Воздействие инфракрасного излучения на организм человека реферат

Обновлено: 30.06.2024

В статье рассматривается воздействие электромагнитного поля на здоровье человека. Спектр этих частот весьма широк – от гамма-излучения до низкочастотных электрических колебаний, поэтому вызванные ими изменения могут быть весьма разнообразными. На характер последствий влияет не только частота, но и интенсивность, а также время облучения. Некоторые частоты вызывают тепловое и информационное воздействие, другие оказывают разрушительное действие на клеточном уровне. При этом продукты распада могут вызывать отравление организма В ходе работы затронуты основные отрицательные стороны влияния бытовой техники и мобильных телефонов на человека. В работе приведены разнообразные примеры воздействия электромагнитного поля и побочные эффекты этих действий. При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. В заключении даны рекомендации по уменьшению вреда электромагнитного излучения.


1. Основы безопасности жизнедеятельности: Учебник для общеобразовательных учреждений. 9 кл. / Министерство общего и профессионального образования РФ и др. – 3-е изд., перераб. – М.: АСТ, 1999. – 319 с.

2. Экология и безопасность жизнедеятельности: Учебное пособие для вузов/ Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева и др.; под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. – 447 с.

3. Безопасность жизнедеятельности: Учебник / под ред. С.В. Белова. 2–е изд., перераб. и доп. – М.: Высшая школа, 2002. – 358 с.

Электромагнитные поля пагубно влияют на здоровье человека. Но в нынешнем этапе развития человек уже не сможет без этого прожить. Ведь сейчас даже маленьких детей не отпускают на улицу без телефонов, а телефон первый в списке пагубных влиятелей на здоровье человека. Уровень биологического воздействия электромагнитных полей не зависит от длительности его воздействия. При воздействии электромагнитного поля у человека может наблюдаться повышенная утомляемость, вялость, изменение кровяного давления и пульса, возникновение болей в сердце, боли.

Влияние физических факторов на организм человека (на примере электромагнитных волн)

Люди подвергаются различным опасностям, под которыми обычно понимают явления, которые наносят ущерб здоровью человека, т.е. вызывают различные нежелательные последствия.

В настоящее время в быту, люди пользуются различными приборами- источниками электромагнитных волн, которые излучают энергию и тем самым оказывают значимое влияние на организм человека.

Источниками естественных электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а искусственные источники: различные генераторы, лазерные установки, линии электропередач, измерительные приборы, и др.

Жизнь на нашей планете возникла в тесном взаимодействии с электромагнитным полем Земли. К земному полю люди приспособились в процессе своего развития эволюции. Земное поле стало необходимым и важным фактором в жизни человека. Любое действие полей, как увеличенная, так и уменьшенная может повлиять на человека.

Электромагнитная сфера нашей планеты определяется в основном электрическим и магнитным полями, атмосферным электричеством, радиоизлучением, а также полями искусственных источников.

Перед грозой и во время грозы у человека появляется плохое самочувствие из-за усиления электрического поля, а одним из причин ДТП на дорогах являются магнитные бури, которые возникают из-за солнечной активности, которые так же ухудшают здоровье больных людей в пожилом возрасте.

В быту электрические поля пользуются большим спросом для производства домашних утварей, детских игрушек, мужских и женских одежд, обуви, для конструкции общественных точек и жилых домов, так же и строй материалов являющимися синтетическими полимерами.

Все промышленные и бытовые электро- и радиоустановки являются источниками искусственных полей разной силы.

По мере убывания длины волны в диапазон включаются инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма- излучение.

Электростатические поля возникают при работе легко электризующимися материалами. В радиотехнике используются электромагниты с постоянным током и металлокерамические магниты- они и являются постоянными источниками магнитных полей.

Источниками электрических полей промышленной частоты являются: линии электропередачи, специальные устройства защиты, автоматики, измерительные приборы, высоковольтные установки промышленной частоты.

Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, генераторы, установки индукционного и диэлектрического устройства, высокочастотные приборы в медицине и в быту.

Источником повышенной опасности в быту являются микроволновые печи, телевизоры, мобильные телефоны. В настоящее время признаются источником риска электроплиты, электрические чайники, утюги, холодильники (при работающем компрессоре) и другие бытовые электроприборы.

Особым видом магнитного излучения является лазерное излучение, которое генерируется в лазере [1].

Воздействия электромагнитных волн на человека

Механизм воздействия электромагнитных волн на биологические объекты недостаточно изучен. В постоянном электрическом поле молекулы, из которых состоит тело человека, поляризуются.

Частоты электромагнитных излучений широки, и используются в телерадиовещании, радионавигации и др. При повышении частоты электростатические свойства живых тканей сильно изменяются. Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное поле вызывает нагрев тканей человека. Энергия проникшего в организм многократно преломляется в многослойной структуре тела с разной толщиной слоев тканей [2].

Тепловая энергия, возникшая в тканях человека, увеличивает тепловыделение. Если механизм терморегуляции тела не сможет рассеять избыточное тепло, то неизбежно повышение температуры тела. Выделение теплоты может приводить к перенагреванию тканей и органов, которые недостаточно хорошо снабжены кровеносными сосудами. Например, хрусталик глаза, желчный пузырь.

gaiz1.tif

Такие органы как мозг, глаза, почки и ткани человека, которые обладают слабо выраженной терморегуляцией, более чувствительны к облучению. Перегревание тканей и органов ведет к их заболеваниям. Отрицательное воздействие электромагнитного поля может привести к торможению рефлексов, понижению кровяного давления, замедлению сокращений сердца, изменению состава крови, помутнению хрусталика глаза (катаракта) [3].

Воздействие сверхвысоких частот – излучения интенсивностью может привести к потере зрения. При длительном облучении умеренной интенсивности возможны нарушения со стороны эндокринной системы, так же изменение углеводного и жирового обмена, сопровождающееся похудением, повышением возбудимости.

При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. При воздействии лазерного излучения на организм человека возникают биологические эффекты. Всего различают первичные и вторичные эффекты. Первичные изменения происходят в тканях человека непосредственно под действием излучения (ожоги, кровоизлияния), а вторичные (побочные явления) вызываются различными нарушениями в человеческом организме, резвившимися вследствие облучения.

gaiz2.tif

Наиболее чувствителен к воздействию лазерного излучения глаз человека. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. Лазерные лучи высокой интенсивности вызывают поражение различных внутренних тканей и органов человека, что выражается в виде кровоизлияний, отеков, а также свертывания крови. Все это указывает на неоднозначность реакций организма на воздействие электромагнитного поля.

Люди довольно часто подвергаются воздействию различных видов электромагнитного излучения. Для уменьшения воздействия излучения на организм человека существуют различные методы, например, рациональное размещение облучающих объектов, ослабляющее воздействие излучения на людей; ограничение времени нахождения человека в электромагнитном поле; использование поглощающих экранов или же применение средств индивидуальной защиты.

Для защиты глаз от воздействия электромагнитного излучения применяются специальные очки.

Инфракрасное излучение бывает коротковолновым (λ = от 0,74 до 2,5 мкм - температура нагревательного элемента более 800°С), средневолновым (средневолновые: λ = от 2,5 до 50 мкм (температура элемента до 600°С) и длинноволновым (длинноволновые: λ = от 50 до 2000 мкм (температура элемента менее 300°С). При попадании на предметы видимая часть спектра становится освещением, а инфракрасное излучение поглощаются телом, превращаясь при этом в энергию тепла. Без него немыслима жизнь на нашей планете. При распространении инфракрасного излучения в пространстве практически не происходит потерь энергии. По сути, это природный и самый совершенный метод обогрева. Поэтому для теплоэнергетики вопрос использования инфракрасного излучения является весьма интересным. Долгие годы исследований привели к тому, что сегодня ИК-излучение широкого применяется во всех сферах нашей жизни: военный комплекс, отопительное оборудование, бани и т. д., в методах идентификации денежных средств.4 Особенно интенсивно рассматриваемый вид излучения используется в медицине, ведь он помогает бороться не только с болезнями, но и с ранним старением.


  1. Рассмотреть подробнее сущность инфракрасного излучения;

  2. Проанализировать пользу инфракрасного излучения;

  3. Проанализировать вред инфракрасного излучения;

  4. Изучить способы защиты от вредного воздействия инфракрасного излучения.

Одной из количественных характеристик излучения является интенсивность теплового облучения, которую можно определить как энергию, излучаемую с единицы площади в единицу времени (ккал/(м 2 · ч) или Вт/м 2 ). Измерение интенсивности тепловых излучений иначе называют актинометрией (от греческих слов асtinos - луч и metrio - измеряю), а прибор, с помощью которого производят определение интенсивности излучения, называется актинометром. В зависимости от длины волны изменяется проникающая способность инфракрасного излучения. Наибольшую проникающую способность имеет коротковолновое инфракрасное излучение (0,76-1,4 мкм), которое проникает в ткани человека на глубину в несколько сантиметров. Инфракрасные лучи длинноволнового диапазона (9-420 мкм) задерживаются в поверхностных слоях кожи.

Органы восприятия человека и других высших приматов не приспособлены под инфракрасное излучение (проще говоря, человеческий глаз его не видит), однако, некоторые биологические виды способны воспринимать органами зрения инфракрасное излучение. Так, например, зрение некоторых змей позволяет им видеть в инфракрасном диапазоне и охотиться на теплокровную добычу ночью (когда её силуэт обладает наиболее выраженным контрастом на фоне остывшей местности).

Источники инфракрасного излучения. В производственных условиях выделение тепла возможно от:

• плавильных, нагревательных печей и других термических устройств;

•остывания нагретых или расплавленных металлов;

•перехода в тепло механической энергии, затрачиваемой на привод основного технологического оборудования;

•перехода электрической энергии в тепловую и т.п.

Около 60% тепловой энергии распространяется в окружающей среде путём инфракрасного излучения. Лучистая энергия, проходя почти без потерь пространство, снова превращается в тепловую. Тепловое излучение не оказывает непосредственного воздействия на окружающий воздух, свободно пронизывая его. Производственные источники лучистой теплоты по характеру излучения можно разделить на четыре группы:

• с температурой излучающей поверхности до 500oС (наружная поверхность печей и др.); их спектр содержит инфракрасные лучи с длиной волны 1,9-3,7 мкм;

• с температурой поверхности от 500 до 1300oС (открытое пламя, расплавленный чугун и др.); их спектр содержит преимущественно инфракрасные лучи с длиной волны 1,9-3,7 мкм;

• с температурой от 1300 до 1800oС (расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких с длиной волны 1,2-1,9 мкм, так и видимые большой яркости;

• с температурой выше 1800oС (пламя электродуговых печей, сварочных аппаратов и др.); их спектр излучения содержит, наряду с инфракрасными и видимыми, ультрафиолетовые лучи.
2. Положительные и поражающие факторы инфракрасного излучения

Ответить на вопрос — вредно или полезно для человека инфракрасное излучение, можно, вооружившись некоторыми сведениями.

Длинноволновые ИК лучи, попадая на кожу, воздействует на нервные рецепторы, вызывая ощущение тепла. Поэтому инфракрасное излучение ещё называют тепловым. Более 90% этого излучения поглощается влагой, содержащейся в верхних слоях кожи. Оно вызывает лишь повышение температуру кожного покрова. Медицинские исследования показали, что длинноволновое излучение не только безопасно для человека, но и повышает иммунитет, запускает механизм регенерации и оздоровления многих органов и систем. Особенно эффективными в этом отношении являются ИК лучи с длиной волны 9,6 мкм. Этими обстоятельствами обусловлено применение инфракрасного излучения в медицине. Технология образования инфракрасных лучей кажется достаточно сложной, но основы воздействия её на организм достаточно просты. Инфракрасные лучи глубоко проникают в организм, мышцы и ткани. Вследствие этого достигаются три основных эффекта - это повышение температуры тела, ускорение сердцебиения и выведение вредных веществ из организма. В бьюти-индустрии широко используется инфракрасное излучение, которое призвано уменьшать воспалительные процессы кожи, а также помогать в борьбе с возрастными изменениями.

Наиболее широко инфракрасное излучение в медицине применяется в различных датчиках потока крови (PPG). Широко распространённые измерители частоты пульса (ЧСС, HR — Heart Rate) и насыщения крови кислородом (SpO2) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений. Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Широкое распространение нашло инфракрасное излучение в области пищевой промышленности. С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции. Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа и мука, на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности. Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Инфракрасные излучатели часто применяют для сушки окрашенных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это экономический эффект: благодаря поглощению тепла непосредственно окрашенной поверхностью процесс идёт гораздо быстрее, а энергии при этом затрачивается гораздо меньше, чем при традиционных методах. Кроме того, минимизируется конвекция воздуха, благодаря чему на окрашенные поверхности попадает меньше пыли.

Таким образом инфракрасное излучение применяется повсеместно и приносит много пользы при верном его применении.

Совсем иной механизм воздействия инфракрасных лучей на организм человека, относящегося коротковолновой части спектра. Они способны проникнуть на глубину нескольких сантиметров, вызывая нагревание внутренних органов.

В месте облучения из-за расширения капилляров может появиться покраснение кожи, вплоть до образования волдырей. Особенно опасны короткие ИК лучи для органов зрения. Они могут спровоцировать образования катаракты, нарушения водно-солевого баланса, появления судорог.

По мере увеличения длины волны проникающая способность инфракрасного излучения снижается и начиная с длины волны 2,4 мкм оно полностью задерживается кожей. Механизм теплового воздействия инфракрасного излучения на организм человека состоит в том, что энергия инфракрасного излучения, которое глубоко проникает в ткани, превращается основном на тепловую энергию.

При этом в тканях происходят фотохимические реакции, накапливаются специфические высокоактивные вещества, в частности гистамины, которые попадают в кровь. В крови увеличивается содержание общего и остаточного азота, полипептидов и аминокислот. Предполагают, что инфракрасное излучение, проникая в клетку, может влиять на резонирующие клеточные субстанции, вызывая распад белковой молекулы. Продукты распада, поступивших в кровяное русло, длительное время действуют на различные органы и системы непосредственно или через нервную систему.

Таким образом, уровень физиологических изменений в организме под воздействием инфракрасного излучения зависит от его интенсивности, спектрального состава, площади и участка облучения, продолжительности действия, степени физического напряжения, а также факторов производственного микроклимата - температуры, влажности и скорости движения окружающего воздуха.

Под воздействием инфракрасного излучения наряду с повышением температуры поверхности тела, облучаемого, при определенных условиях (длительного облучения значительной площади) может наблюдаться повышение температуры кожи и отдаленных участках. Повышение температуры кожи до 40-45°С является пределом переношуваности инфракрасного излучения. Общая температура тела под воздействием инфракрасного излучения изменяется несущественно. Она может повыситься на 1,5-2°С, если инфракрасного излучения испытывает значительная площадь поверхности тела или человек выполняет тяжелую физическую работу.

Инфракрасное излучение действует, как правило, в сочетании с высокой температурой окружающего воздуха. При этом теплоотдача конвекцией и излучением практически исключена, и остается единственный путь теплоотдачи - испарением влаги с поверхности тела и дыхательных путей.

Если в производственных условиях с высокой температурой и влажностью окружающей среды теплоотдача затруднена, организм человека может перегреться. Такое явление называют гипертермией. При гипертермии существенно повышается температура тела, наблюдаются интенсивное потоотделение, головная боль, чувство слабости, жажда, нарушение восприятия цвета предметов. При быстром нарастании симптомов в особо тяжелых случаях температура тела достигает 41-42°С, кожа становится бледной, синюшной, зрачки расширяются, дыхание становится частым, поверхностным (50-60 раз в минуту), ускоряется частота пульса (120-160 ударов в минуту), иногда возникают судороги, снижается артериальное давление, возможна потеря сознания. Если пострадавшему своевременно не подать медицинскую помощь, он может умереть.

Тяжелые формы гипертермии (тепловой удар) развиваются по особо неблагоприятным условиям работы при сочетании метеорологических условий, негативно влияющих на организм, с тяжелым физическим трудом и при других вредных факторах производственной среды. [2, c. 98]

Солнечный удар является следствием влияния инфракрасного излучения как составной видимого света на центральную нервную систему. Солнечный удар вызывается непосредственным действием солнечного излучения (чаще всего страдают строители, работники карьеров, сельскохозяйственные работники). Выздоровление после солнечного удара зависит от степени теплового поражения оболочек мозга и других структур центральной нервной системы. Симптомы солнечного удара - головная боль, головокружение, ускорение частоты пульса и дыхания, потеря сознания, нарушение координации движений. Температура тела у пострадавшего, как правило, не повышается. Проникая в ткани на значительную глубину (2-3 см), инфракрасное излучение может вызывать заболевания менингит и энцефалит. Заметим, что в условиях производства такая патология не развивается даже при высокой интенсивности инфракрасного излучения.

Вследствие перегревания организма и потери им большого количества жидкости с потом возможно нарушение водно-электролитного обмена, что проявляется судорожной болезнью. Основным симптомом этой патологии является боль в мышцах конечностей, что приводит к тоническим судорогам. При этом температура тела повышается незначительно. Нарушения водно-электролитного обмена под влиянием высокой температуры окружающей среды может вызывать также заболевания почек, пищеварительного тракта, печени.

3. Способы защиты от вредного воздействия инфракрасного излучения
Поскольку мы определились, что негативное влияние на человеческий организм оказывает коротковолновое ИК излучение, выясним, где нас может подстерегать эта опасность. Прежде всего это тела с температурой, превышающей 100 °C. Такими, могут явиться следующие: Производственные источники лучистой энергии (сталеплавильные, электродуговые печи и пр.) Снижение опасности их воздействия достигается специальной защитной одеждой, теплозащитными экранами, применением более новых технологий, а также лечебно-профилактическими мероприятиями для обслуживающего персонала:

1.Снижение интенсивности излучения источника (замена устаревших технологий современными и др.).

2.Защитное экранирование источника или рабочего места (создание экранов из металлических сеток и цепей, облицовка асбестом открытых проёмов печей и др.).

4. Использование средств индивидуальной защиты (использование для защиты глаз и лица щитков и очков со светофильтрами, защита поверхности тела спецодеждой из льняной и полульняной пропитанной парусины).

• Лечебно-профилактические мероприятия (организация рационального режима труда и отдыха, организация периодических медосмотров и др.)

Всё вышеперечисленное больше относится к производственной сфере, где человек на протяжении длительного периода времени может находиться рядом с предметами, температура которых более 100 °C.

Ранее мы выяснили, что наиболее встречаемое инфракрасное излучение – это солнечный свет. Наиболее опасен перегрев в жаркое время года. Таким образом, для предотвращения негативного воздействия необходимо пользоваться следующими рекомендациями: - Необходимо ограничить пребывание на улице, снизить физические нагрузки.

- При нахождении в помещениях необходимо обеспечить их проветривание - приоткрыть форточки, окна, использовать вентиляторы или кондиционеры.

- При выходе на улицу рекомендуется одевать лёгкую одежду светлой расцветки из натуральных тканей (хлопок, лён), желательно чтобы ворот одежды был не тугим. Не следует открывать большие участки тела более чем на 15-30 минут, чтобы не обгореть.

- На улице обязательно необходимо пользоваться головным убором (летняя шляпа, панама, платок и др.), солнцезащитными очками, зонтиками.

инфракрасный излучение теплота

Инфракрасное излучение - один из видов излучений, которые появились в природе, обусловленные в основном техногенным направлением развития нашей жизни. К сожалению, решающими факторами в образовании репутации различных излучений сыграло их влияние на здоровье. Науке не известны какие-либо негативные последствия влияния длинноволнового инфракрасного излучения на организм человека. Инфракрасное излучение или тепловое излучение - это вид распространения тепла, которое мы чувствуем от горячей печки, солнца или от батареи центрального отопления. Оно не имеет ничего общего ни с ультрафиолетовым излучением, ни с рентгеновским. Сейчас инфракрасное излучение нашло очень широкое распространение в медицине (хирургия, стоматология, физиопроцедуры), что говорит не только о его безвредности, но и о полезном действии на организм. Инфракрасное излучение - это вид энергии, который нагревает предметы непосредственно без нагревания воздуха между источником излучения и объектом.

Вместе с тем, коротковолновое инфракрасное излучение может негативно отразиться на человеческом организме, начиная от солнечного теплового удара, который вполне можно получить в жаркое время года, заканчивая провоцированием развития заболеваний. Это влияние может быть положительным, в связи с чем, излучение широко применяется в медицине, а также отрицательным (солнечный удар, катаракты, энцефалит и т.д.).

В обычной среде, во избежание получения теплового удара, достаточно пользоваться простыми рекомендациями.

Для защиты от теплового удара в производственной сфере существует большое количество средств индивидуальной и коллективной защиты. Основными методами защиты являются: теплоизоляция рабочих поверхностей источников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, радиационное охлаждение, мелкодисперсное распыление воды с созданием водяных завес, общеобменная вентиляция, кондиционирование. Все средства защиты должны выполнять технические требования, прописанные в ГОСТе 12.4.123-83 ССБТ.

Инфракрасное излучение – это излучение, действию которого человек подвергается каждый день. Если говорить о его естественных источниках, то это банальное тепло солнца. В допустимых дозах его влияние на человека безопасно, не вызывает вреда для здоровья и не провоцирует онкологические заболевания.

Если говорить о широком использовании инфракрасного излучения в современности, то можно вспомнить хирургию, медицину, стоматологию, физиотерапию. Без этого метода врачи не смогли бы оказать пациентам должной помощи высокого уровня.

Влияние инфракрасного излучения на человека

Инфракрасное излучение глубоко проникает в организм человека и влияет на него по трём основным направлениям:

  • Повышает внутреннюю температуру тела. Эта жара, полученная искусственным путём, побуждает организм вырабатывать в ускоренном и более эффективном режиме лейкоциты и антитела.
  • Ускоряет сердцебиение. Токсины и другие отходы начинают выводиться из организма в ускоренном темпе благодаря быстрой циркуляции крови внутри человека, спровоцированной учащённым сердцебиением.
  • Очищение организма. Нейтрализация токсинов в жировых тканях и клетках – один из эффектов воздействия инфракрасного излучения на человеческий организм. И это, не говоря о потоотделении и высокой циркуляции крови.

Такая терапия с помощью инфракрасного излучения благотворно влияет на самочувствие человека. Нюанс лишь в том, что его интенсивность строго контролируется медицинским работником.

Влияние повышенного уровня инфракрасной радиации на работников

Инфракрасное излучение повышенной интенсивности, как одно из производственных излучений, не имеет такого положительного эффекта, как лечебная терапия. Дело здесь в неконтролируемости его уровня. Работники, которые связаны по специфике своей деятельности с этим излучением, имеют ряд последствий со здоровьем, таких как:

  • Риск инфарктов.
  • Артериальная гипертония.
  • Болезни систем кровообращения.
  • Снижение иммунитета.
  • Заболевания органов дыхания.
  • Частые простудные заболевания.
  • Ишемическая болезнь сердца.
  • Ухудшение зрения.

Диагностика работников всего спектра вредного производства, связанного с инфракрасной радиацией, усложняется ещё и невозможностью точного определения дозы облучения. Не существует такой формулы, которая дала бы точную цифру в подсчёте дозы облучения сталелитейщика, к примеру, за 10 лет трудового стажа. Медики могут лишь предположить результат. Потому профилактика таких работников — необходимая мера по обеспечению всех мер охраны труда.

Именно по вышеуказанным причинам предприятиям требуется регулярный контроль физических факторов.

Как обезопасить работников от повышенного уровня инфракрасной радиации?

Для обеспечения безопасности работников, специфика деятельности которых связана с инфракрасной радиацией, необходимо на регулярной основе придерживаться следующих мер:

  • Стремиться к снижению уровня инфракрасной радиации на рабочем месте.
  • Не допускать облучения сотрудников повышенным уровнем радиации.
  • Проводить мероприятия, направленные на улучшение условий труда работников производства.
  • Проводить регулярные замеры уровня инфракрасной радиации в рабочих помещениях.
  • Осуществлять медицинское обследование работников производства не реже одного раза за год.

Таким образом, инфракрасная радиация – это весьма опасный продукт, с которым ежедневно сталкивается определённое количество работников. Главное в такой деятельности – соблюдение мер безопасности на рабочем месте и регулярное наблюдение у врача.

В статье рассматривается воздействие электромагнитного поля на здоровье человека. Спектр этих частот весьма широк – от гамма-излучения до низкочастотных электрических колебаний, поэтому вызванные ими изменения могут быть весьма разнообразными. На характер последствий влияет не только частота, но и интенсивность, а также время облучения. Некоторые частоты вызывают тепловое и информационное воздействие, другие оказывают разрушительное действие на клеточном уровне. При этом продукты распада могут вызывать отравление организма В ходе работы затронуты основные отрицательные стороны влияния бытовой техники и мобильных телефонов на человека. В работе приведены разнообразные примеры воздействия электромагнитного поля и побочные эффекты этих действий. При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. В заключении даны рекомендации по уменьшению вреда электромагнитного излучения.


1. Основы безопасности жизнедеятельности: Учебник для общеобразовательных учреждений. 9 кл. / Министерство общего и профессионального образования РФ и др. – 3-е изд., перераб. – М.: АСТ, 1999. – 319 с.

2. Экология и безопасность жизнедеятельности: Учебное пособие для вузов/ Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева и др.; под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. – 447 с.

3. Безопасность жизнедеятельности: Учебник / под ред. С.В. Белова. 2–е изд., перераб. и доп. – М.: Высшая школа, 2002. – 358 с.

Электромагнитные поля пагубно влияют на здоровье человека. Но в нынешнем этапе развития человек уже не сможет без этого прожить. Ведь сейчас даже маленьких детей не отпускают на улицу без телефонов, а телефон первый в списке пагубных влиятелей на здоровье человека. Уровень биологического воздействия электромагнитных полей не зависит от длительности его воздействия. При воздействии электромагнитного поля у человека может наблюдаться повышенная утомляемость, вялость, изменение кровяного давления и пульса, возникновение болей в сердце, боли.

Влияние физических факторов на организм человека (на примере электромагнитных волн)

Люди подвергаются различным опасностям, под которыми обычно понимают явления, которые наносят ущерб здоровью человека, т.е. вызывают различные нежелательные последствия.

В настоящее время в быту, люди пользуются различными приборами- источниками электромагнитных волн, которые излучают энергию и тем самым оказывают значимое влияние на организм человека.

Источниками естественных электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а искусственные источники: различные генераторы, лазерные установки, линии электропередач, измерительные приборы, и др.

Жизнь на нашей планете возникла в тесном взаимодействии с электромагнитным полем Земли. К земному полю люди приспособились в процессе своего развития эволюции. Земное поле стало необходимым и важным фактором в жизни человека. Любое действие полей, как увеличенная, так и уменьшенная может повлиять на человека.

Электромагнитная сфера нашей планеты определяется в основном электрическим и магнитным полями, атмосферным электричеством, радиоизлучением, а также полями искусственных источников.

Перед грозой и во время грозы у человека появляется плохое самочувствие из-за усиления электрического поля, а одним из причин ДТП на дорогах являются магнитные бури, которые возникают из-за солнечной активности, которые так же ухудшают здоровье больных людей в пожилом возрасте.

В быту электрические поля пользуются большим спросом для производства домашних утварей, детских игрушек, мужских и женских одежд, обуви, для конструкции общественных точек и жилых домов, так же и строй материалов являющимися синтетическими полимерами.

Все промышленные и бытовые электро- и радиоустановки являются источниками искусственных полей разной силы.

По мере убывания длины волны в диапазон включаются инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма- излучение.

Электростатические поля возникают при работе легко электризующимися материалами. В радиотехнике используются электромагниты с постоянным током и металлокерамические магниты- они и являются постоянными источниками магнитных полей.

Источниками электрических полей промышленной частоты являются: линии электропередачи, специальные устройства защиты, автоматики, измерительные приборы, высоковольтные установки промышленной частоты.

Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, генераторы, установки индукционного и диэлектрического устройства, высокочастотные приборы в медицине и в быту.

Источником повышенной опасности в быту являются микроволновые печи, телевизоры, мобильные телефоны. В настоящее время признаются источником риска электроплиты, электрические чайники, утюги, холодильники (при работающем компрессоре) и другие бытовые электроприборы.

Особым видом магнитного излучения является лазерное излучение, которое генерируется в лазере [1].

Воздействия электромагнитных волн на человека

Механизм воздействия электромагнитных волн на биологические объекты недостаточно изучен. В постоянном электрическом поле молекулы, из которых состоит тело человека, поляризуются.

Частоты электромагнитных излучений широки, и используются в телерадиовещании, радионавигации и др. При повышении частоты электростатические свойства живых тканей сильно изменяются. Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное поле вызывает нагрев тканей человека. Энергия проникшего в организм многократно преломляется в многослойной структуре тела с разной толщиной слоев тканей [2].

Тепловая энергия, возникшая в тканях человека, увеличивает тепловыделение. Если механизм терморегуляции тела не сможет рассеять избыточное тепло, то неизбежно повышение температуры тела. Выделение теплоты может приводить к перенагреванию тканей и органов, которые недостаточно хорошо снабжены кровеносными сосудами. Например, хрусталик глаза, желчный пузырь.

gaiz1.tif

Такие органы как мозг, глаза, почки и ткани человека, которые обладают слабо выраженной терморегуляцией, более чувствительны к облучению. Перегревание тканей и органов ведет к их заболеваниям. Отрицательное воздействие электромагнитного поля может привести к торможению рефлексов, понижению кровяного давления, замедлению сокращений сердца, изменению состава крови, помутнению хрусталика глаза (катаракта) [3].

Воздействие сверхвысоких частот – излучения интенсивностью может привести к потере зрения. При длительном облучении умеренной интенсивности возможны нарушения со стороны эндокринной системы, так же изменение углеводного и жирового обмена, сопровождающееся похудением, повышением возбудимости.

При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. При воздействии лазерного излучения на организм человека возникают биологические эффекты. Всего различают первичные и вторичные эффекты. Первичные изменения происходят в тканях человека непосредственно под действием излучения (ожоги, кровоизлияния), а вторичные (побочные явления) вызываются различными нарушениями в человеческом организме, резвившимися вследствие облучения.

gaiz2.tif

Наиболее чувствителен к воздействию лазерного излучения глаз человека. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. Лазерные лучи высокой интенсивности вызывают поражение различных внутренних тканей и органов человека, что выражается в виде кровоизлияний, отеков, а также свертывания крови. Все это указывает на неоднозначность реакций организма на воздействие электромагнитного поля.

Люди довольно часто подвергаются воздействию различных видов электромагнитного излучения. Для уменьшения воздействия излучения на организм человека существуют различные методы, например, рациональное размещение облучающих объектов, ослабляющее воздействие излучения на людей; ограничение времени нахождения человека в электромагнитном поле; использование поглощающих экранов или же применение средств индивидуальной защиты.

Для защиты глаз от воздействия электромагнитного излучения применяются специальные очки.

Читайте также: