательной среды и отводом культуральной жидкости. За счет интенсивного перемешивания состав среды во всех точках аппарата поддерживается гомогенным, благодаря чему микробные клетки пребывают в одинаковом физиологическом состоянии.

При гомогенно-непрерывном культивировании рост культуры можно ограничить одним элементом питания при нелимитируемых количествах остальных. Эта система известна как хемостат, так как рост микроорганизмов регулируют химические факторы среды.

Максимальная скорость роста может быть достигнута турбидостатным культивированием (турбидостат), при котором контроль процесса осуществляется по концентрации клеток микроорганизмов. Контроль осуществляется с использованием системы фотоэлементов, скорость потока свежей питательной среды также регулируется специальным устройством. При превышении заданной концентрации клеток срабатывает фотоэлемент и включается поток свежей питательной среды, благодаря чему концентрация клеток снижается.

Некоторые микроорганизмы хорошо развиваются на границе жидкой и газовой фаз или жидкой и твердых фаз. При этом они образуют плотные пленки, а свежая питательная среда протекает вдоль слоя культуры. Такие замкнутые системы с выращиванием клеток в промежуточной фазе применяют для культур, чувствительных к перемешиванию, а также для культивирования плесневых культур, продуцирующих пенициллин, лимонную кислоту, ферменты.

Сравнительная оценка поверхностного и глубинного методов выращивания микроорганизмов позволяет отметить преимущества и недостатки каждого из них. При поверхностном культивировании основным сырьем являются отруби, лузга, пивная дробина, свекловичный жом, картофельная мезга и кукурузная кочерыжка. Высота слоя среды 2−5 см. В цехе, где получают 1 т поверхностной культуры в сутки, на двое суток нужно более 1000 кювет. Мойка, стерилизация и перемещение их — основная трудность этого метода. Почти все технологические этапы при этом осуществляются вручную. Однако этот метод сохраняет свое значение при производстве некоторых биотехнологических продуктов, например, технических ферментов. Это определяется следующим:

— Концентрация образующихся ферментов при поверхностном культивировании во много раз выше, чем в фильтрате глубинных культур. Для осахаривания 100 кг крахмала требуется 5 кг поверхностной культуры плесневых грибов или 10л глубинной культуры при одинаковой биохимической характеристике штамма.

— Возможность быстрого и относительно легкого высушивания поверхностной культуры без заметной потери активности ферментов. Сухие культуры легко транспортируются и широко применяются в спиртовой промышленности и при силосовании.

— Меньшие затраты на электроэнергию по сравнению с глубинным методом. Среди особенностей глубинного способа культивирования необходимо выделить:

— возможность использования одной и той же питательной среды для посевной и производственной культуры (сокращение лаг-фазы).

— биосинтез ферментов у грибов при непрерывной подаче воздуха и перемешивании в течение 2−4 сут.

Выделение продукта из культуральной жидкости Для выделения целевого продукта из культуральной жидкости путем осаждения используют сепараторы, осадительные центрифуги, фильтр-прессы, вакуум-барабанные фильтры или отстойники. Иногда биомассу осаждают добавлением электролитов, надосадочную жидкость декантируют. После центрифугирования биомассу получают в виде густой жидкости или пасты 75−90% - ной влажности, Клеточную массу промывают, фильтруют, сушат, гидролизуют, экстрагируют из нее нужный продукт.

Если метаболит находится в растворе, биомассу используют после отделения как побочный продукт, а нужное вещество выделяют из раствора различными методами: экстракцией, хроматографией, фильтрацией, кристаллизацией, осаждением. Антибиотики выделяют, осаждая в виде малорастворимых солей из водного раствора, где они предварительно максимально концентрируются путем экстракции или ионообменным путем, а также высушивая водные растворы лиофилизацией или в сушилках распылительного типа ["https://referat.bookap.info", 5].

Асептика, антиконтаминационная защита в биотехнологии Микробиологическое производство принципиально отличается от производств химической технологии, что в технических системах присутствуют живые организмы, предъявляющие особые требования к этим системам. Это, прежде всего комплекс параметров жизнеобеспечения и создание оптимальных условий для развития популяции продуцента, сохранение ее стабильности и продукта, который она синтезирует. Герметизация оборудования, стерильность обеспечивает стандартность и качество микробиологических препаратов.

Контаминанты нарушают нормальный рост и развитие микроорганизмов — непроизводительно расходуется питательная среда, снижается качество целевого продукта. Контроль качества сред необходимо проводить до и после стерилизации. Для успешного функционирования микробиологического производства необходимо решение двух взаимосвязанных задач: защита технологического процесса от загрязнения контаминантами — посторонней микрофлорой и защита окружающей среды от микроорганизмов, используемых в данном производстве или продуктов их жизнедеятельности.

1. В. В. Бирюков . Основы промышленной биотехнологии.

2. Фармацевтическая микробиология. Словарь терминов / В. И. Кочеровец , В. А. Галынкин , Н. А. Заякина .- M., 2004 г.

3. Б. Глик., Дж. Пастернак. Молекулярная биотехнология: принципы и применение.

4. В. В. Юшков , Т. А. Юшкова , А. В. Казьянин . Иммунокорректоры.

Екатеринбург, 2002 г. — 230 с.

5. А. М. Безбородов . Основы биотехнологии микробных синтезов. М., 1989 г.

Питательная среда обеспечивает жизнедеятельность, рост, развитие биообъекта, эффективный синтез целевого продукта. Неотъемлемой частью питательной среды является вода, питательные вещества, которые образуют истинные растворы (минеральные соли, аминокислоты, карбоновые кислоты, спирты, альдегиды и т.д.) и коллоидные растворы (белки, липиды, неорганические соединения - гидроксид железа). Отдельные компоненты могут находиться в твердом агрегатном состоянии, могут всплывать, равномерно распределяться по всему объему в виде взвеси или образовывать придонный слой.

Сырье для питательных сред в биотехнологическом производстве

Сырье, используемое для получения целевого продукта, должно быть недефицитным, недорогим, по возможности легко доступным: меласса - побочный продукт производства сахара, компоненты нефти и природного газа, отходы сельского хозяйства, деревообрабатывающей и бумажной промышленностей и т.д. Наиболее часто в качестве компонентов питательных сред используются отходы пищевых производств.

Свекловичная меласса – отход производства сахара из свеклы, богата органическими и минеральными веществами, необходимыми для развития микроорганизмов. Она содержит 45-60 % сахарозы, 0,25-2,0 % инвертного сахара, 0,2-3,0 % рафинозы. Кроме того, в мелассе содержатся аминокислоты, органические кислоты и их соли, бетаин, минеральные вещества, а также некоторые витамины. Используется для промышленного производства лимонной кислоты, этанола и других продуктов.

Зерно-картофельная барда – отход спиртового производства. Содержание растворимых сухих веществ обычно составляет 2,5-3,0 %, в том числе 0,2-0,5 % редуцирующих веществ, имеются источники азота и микроэлементы. Применяется для получения микробного белка.

Отходы пивоварения (пивная дробина и солодовые ростки), а также отходы подработки несоложеного ячменя являются подходящим, однако небольшим источником усвояемых углеводов для получения микробного белка. Для производства кормовых дрожжей это сырье соответствующим образом гидролизуют и вводят в питательную среду в соотношении 8 : 0,2 : 0,05 (дробина : ростки : отходы ячменя).

Пшеничные отруби – отход мукомольного производства, используется для приготовления питательных сред при твердофазном способе культивирования. Имеют богатый химический состав и могут использоваться в качестве единственного компонента питательной среды. Так как пшеничные отруби являются дорогим продуктом, их смешивают с более дешевыми компонентами: древесными опилками, солодовыми ростками, фруктовыми выжимками и т.д.

Наличие в молочной сыворотке легко усвояемых многими видами микроорганизмов источников углерода, а также различных ростовых факторов, выдвигает ее в ряд наиболее ценных питательных сред для получения продуктов микробного синтеза, например, для производства белковых препаратов в промышленных масштабах. Большое значение имеет и то обстоятельство, что применение молочной сыворотки не требует специальной сложной подготовки, а культуральная жидкость после выращивания микроорганизмов может быть использована в пищевых и кормовых целях без обработки.

Состав питательных сред

Питательные среды могут иметь неопределенный состав, то есть включать биогенные (растительные, животные, микробные) добавки - мясной экстракт, кукурузную муку, морские водоросли и т.д. Применяют также среды, приготовленные из чистых химических соединений в заранее определенных соотношениях - синтетические среды.

В состав практически любой питательной среды входят такие компоненты, как вода, соединения углерода, азота, фосфора и других минеральных веществ, витамины.

Вода. чистая, бесцветная, без привкуса, запаха и осадка

Источники углерода. Легкодоступными считаются сахара: глюкоза, сахароза, лактоза, за ними следуют многоатомные спирты: глицерин, маннит и др. Далее следуют полисахариды: целлюлоза, гемицеллюлоза, крахмал, которые могут быть источниками углерода либо после превращения их в усвояемые микроорганизмами моно- и низкомолекулярные олигосахариды, либо микроорганизмы должны иметь набор ферментов, гидролизующих эти вещества. Такими микроорганизмами являются плесневые грибы родов Aspergillus, Penicillium, бактерии рода Bacillus и другие.

Низкомолекулярные спирты: метанол и этанол - относятся к числу перспективных видов сырья. Многие дрожжи родов Candida, Hansenula и др. способны ассимилировать (биол. усваивать необходимые для жизнедеятельности вещества из внешней среды) этанол. Дрожжи родов Pichia, Candida и другие, бактерии рода Flavobacterium используют в качестве единственного источника углерода метанол.

Некоторые виды микроорганизмов (незначительная часть) используют в качестве источника углерода и энергии углеводороды: н-алканы и некоторые фракции нефти.

Источники азота. Азот может содержаться в форме неорганических солей или кислот. Большинство дрожжей хорошо усваивает аммиачные соли, а также аммиак из водного раствора, потребность в нитратах испытывают только некоторые виды дрожжей. Источником азота могут служить и органические соединения: аминокислоты, мочевина и т.д., которые легко усваиваются микроорганизмами.

Известно, что бактерии более требовательны к источникам азота, чем другие микроорганизмы (грибы, актиномицеты и дрожжи).

Источники фосфора. Фосфор является важнейшим компонентом клетки. Он входит в состав АТФ (аденозинтрифосфата), АДФ, АМФ и тем самым обеспечивает нормальное течение энергетического обмена в клетке, а также синтез белков, нуклеиновых кислот и другие процессы биосинтеза. Фосфор вносят в среду в виде солей фосфорной кислоты.

При составлении питательной среды для конкретного вида микроорганизма подбираются наиболее подходящие источники углерода, азота, фосфора и других веществ.

Классификация пит.сред:

По исходным компонентам:

· натуральные среды - готовят из продуктов животного и растительного происхождения (мясо, костная и рыбная мука, кормовые дрожжи, сгустки крови и др.)

· синтетические среды - готовят из определённых химически чистых органических и неорганических соединений, взятых в точно указанных концентрациях и растворённых в дважды дистиллированной воде.

По консистенции (степени плотности):

Плотные и полужидкие среды готовят из жидких, к которым прибавляют агар-агар или желатин. Кроме того, в качестве плотных сред применяют свёрнутую сыворотку крови, свёрнутые яйца, картофель, среды с селикагелем. Некоторые микроорганизмы используют желатин как питательное вещество - при их росте среда разжижается.

· простые: мясопептонный бульон (МПБ), мясопептонный агар (МПА) , питательный желатин,

· сложные - готовят прибавляя к простым средам кровь, сыворотку, углеводы и другие вещества.

· основные - служат для культивирования большинства патогенных микробов. МПБ, МПА, бульон и агар Хоттингера, пептонная вода.

· специальные - служат для выделения и выращивания микроорганизмов, не растущих на простых средах.

· элективные( избирательные) - служат для выделения определённого вида микробов, росту которых они благоприятствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Среды становятся элективными при добавлении к ним определённых антибиотиков, солей, изменения pH. Жидкие элективные среды называют средами накопления.

· дифференциально-диагностические - позволяют отличить один вид микробов от другого по ферментативной активности.

· консервирующие - предназначены для первичного посева и транспортировки исследуемого материала.

Любое производство начинается с сырья. Общий объем биотехнологической продукции в мире измеряется в миллионах тонн в год. В микробиологической промышленности наибольшая доля сырья (более 90 %) идет на производство этанола. Производство хлебо­пекарных дрожжей требует 5 % расходуемого в микробиологиче­ской промышленности сырья, антибиотики — 1,7 %, органические кислоты и аминокислоты — 1,65 %.

Ферментная биотехнология является крупным потребителем крахмала, так как только одной фруктозной патоки производится свыше 3,5 млн в год. С точки зрения экономики, сырье в биотехнологических производствах, особенно в крупнотоннажных, занимает первое место в статьях расходов и составляет 40—65 % общей сто­имости продукции (рис. 4.1). При тонком биосинтезе доля сырья в общей себестоимости продукции уменьшается.


Питательный субстрат, или питательная среда, является сложной трехфазной системой, содержащей жидкие, твердые и газооб­разные компоненты. Много ферментов расположено на поверхно­сти клетки или выделяется в окружающую среду. Кроме того, зна­чительная часть продуктов биосинтеза после экскреции из клеток накапливается в среде. Некоторые промежуточные метаболиты служат резервным питательным фондом, которым клетка пользует­ся после истощения основных источников питания. Существует тесное взаимодействие между культивируемым биообъектом и фи­зико-химическими факторами среды. С одной стороны, эти факто­ры (рН, осмотическое давление и др.) контролируют рост клеток и биохимическую активность продуцентов. С другой сторо­ны, химический состав и физико-химические свойства среды посто­янно меняются в результате жизнедеятельности самих клеток. Эти обсто­ятельства заставляют рассматривать ферментируемый субстрат как продолжение внутренней среды клетки. Во время ферментации формируется совокупность субстрата и биообъекта.

Сырье для микробиологической промышленности Сырьевые ресурсы Земли

В принципе, микроорганизмы способны ассимилировать любое органическое соединение, поэтому потенциальными ресурсами для микробиологической биотехнологии могут служить все мировые запасы органических веществ, включая первичные и вторич­ные продукты фотосинтеза, а также запасы органических веществ в недрах Земли.

Но, к сожалению, каждый конкретный вид микроорганизмов, используемый в биотехнологии, весьма избирателен к питательным веществам, и органическое сырье (кроме лактозы, сахарозы и крахмала) без предварительной химической обработки малопригодно для микробного синтеза. Тем не менее целлюлозосодержащее сырье после химического или ферментативного гидролиза и очистки от ингибирующих или балластных примесей (фенол, фур­фурол, оксиметилфурфурол и др.) может быть использовано в био­технологическом производстве. Каменный уголь, природный газ и древесина могут служить сырьем для химического синтеза техниче­ских спиртов или уксусной кислоты, а последние, в свою очередь, являются отличным сырьем для микробиологической промышлен­ности..

Из органического сырья наибольшее внимание биотехнологов привлекает крахмал, хотя для его ассимиляции микроорганизмами требуется сложный комплекс амилолитических ферментов, которым владеют только некоторые виды микроорганизмов (например, грибы рода Aspergillus, бактерии Вас. subtilis и др.)- Много крах­мала расходуется для производства этанола, а также для изготов­ления фруктозных сиропов. Из-за того, что мировые запасы крахмалосодержащего в нашей стране ограничены, целесообразно использовать для целей биотехнологии мелассу, глюкозное сырье, метанол и этанол.

При выборе сырья учитывают не только физиологические потребности выбранного продуцента, но и стоимость сырья (табл. 1).

Таблица 1. Стоимость основного микробиологического сырья

Содержание углерода, % от содержания в глюкозе

Стоимость 1 т глюкозного эквивалента, доллары

Кукурузный крахмал Глюкоза

Сахароза рафинированная Меласса

100 100 105 105 50 100

64—91 290 133 629 140 550

Кукурузное масло-сырец Пальмовое масло Парафины

180 200 200 218

Традиционные источники углерода

Углеродсодержащее сырье является основным сырьем микробного синтеза. Наиболее широко применяемые в производственных условиях источники углерода перечислены в табл. 2. Большинство микроорганизмов хорошо ассимилирует углеводы. При катаболизме большое значение имеют строение углеродного скелета молекул (прямой, разветвленный или циклический) и степень окисления углеродных атомов. Легкодоступными счита­ются сахара, особенно гексозы, за ними следуют многоатомные спирты (глицерин, маннит и др.) и карбоновые кислоты.

До недавнего времени существовало мнение, что органические кислоты малодоступны для большинства микроорганизмов, однако на практике довольно часто встречаются микроорганизмы, успешно утилизирующие органические кислоты, особенно в анаэробных условиях.

Низкомолекулярные спирты (метанол, этанол) можно отнести к числу перспективных видов микробиологического сырья, так как их ресурсы существенно увеличиваются благодаря успешному развитию технологии химического синтеза. Многие дрожжи родов Candida, Hansenula, Rhodosporidium, Endomycopsis и др. способны ассимилировать этанол. Дрожжи родов Pichia, Candida, Torulopsis и др. и бактерии, принадлежащие родам Methy-lomonas, Protaminobacter, Flavobacterium и др., используют в качестве единственного источника углерода метанол и образуют биомассу с высоким содержанием белков (60—70%).

В 1939 г. В. О. Таусоном была установлена способность разных видов микроорганизмов использовать в качестве единственного источника углерода и энергии н-алканы и некоторые фракции нефти. Отличительной особенностью углеводородов по сравнению с другими видами микробиологического сырья являет­ся низкая растворимость в воде. Этим объясняется тот факт, что только некоторые виды микроорганизмов в природе способны ассимилировать углеводороды. Максимальная растворимость н-алканов в воде около 60 мл/л при длине молекул от С2 до С4, но при увеличении цепи растворимость снижается.

Таблица 2. Источники углерода, применяемые для микробного синтеза

Содержание основ­ного вещества

Техническая сахароза Техническая лактоза

Крахмал Уксусная кислота

Спирт этиловый синте­тический

Узкая фракция жид­кого парафина

Сахарозы не менее

Лактозы не менее

РВ не менее 70 % в пересчете на СВ

Уксусной кислоты не менее 60 % Этанола не менее 92%

Содержит до 9 % воды, до 0,07 % зольных веществ, в том числе же­леза не более 0,004 % Влажность до 0,15 %, зольных ве­ществ не более 0,03 % Влажность до 3 %, зольных ве­ществ не более 2 % и 1 % молоч­ной кислоты

Сиропообразная жидкость, РВ представлены главным образом глюкозой, зольных веществ до 7 %, рН 4,0

Зольных веществ Q.-35—1,2 % в пе­ресчете на СВ ( Содержит формальдегид и до 1,0 % муравьиной кислоты Содержит до 0,21 % изопропилового спирта и до 15 мг/л органиче­ских кислот

Содержит до 0,5 % ароматических углеводородов и до 0,5 % серы

Побочные продукты производства

Многие ценные виды побочной продукции раньше считались отходами производства. В канализацию спускали воду после замачива­ния кукурузных зерен при их переработке в крахмал и глюкозу. Теперь эту воду упаривают, получая экстракт, и используют в микробиологической промышленности. Успешно используют отхо­ды химического производства (смесь карбоновых кислот — ян­тарной, кетоглутаровой, адипиновой) и др.; сульфитный щелок, зерновую и картофельную барду, мелассу, гидрол и т. д.

Таблица .3. Химический состав свекловичной мелассы

Содержание, %

Содержание, %

Сухое вещество 75—77

— Зольность 6,6 — 7,5

Инвертный сахар 0,5 — 1,2

Сбраживаемые са- 46 — 48

Доброкачествен- 62 — 65

65 до гидролиза 0,2—0,35

после гидро- 0,5 — 0,6

Лизин 41 Алании

Гистидин 24 Цистин

Аргинин 26 Валин

Аспарагиновая кислота 251 Метионин

Треонин 41 Изолейцин

Комплексное использование всей побочной продукции производства далеко от совершенства. В нашей стране ежегодно оста­ется неиспользованной или нерационально используется около 1 млн т лактозы, содержащейся в сыворотке и пахте. В США из всего количества молочной сыворотки, образующейся при про­изводстве сыра (ежегодно 20 млн т), половина теряется со сточными водами. В то же время известно, что из 1 т сыворотки мож­но получить около 20 кг сухой биомассы дрожжей. Кроме того, из сепарированной бражки можно выделить допол­нительно около 4 кг протеина. Нерационально используется кар­тофельный сок, выделяемый из картофеля при производстве крахмала, а также альбуминное молоко, получаемое из сыворотки.

В микробиологической промышленности широко применяются меласса и гидрол — побочный продукт производства глюкозы из крахмала. Меласса характеризуется высоким содержанием сахаров (43—57%), в частности сахарозы (табл. 3).

В микробиологической промышленности используется ряд других побочных продуктов (табл. 4). В дальнейшем необходи­мо учесть потенциальные возможности постоянно возобновляю­щихся сырьевых ресурсов — первичных продуктов фотосинтеза, в первую очередь гидролизатов древесины и депротеинизированного сока растений.

Таблица 4. Побочные продукты, используемые в микробиологической промышленности в качестве основного сырья

Область гтр йменён йя~х

Сульфитный щелок Картофельная барда Зерновая барда

Солодовое сусло Молочная сыворотка

Депротеинизирован-ный сок растений

Депротеинизирован-ный картофельный сок

Гкдролизат древесных отходов

СВ 4,0—4,5 %, в том числе РВ 3,3—3,5 % СВ 4,3—4,5 %, в том числе РВ 2,0—2,2 % СВ 7,3—8,1 %, в том числе РВ 2,5—2,9 % СВ 76—78 %, в том числе сбраживаемых Сахаров 50%

СВ 15—20 %, в том числе РВ (мальтоза, декстрины) 8—12 %, витамины СВ 6,5—7,5 %, в том числе лактозы 4,0—4,8 %, белков 0,5—1,0%, жиров 0,05— 0,4 %, витамины СВ 5—8 %, в том числе РВ 0,8—2,0 %, аминокислоты, витамины

СВ 4—5 %, в том числе РВ 0,5—1,0 %, витамины, ами­нокислоты

СВ 6—9 %, в том числе РВ 3—4 %, органических кис­лот 0,3—0,4 % СВ 48—52%, в том числе РВ 26—33 % (галактоза, глюкоза, манноза, ксилоза, рамноза); гуминовые веще­ства

СВ 90—92 %, в том числе экстрактивных веществ 48—50%, крахмала 25— 30%, белков 11 — 13%, жиров 2,5—3,0 %, целлю­лозы 15—17 %

Производство дрожжей, антибиотиков, этанола

Выращивание дрожжей, бактерий, микромицетов

Получение дрожжей, эта­нола, лактанов

Производство хлебопекар­ных дрожжей, антибиотиков

Получение кормовых дрож­жей

Источники минерального питания

Азот. В бактериальных клетках азота до 12 % в пересчете на сухую биомассу, в мицелиальных грибах — до 10%. Микроорганизмы могут использовать как органические, так и неорганиче­ские источники азота. Известно, что бактерии более требователь­ны к источникам азота, чем большинство микромицетов, актиномицетов и дрожжей. У клеток животных и растений особые тре­бования к источникам азота. Продуктивность по биомассе в за­висимости от источника азота не всегда совпадает с продуктив­ностью целевого метаболита и зависит также от условий культи­вирования (табл. 5). При выращивании биомасс

Таблица 5. Влияние минеральных источников азота на рост биомассы и биосинтез лимонной кислоты мутантом A. niger при поверхностном и глубинном культивирования (Р. Я- Карклиньш)

Лимонная кислота, г/л

Лимонная кислота, г/л

12 15 14 11 9 15

95 101 30 30 88

в концентрации 30—40 г/л потребность в добавках азотсодержащих солей обычно не превышает 0,3—0,4 % от объема среды. В периоди­ческих режимах культивирования потребление азота заканчива­ется в первые 6—12 ч роста (в первой половине экспоненциаль­ной фазы). При направленном биосинтезе азотсодержащих мета­болитов потребность в азоте существенно возрастает.

Большинство дрожжей хорошо усваивает аммиачные соли -сульфат аммония, фосфат аммония, а также аммиак из водного раствора. Соли азотной кислоты не всегда хорошо усваиваются. Только некоторые виды дрожжей испытывают потребность в нитратах. Часто источником азота в состав сред включают мочевину. При направленном биосинтезе, например, целлюлолитических ферментов грибом Peniophora gigantea наивысшая биохимиче­ская активность клеток наблюдается на средах с органическим азотом (аспарагин, пептон и др.).

Другие минеральные соли. Фосфор, как известно, входит в состав нуклеиновых кислот, фосфолипидов и других важных компонентов клетки. Иногда фосфор накапливается в ней в виде полифосфатов. Небольшая часть усвоенного фосфора существует в форме макроэргических соединений — АТР.

Фосфор является важным компонентом клетки. Микроорганизмы нуждаются еще в 10 минеральных элементах, но в значи­тельно меньших количествах (10~ 3 — 10~ 4 М). Повышенная по­требность микроорганизмов в микроэлементах возникает, если целевой метаболит содержит микроэлемент. Так, при биосинтезе витамина В]2 в состав питательной среды включают кобальт; молибден и бор стимулируют биосинтез тиамина в клетках клубеньковых бактерий; медь присутствует в ряде ферментов, перенося­щих электроны от субстрата к кислороду.

Минеральный состав питательной среды формирует распределение электрических зарядов на поверхности клеток. Обычно клетки микроорганизмов имеют отрицательный потенциал (16— 20 мВ). При добавлении в среду электролитов он снижается, и тем сильнее, чем выше валентность добавляемого противоиона. Увеличение содержания К + или Na + до 500 мг/л уменьшает величину потенциала клеток до 10—12 мВ. Введение в среду 60— 80 мг/л Са 2+ , Fe 2+ или Си 2+ , равно как и 5 мг/л Аl +3 , может привести клетки в электронейтральное состояние. В отличие от бактерий дрожжи и мицелиальные грибы не перезаряжаются и не приобретают положительный потенциал. Изменение электриче­ского потенциала клеток может изменить их физиологическую деятельность, воздействовать на селективность клеточной мем­браны, вызвать флокуляцию или флотацию клеток.

Комплексные обогатители сред

Микроорганизмы лучше растут в присутствии витаминов, аминокислот, цитокининов и других биологиче­ски активных веществ. С наступлением эры антибиотиков и в связи с широким применением микроорганизмов в промышленно­сти остро встал вопрос об экономически оправданных, сбаланси­рованных по составу питательных средах. Эффективной добавкой оказался кукурузный экстракт благодаря наличию в нем витами­нов, аминокислот и минеральных элементов в легко ассимилиру­емых формах. Химический состав кукурузного экстракта приве­ден ниже.

Читайте также: