Восстановление деталей полимерными материалами реферат

Обновлено: 02.07.2024

По своему назначению в ремонтном производстве пластмассы можно разделить на две группы. В первую группу входят термореактивные пластмассы в виде различных композиций, составленных преимущественно на основе эпоксидных смол ЭД-20 и ЭД-16, используемых при изготовлении клеевой композиции для заделки трещин в корпусных деталях, а также для клеевых составов. Полимерные материалы широко распространены… Читать ещё >

  • технологическое оборудование молочной отрасли. монтаж
  • наладка
  • ремонт и сервис

Восстановление деталей полимерными материалами ( реферат , курсовая , диплом , контрольная )

Полимерные материалы широко распространены в ремонтном производстве. Восстановление деталей полимерными материалами во многих случаях имеет большую технико-экономическую целесообразность. В ремонтном производстве применяют как термореактивные пластмассы — реактопласты, так и термопластичные — термопласты.

Термореактивные пластмассы при нагревании отверждаются и теряют свои пластические свойства, т. е. являются необратимыми. Из числа реактопластов широко используют эпоксипласты, связующим компонентом которых являются эпоксидные смолы. Термопластичные пластмассы при нагреве не отверждаются и сохраняют свои пластические свойства. Изделия из этих пластмасс при повторном нагреве можно вновь формовать, т. е. они являются обратимыми. К числу термопластов, применяемых при ремонте оборудования предприятий молочной промышленности, относятся полиамиды и фторопласты.

По своему назначению в ремонтном производстве пластмассы можно разделить на две группы. В первую группу входят термореактивные пластмассы в виде различных композиций, составленных преимущественно на основе эпоксидных смол ЭД-20 и ЭД-16, используемых при изготовлении клеевой композиции для заделки трещин в корпусных деталях, а также для клеевых составов.

Ко второй группе относятся пластмассы, идущие на изготовление и восстановление различных деталей. Сюда относятся различные полиамиды, например поликапролактам (капрон) и фторопласт.

Большое влияние на физико-механические свойства отвержденной композиции оказывают наполнители, количество и материал которых подбирают в зависимости от назначения требуемых свойств композиции. Например, железный порошок повышает твердость, графит — теплопроводность, тальк — износостойкость. Подбором наполнителей можно повысить адгезию композиции с металлом, сблизить коэффициенты термического расширения композиции и металла, снизить усадку.

Из термопластов в ремонтном производстве применяют полиамидные смолы, обладающие хорошей адгезией с металлом, высокой механической прочностью и износостойкостью, низким коэффициентом трения. Детали сопряжений, работающие в условиях трения скольжения, можно изготовить из полиамидов монолитными, с металлическими каркасами или наносить на рабочую поверхность детали слоем небольшой толщины (0,6—0,7 мм). Полиамидный слой наносят на поверхность детали различными способами напыления: газопламенным, вихревым или вибрационным, литьем под давлением.

Полиамиды — хороший антифрикционный материал, применяемый для изготовления различных подшипниковых втулок; является заменителем цветных металлов и сплавов.

При восстановлении деталей с помощью полимерных материалов необходимо помнить, что ремонтные работы с клеевыми составами и полиамидными смолами, а также оборудование помещений и рабочих мест, обращение со спецодеждой и ее хранение, хранение материалов должны вестись при строгом соблюдении правил безопасности. Многие вещества, входящие в состав эпоксидных композиций, являются токсичными и огнеопасными.

Особенности и оценка практической эффективности применения пластических масс в процессе ремонта производственных деталей, анализ характерных свойств используемого сырья, его типы и виды. Порошковые термопласты, принципы и правила склеивания деталей.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 07.05.2014
Размер файла 24,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Восстановление деталей полимерными материалами

Ремонт деталей полимерными материалами (пластмассами) прост, экономичен и надежен. Ими можно наращивать поверхности для создания натяга в соединении или износостойкого покрытия, заделывать трещины и пробоины, склеивать детали, выравнивать поверхности, герметизировать соединения, надежно закрывать поры в любых деталях, даже в труднодоступных местах. Клеевые составы и пластмассы в ряде случаев успешно заменяют сварку и пайку, хромирование и осталивание, а иногда являются единственно возможными средствами восстановления.

Применяемые в ремонте пластмассы можно разделить на две группы. К первой относятся термореактивные (реактопласты), т.е. пластмассы, которые отвердевают и теряют свои пластические свойства при нагреве. Используют их в виде различных композиций (в жидком или пастообразном состоянии) для наращивания, склеивания, герметизации, заделки трещин и пробоин. Эти композиции составляются преимущественно на основе различных смол.

Вторую группу составляют термопластические пластмассы (термопласты), которые при нагреве не отвердевают и сохраняют свои пластические свойства. Применяют их для наращивания и изготовления различных деталей. К ним относятся полиамиды П68, АК-7, капрон и др.

Жидкие клеевые составы. Клеи типа БФ представляют собой спиртовые растворы термореактивных смол. Клей БФ-2 используется для склеивания и наращивания металлических деталей, работающих при температуре 60… 80°С и выше, а БФ-4 - в тех случаях, когда требуется большая эластичность и высокая стойкость к вибрациям. Клей БФ-6 применяют для склеивания металлов с пластмассами и тканями. Соединения, выполненные этими клеями, устойчивы по отношению к воде, холоду, действию нефтепродуктов, а также к действию кислот ниже 20%-ной концентрации. Эти клеи являются хорошими диэлектриками и поставляются в готовом виде, что очень удобно.

Клей (эластомер) ГЭН-150В - это сополимер смолы ВДУ и нит-рильного каучука СКН-40; его изготовляют в виде вальцованных листов (шкурок) толщиной 2…4 мм. Раствор клея приготовляют следующим образом: мелко нарезанные кусочки сухого клея помещают в стеклянную посуду с притертой пробкой, заливают смесью ацетона с бензолом (или одним ацетоном) в пропорции 1:5 и выдерживают 8… 10 ч. После этого бутыль с содержимым периодически взбалтывают в течение 2…3 ч, а затем раствор отстаивают 30 мин и профильтровывают через металлическую сетку (100…500 отверстий на 1 см 2 ).

Раствор клея не должен содержать нерастворимых частиц, а при выливании на стекло он должен давать ровную однородную пленку. Пленка этого клея имеет высокую адгезию (сцепление с поверхностью) к металлу, обладает хорошей эластичностью и прочностью на растяжение, выдерживает высокие удельные давления, значительные ударные нагрузки, маслостойка. После ее нанесения поверхности деталей не требуют обработки и, кроме того, не подвергаются фреттинг-коррозии. Клей ГЭН-150В является хорошим диэлектриком. Этот клеевой раствор применяется как для наращивания, так и для склеивания деталей. Высокая адгезия, эластичность, вибростойкость и маслостойкость придают пленке хорошие герметизирующие свойства, поэтому клей широко применяется для уплотнения различных полостей, для пропитки уплотнительных прокладок и т.п. Наиболее целесообразная толщина наращиваемого слоя составляет не более 0,20 мм.

Клей ВС-ЮТ' представляет собой раствор синтетических смол в органических растворителях. Он применяется для наращивания и склеивания различных металлов и неметаллических материалов в любом сочетании. Пленка этого клея обладает высокой термостойкостью. Полученные соединения могут выдерживать температуру 200°С до 5 ч. Клей ВС-ЮТ устойчив против воды, холода, нефтепродуктов, огнестоек. При ремонте тепловозов он успешно применяется для приклеивания фрикционных накладок муфт сцепления. Поставляется клей в готовом виде.

Пастообразные клеевые составы. Отвердитель в состав пасты вводится для превращения ее из тестообразного состояния в необратимое твердое; пластификатор увеличивает эластичность пленки, повышает ее ударную вязкость и стойкость к температурным колебаниям. Наполнители добавляются для повышения механической прочности и теплостойкости клеевого состава, снижения усадки и приближения коэффициентов термического расширения пасты и восстанавливаемой детали. Введение наполнителей снижает стоимость паст.

Для приготовления пасты эпоксидную смолу подогревают до 120… 160°С и выдерживают при этой температуре некоторое время, чтобы удалить влагу. Затем вводят пластификатор и массу тщательно перемешивают. В процессе перемешивания добавляют наполнители. В течение 10… 15 мин поддерживают температуру 80…100°С и только после этого массу охлаждают до 20 ± 5 «С. Отвердитель холодного отвердевания (полиэтиленполиамин) вводят, тщательно перемешивая массу, непосредственно перед применением пасты, так как примерно через 30 мин после введения отвердителя паста начинает затвердевать. Полное отвердение пасты при температуре 20 «С происходит в течение 24…70 ч, а при температуре 80… 100°С это время сокращается до 1… 5 ч. Прогревать пасту открытым огнем нельзя. Клеевой состав без отвердителя можно хранить неограниченное время. Пасты чаще всего применяют для заделки трещин и пробоин, наращивания поверхностей деталей для устранения неровностей (забоин, вмятин, задиров и т.п.).

Порошковые термопласты. В ремонтной практике для нанесения покрытий нашли применение следующие термопласты.

Капрон - представитель полиамидных смол. Применяется для изготовления различных подшипников, шестерен и других деталей, а также для нанесения износостойких и декоративных покрытий на металлические поверхности. Этот термопласт недефицитен, имеет хорошие физико-химические свойства. Одно из наиболее ценных свойств капрона - высокая износостойкость и малый коэффициент трения. Температура плавления равна 215 «С. При температурах ниже нуля он приобретает повышенную жесткость. Капрон стоек к щелочам, маслам, ацетону, бензину и имеет хорошие диэлектрические свойства. Капрон имеет низкую теплопроводность - примерно в 250…300 раз меньше, чем металлы и высокий коэффициент линейного расширения - примерно в 10 раз больше, чем у стали.

Термопласт ПФ11-12 представляет собой порошкообразную смесь, состоящую из 54% поливинилбутиралевой смолы, 23% графита, 21% идитола и 2% уртопина. Температура плавления порошка 210… 220°С. Этот термопласт применяется при газопламенном нанесении покрытий на поверхность деталей для их наращивания, устранения вмятин, углублений, неровностей и других повреждений.

Склеивание деталей. Опыт показывает, что прочность клеевого соединения деталей зависит главным образом от качества подготовки склеиваемых поверхностей, толщины клеевого слоя - с уменьшением его толщины прочность клеевого шва повышается, а также от площади прилегания двух деталей и режима термообработки в период отвердевания клеевого шва.

Увеличение площади прилегания склеиваемых поверхностей достигается созданием на них шероховатости и обжатием деталей в специальных приспособлениях. Усилие обжатия зависит от материала и гибкости деталей. Склеенные детали рекомендуется подвергать эксплуатационным нагрузкам не раньше, чем через 20… 30 ч после термообработки и охлаждения. В течение этого времени повышается прочность клеевого шва.

Преимущества соединения деталей клеевыми составами: возможность соединения друг с другом различных материалов в любом сочетании (металлы, фрикционные материалы, пластмассы, ткани и т.д.); возможность получения соединений герметичных, устойчивых к воздействию нефтепродуктов и вибростойких; отсутствие внутренних напряжений в клеевом шве. Процесс ведется при температуре не более 180°С. Недостатки склеивания - низкая теплостойкость и недостаточно высокая прочность.

Заделка трещин и пробоин в деталях. Технологический процесс заделки трещин и пробоин в деталях или устранения повреждений кавитационного характера в корпусных деталях, таких, как корпуса турбокомпрессоров и воздуходувок, блоки цилиндров и др., отличается от процесса наращивания деталей пастами, главным образом, предварительной разделкой мест повреждения.

По концам трещин при их разделке сверлят отверстия диаметром 3…4 мм, а кромки трещин раскрывают под углом 60…90°. Если необходима высокая прочность детали, шов по длине усиливают скобами (рис. 3.5, г), через каждые 20… 30 мм сверлят технологические отверстия для клеевых заклепок (рис. 3.5, в) или на шов накладывают 2… 3 слоя стеклоткани (рис. 3.5, б). При разделке пробоин острые кромки у краев притупляют, а у корпусных деталей с толстыми стенками по периферии пробоины через каждые 20…30 мм сверлят отверстия диаметром 2…3 мм для клеевых заклепок. Зону вокруг разделки трещины или пробоины на расстоянии 15…20 мм зачищают до металлического блеска. Поверхности для наращивания и нанесения пасты подготавливают как обычно.

При заделывании трещин наносят два слоя пасты. Второй слой наносят с таким расчетом, чтобы он заполнил всю трещину и перекрыл ее по обеим сторонам на 10… 15 мм при толщине слоя 2… 3 мм. Стеклоткань толщиной 0,1… 0,3 мм накладывают между слоями пасты и обязательно прокатывают роликом.

Заделывание пробоин начинают с заполнения пастой просверленных отверстий и намазывания пасты вокруг пробоины. Пробоину закрывают стальной накладкой, слегка ее прижимают и наносят поочередно 2…3 слоя пасты, каждый из которых покрывают любой сетчатой тканью и прокатывают роликом. При заделке пробоины заподлицо (рис. 3.5, е), чтобы паста не проваливалась, снизу к детали приклеивают или удерживают на проволоке поддерживающую пластину. Затем поочередно накладывают слои пасты и ткани. После затвердения пасты поддерживающую пластину снимают, а выступающий конец проволоки обрезают.

деталь термопласт ремонт производственный

Разделка и способы заделывания трещин и пробоин пастами:

а - разделка трещин; б - усиление шва стеклотканью; в-то же клеевыми заклепками; г-то же скобами; д - заделка пробоины стальной накладкой; е-то же заподлицо; / - стеклоткань; 2 - клеевая заклепка; 3 - скоба; 4 - стальная накладка; 5 - проволока; 6 - поддерживающая пластина; 7 - ткань.

Подобные документы

Краткая характеристика способов и оборудования для обработки деталей пластическим деформированием. Схемы восстановления и особенности ремонта деталей с пластической деформацией. Анализ влияния пластических деформаций на структуру и свойства металла.

реферат [3,4 M], добавлен 04.12.2009

Характеристика и основные принципы, положенные в основу восстановления деталей с помощью пластических деформаций. Способы обработки деталей пластическим деформированием, составление их технологии и схемы, влияние на структуру и свойства металла.

реферат [2,0 M], добавлен 29.04.2010

Причины износа и разрушения деталей в практике эксплуатации полиграфических машин и оборудования. Ведомость дефектов деталей, технологический процесс их ремонта. Анализ методов ремонта деталей, обоснование их выбора. Расчет ремонтного размера деталей.

курсовая работа [2,3 M], добавлен 10.06.2015

Характеристика узла с точки зрения износа. Определение допустимых величин и размеров изношенных поверхностей деталей, поступающих на восстановление. Определение величины наращиваемого слоя при восстановлении деталей. Расчет себестоимости восстановления.

курсовая работа [3,8 M], добавлен 23.01.2013

Виды разъемного соединения, основные типы крепежных деталей, способы стопорения резьбовых соединений. Особенности соединения пайкой и склеиванием. Оценка соединений призматическими шпонками и их применение. Соединение деталей посадкой с натягом.

Синтетические, или полимерные, материалы применяются для устранения механических повреждений на деталях (трещины, пробоины, сколы и т.п.), компенсации износа рабочих поверхностей деталей и соединения деталей склеиванием.

Для восстановления деталей используют пластмассы в виде чистых полимеров (полистирол, полиэтилен, полипропилен и др.), полимеров с наполнителями, пластификаторами, красителями, отвердителями и другими добавками, а также синтетические клеи.

Преимуществами применения полимерных материалов являются простота технологического процесса и оборудования, низкая трудоемкость и стоимость работ. В то же время при работе с синтетическими материалами проявляется один, причем серьезный, недостаток: многие их компоненты токсичны и огнеопасны. Поэтому их использование требует обязательного соблюдения правил техники безопасности и противопожарной техники.

Все пластмассы делятся на две группы: реактопласты и термопласты.

Реактопласты, пли термореактивные пластмассы, применяются в виде различных композиций на основе эпоксидных смол, например ЭД-16 и -20. Отвердителем служит полиэтиленполиамин (ПЭПА). Для ускорения отверждения композицию выдерживают при температуре 60…70″С. Реактопласты используют для выравнивания вмятин в обшивке кузова и заделки трещин, а также в клеевых составах.

Среди термопластов, или термопластических пластмасс, находят применение полиамиды, например поликапролактам (капрон), фторопласт и др. При нагреве композиции размягчаются, и им можно придать любую форму, но после охлаждения они затвердевают. При повторном нагреве термопласты сохраняют свои пластические свойства.

Для повышения твердости и износостойкости в полиамидные смолы вводят наполнители: графит, тальк, дисульфид молибдена, металлические порошки и т.п.

При газопламенном напылении термопласта в виде порошка он расплавляется в пламени специальной горелки, распыливается струей сжатого воздуха и осаждается на обезжиренную поверхность детали, предварительно зашкуренную для обеспечения хорошего сцепления с ней покрытия. Для устранения неровностей кузова используют специальный порошок ТПФ-37. Синтетические клеи применяют:

для восстановления деталей типа бачков радиаторов и других подобных деталей, имеющих пробоины, путем приклеивания накладок;

восстановления тормозных колодок путем наклеивания фрикционных накладок;

вклеивания втулок, вкладышей и т.д.

В настоящее время используют следующие синтетические клеи: БФ-2, ВС-300, ВС-10Т, МПФ-1, ВК-200, эпоксидные клеи. Зазор между склеиваемыми частями должен составлять 0,05…0,2 мм.

Технологический процесс склеивания состоит в следующем.

1)Поверхность детали очищают от загрязнения, обезжиривают, предварительно создав на ней абразивной шкуркой ощутимую шероховатость (ориентировочно Rz = 30… 10мкм).

2)Наносят 2 — 3 слоя клея толщиной 0,1мм, просушивая каждый из них в течение заданного для применяемого клея времени. Например, при наклейке фрикционных накладок на тормозные колодки клеем ВС-10Т время сушки 15…20 минут. При сушке в сушильном шкафу при температуре 60°С 5 мин.

3)Склеиваемые поверхности соединяют и строго выдерживают под давлением при определенной температуре в течение заданного времени, а после склеивания медленно охлаждают.

Клеи типа БФ-2 относятся к числу универсальных и применяются для склеивания металлов и пластмасс между собой и с другими материалами.

Наиболее распространены эпоксидные смолы ЭД-16, ЭД-20, Э-40. Промышленность выпускает различные композиции смол с добавками пластификаторов (вещества, придающие эластичность, вязкость, прочность). В композиции вводят также наполнители (для повыше­ния механической прочности) и отвердители для перевода смолы, представляющей собой жидкость, в твердое состояние и придание композиции нерастворимости.

Полимерные композиции в виде порошков наносят на изношенную поверхность напылением: газоплазменным, вихревым, вибрационным, вибровихревым.

Газоплазменное напыление широко применяют для устранения вмятин и неровностей на кузовах и оперении машин. Подготовленный участок поверхности нагревают пламенем газовой горелки до температуры 200° С. Затем специальной установкой УПН порошок воздушно-ацетиленовой струей подается на ремонтируемую поверхность. В процессе ремонта наносимый материал периодически уплотняют и формуют стальными ручными роликами.

При вихревом напылении в камеру установки загружают порошок с размером частиц 0,1—0,15 мм. Нагретую до температуры 300° С деталь опускают в камеру, а под слой порошка вакуум-насосом подают азот. Порошок переходит в псевдосжиженное состояние, его частицы, оседая на поверхности детали, расплавляются и покрывают ее ровным слоем.

Для вибрационного напыления разогретую деталь вводят в сосуд с порошком, при этом вся система подвергается вибрации с частотой колебания 50—100 Гц; толщина слоя покрытия — до 1,5 мм.

При вибровихревом напылении слой псевдосжиженного газом полимерного порошка подвергают колебаниям с частотой 50—100 Гц. При этом повышается качество покрытия. Перспективным является вибровихревое напыление на предварительно нагретую деталь. Ее устанавливают в патроне токарного станка, в резцедержателе суппорта закрепляют приспособление так, чтобы распылитель оказался выше детали (при покрытии наружных поверхностей) или внутри детали (при покрытии внутренних поверхностей). Полимерный порошок насыпают на всю длину наплавляемой поверхности и оплавляют теплом, аккумулированным металлом детали.

Технология покрытия: подготовка поверхности (обычная), нанесение покрытия, охлаждение и обработка. Таким способом можно восстанавливать поршни гидроцилиндров, подшипники скольжения, посадочные гнезда в корпусных деталях, втулки и г. п. В состав полимерного порошка входят капролон, окись меди, неозон. Стоимость восстановления изношенных деталей полимерами в 1,5 раза ниже, чем металлизацией или электролитическим наращиванием. Последовательность заделки трещин и пробоин эпоксидными композициями в виде паст: очистка от грязи, ржавчины; разделка трещины под углом 70—80°; обезжиривание ацетоном; нанесение эпоксидной пасты (слой толщиной 1 мм); наложение заплаты из стеклоткани толщиной 0,3 мм, которая перекрывает трещину на 15—20 мм; уплотнение стеклоткани роликом; повторное нанесение пасты. Число слоев стеклоткани зависит от величины трещины и может достигать 10. Время полного отверждения пасты при комнатной температуре — до суток, при подогреве до температуры 60°—до 3 ч. После отверждения шов зачищают абразивными кругами.

Синтетические материалы применяют также для склеивания деталей. Процесс состоит из подготовительных операций (зачистка, обезжиривание), нанесения клея, соединения деталей и термообработки. На поверхность деталей клей наносят кистью в два-три слоя с промежуточным просушиванием в течение 10—20 мин. После нанесения клея детали стягивают винтовыми приспособлениями (струбцины и т. п.) до получения давления 0,5—1,0 МПа и в таком состоянии просушивают при температуре 140—150° С в течение 0,5—1 ч.

Для наращивания изношенного слоя применяют метод опрессовки. Сущность его в том, что изношенную или поврежденную деталь восстанавливают в пресс-форме, заливая в ее рабочую полость расплавленную пластмассу. Размеры полости пресс-формы соответствуют номинальным размерам детали. Этот способ применяют для восстановления малонагруженных деталей.

Эпоксидные составы содержат компоненты, вредные для здоровья, поэтому необходимо соблюдать меры безопасности при их приготовлении и применении. Работать с эпоксидными составами следует в изолированном помещении, оборудованном приточно-вытяжной вентиляцией. Приготовлять смесь можно только в вытяжном шкафу. Работать необходимо в спецодежде из плотной ткани, при этом нужно пользоваться прорезиненным фартуком, резиновыми медицинскими перчатками, защитными очками.

Не допускается попадание состава и особенно отвердителя на кожу и в глаза. С кожи состав следует снимать ватным тампоном, смоченным в ацетоне, а затем это место необходимо промыть водой с мылом. При попадании состава в глаза их надо тщательно промыть водой. Отвердитель с кожи снимается только водой. Для нанесения состава надо пользоваться шпателем с металлическим щитком на ручке.

По данным ГОСНИТИ применение полимерных материалов при ремонте машин снижает трудоемкость работ на 20…30 %, себестоимость на 15…20 %, а расход металлов при этом сокращается на 40…50 %.

Полимерные материалы условно делят на термореактивные и термопластичные.

Термопластичные полимеры способны многократно размягчаться при нагреве и твердеть при охлаждении. Физико-механические свойства при этом меняются незначительно.

Термореактивные полимеры, в отличие от термопластичных, в растворителях не растворяются и при нагреве остаются твердыми до полного термического разложения. Различное поведение полимеров обусловлено межмолекулярными силами. В термопластичных полимерах при нагреве Ван-дерВаальсовы силы ослабляются и материал становится мягким и пластичным. Термореактивные полимеры дополнительно имеют ковалентные связи между молекулами, благодаря чему при нагреве материал остается твердым.

1. Ремонт корпусных деталей, имеющих трещины и пробоины, эпоксидными композициями

При ремонте корпусных деталей (корпус редуктора, крышка редуктора, блок-картер, головка блока двигателя, корпус коробки передач и др.) и трубопроводов, имеющих трещины и пробоины, используют композиции на основе эпоксидных смол.

Эпоксидные смолы марок ЭД-14, ЭД-15, ЭД-16, ЭД-20, ЭД-22 представляют собой вязкие жидкости, которые получают из дифенилолпропана и эпихлоргидрина . Отверждение смол происходит под действием отвердителей, которые вводят непосредственно перед использованием смол.

Различают отвердители холодного отверждения (температура отверждения от 16 до 20 °C) и горячего отверждения (температура отверждения от 100 до 200 °С). К первому классу относятся амины (полиэтиленполиамин и др.) и низкомолекулярные полиамиды (Л-18, Л-19, Л-20 и др.). Наибольшее распространение получил отвердитель холодного отверждения – полиэтиленполиамин.

Отвержденные эпоксидные смолы находятся в стеклообразном состоянии, обладают хрупкостью и низкой ударной прочностью. Для улучшения этих свойств в состав смол вводят пластификаторы: дибутилфталат, диоктилфталат, трикрезилфосфат и др. Наиболее широко используют дибутилфталат.

С целью улучшения физико-механических свойств, повышения теплостойкости, теплопроводности и снижения стоимости композиции в эпоксидные смолы вводят наполнители. К ним относятся: железный, чугунный и алюминиевый порошки, графит, асбест, цемент и др. материалы.

Качество эпоксидных покрытий во многом определяется их составом, приведенным в табл 1.

Таблица 1. Состав эпоксидной композиции

Необходимо точно выдерживать концентрацию компонентов композиции. Эпоксидную композицию приготовляют на рабочем столе с вытяжным шкафом ОП-2076-ГОСНИТИ. Тару с эпоксидной смолой нагревают в термошкафу или в емкости с горячей водой до температуры 60…80 °С в течение 15 мин, после чего производят отбор необходимого количества смолы в ванночку. Согласно составу композиции в отобранную смолу добавляют пластификатор – дибутилфталат. Смесь тщательно перемешивают стеклянной или деревянной палочкой в течение 5…8 мин.

При необходимости в смесь небольшими порциями вводят наполнитель, тщательно перемешивая ее в течение 8…10 мин. Приготовленную композицию можно хранить длительное время.

Перед применением в композицию добавляют небольшими порциями отвердитель, производя перемешивание в течение 5 мин. После введения отвердителя эпоксидная композиция должна быть использована в течение 20…25 мин.

Заделку трещин чугунных и стальных деталей производят составом Б, деталей из алюминиевых сплавов – составом В (табл 1).

В зависимости от длины трещины восстановление деталей производят различным образом. При длине трещины до 20 мм определяют ее границы лупой 8…10-кратного увеличения. В концах трещины рассверливают отверстия диаметром от 2,5 до 3 мм. При толщине детали более 1,5 мм, вдоль трещины с помощью крейцмейселя снимают фаску под углом 60…70° и глубиной 1…3 мм (рис 1, а). На расстоянии 40…50 мм по обе стороны трещины поверхность детали зачищают до металлического блеска и обдувают сжатым воздухом. Поверхность трещины и зачищенный участок обезжиривают тампоном, смоченным в ацетоне, с последующим просушиванием в течение 8…10 мин. Затем обезжиривание и просушивание повторяют.

Восстанавливаемую деталь 1 (рис 1, б) устанавливают таким образом, чтобы поверхность с трещиной 2 находилась в горизонтальном положении.

Схема заделки трещин

Рис 1. Схема заделки трещин: 1 – деталь; 2 – трещина; 3 – слой эпоксидной композиции; 4, 6 – накладки из стеклоткани; 5 – ролик; 7 – металлическая накладка; 8 – болт

Приготовленный состав наносят шпателем на поверхность трещины и зачищенный участок детали.

Трещины длиной 20…150 мм заделывают аналогичным образом, дополнительно укладывая на нанесенную эпоксидную композицию 3 накладку 4 из стеклоткани, которая перекрывает трещину со всех сторон на 20…25 мм. Затем накладку прикатывают роликом 5, наносят на ее поверхность тонкий слой состава, накладывают вторую накладку 6 (рис 1, в) с перекрытием 10…15 мм, прикатывают роликом и наносят окончательный слой эпоксидной композиции.

Заделку трещин длиной более 150 мм (толщина стенки детали более 4 мм) производят эпоксидной композицией с наложением металлической накладки и закреплением ее болтами. Накладку 7 вырезают из листовой стали толщиной 1,5…2 мм. Размеры накладки должны обеспечивать перекрытие трещины на 40…50 мм. Вдоль трещины сверлят отверстия диаметром 6,8 мм с межцентровым расстоянием 60…80 мм. Затем нарезают в отверстиях резьбу 1М8×1. В накладке сверлят отверстия диаметром 10 мм, центры которых должны отстоять от краев на расстоянии не менее 10 мм. Поверхность детали и накладки зачищают до металлического блеска и обезжиривают ацетоном с последующим просушиванием в течение 8…10 мин.

Отверждение эпоксидной композиции проводят по режимам, приведенным в табл 2. Склеиваемые поверхности детали и накладки покрывают тонким слоем композиции, устанавливают накладку на деталь и вворачивают болты, резьбовые поверхности которых были предварительно покрыты тонким слоем состава.

Ремонт корпусных деталей с пробоинами производят эпоксидными композициями с наложением металлических накладок заподлицо и в нахлестку.

При заделке пробоины заподлицо (рис 2, а) изготавливают накладку из листовой стали толщиной 0,5…0,8 мм, которая должна перекрывать пробоину на 10…20 мм. Острые кромки пробоины притупляют, поверхность детали вокруг нее на расстоянии 10…20 мм зачищают до металлического блеска и обезжиривают ацетоном с последующим просушиванием в течение 8…10 мин.

Схема заделки пробоин

Рис 2. Схема заделки пробоин: 1, 6 – металлическая накладка; 2, 5 – слой эпоксидного состава; 3 – проволока; 4 – накладка; 7 – болт

К центру накладки 1 крепят проволоку 3 диаметром 0,3…0,5 мм и длиной 100…150 мм. По контуру пробоины из стеклоткани изготавливают накладку 4. После вторичного обезжиривания и просушивания обработанных поверхностей деталей на поверхность металлической накладки 1 наносят тонкий слой эпоксидной композиции. Накладку 1 устанавливают под пробоину и крепят проволокой 3. Затем на нее укладывают накладку 4 из стеклоткани, которую прикатывают роликом, наносят эпоксидную композицию и укладывают вторую накладку из стеклоткани с последующим прикатыванием роликом. После заполнения пробоины по всей толщине стенки корпусной детали накладками из стеклоткани, на поверхность последней наносят слой стеклоткани, на поверхность последней наносят слой эпоксидной композиции 2 и производят его отверждение.

Таблица 2. Режим отверждения эпоксидной композиции

В случае заделки пробоины с наложением металлической накладки внахлестку (рис 2, б) ее изготавливают из листовой стали толщиной 1,5…2 мм. Размеры накладки 6 должны обеспечивать перекрытие пробоины на 40…50 мм. В ней сверлят отверстия диаметром 10 мм, с расстоянием между центрами по периметру пробоины 50…70 мм. Расстояние центров отверстий от краев накладки должно составлять 10 мм. В детали сверлят отверстия диаметром 6,8 мм и нарезают в них резьбу 1М8×1.Острые края пробоины притупляют. Металлическую накладку и поверхность детали вокруг пробоины на расстоянии 40…80 мм зачищают до металлического блеска. Обработанные поверхности обезжиривают, просушивают и наносят на них тонкий слой эпоксидной композиции 5. Накладку устанавливают на пробоину и заворачивают болты 7, резьбовая поверхность которых предварительно была покрыта эпоксидной композицией. После отверждения производят зачистку подтеков и наплывов и проверяют качество восстановления.

2. Крепление фрикционных накладок к деталям синтетическими клеями

Приклеивание фрикционных накладок к дискам сцепления и тормозным колодкам вместо крепления заклепками, имеет ряд преимуществ. Значительно снижается трудоемкость восстановления, фрикционные накладки более полно используются по толщине, экономятся цветные металлы.

С этой целью используют синтетические клеи BC-10T и БФТ-52. Старые фрикционные накладки удаляют, диски сцепления зачищают до металлического блеска с помощью шлифовальной машины или дробеструйной установки.

Склеиваемые поверхности обезжиривают ацетоном и просушивают на воздухе 10 мин. Затем наносят слой клея ВС-10Т толщиной от 0,1 до 0,2 мм и выдерживают на воздухе не менее 5 мин. Окончание сушки определяют по прилипанию резинового бруска. Брусок не должен прилипать к нанесенному клеевому слою.

Тормозные колодки с фрикционными накладками соединяют при помощи струбцин, а с ведомым диском сцепления в специальном приспособлении (рис 3). Оно состоит из основания 1, направляющей трубы 2, болта 3 с гайкой 4 и динамометрического ключа 5. Между собранными дисками 6 устанавливают промежуточные кольца 7.

Динамометрическим ключом создают на склеиваемых поверхностях давление 0,1 МПа. Не допускается смещение фрикционных накладок относительно диска более 0,5 мм. Собранный узел устанавливают в сушильный шкаф и выдерживают при температуре 180 ± 5 °С в течение 40 мин. Затем охлаждают в шкафу до температуры от 70 до 100 °С, после чего узел с приспособлением вынимают и охлаждают на воздухе до температуры от 30 до 40 °С. Приспособление разбирают, зачищают подтеки и наплывы клея.

Приспособление для приклеивания фрикционных накладок сцепления

Рис 3. Приспособление для приклеивания фрикционных накладок сцепления: 1 – основание; 2 – направляющая труба; 3 – болт; 4 – гайка; 5 – динамометрический ключ; 6 – диск; 7 – кольцо

Качество склеивания проверяют внешним осмотром и остукиванием. Звук, должен быть ровным без дребезжания. Торцевое биение диска более 0,5 мм и коробление более 1 мм не допускаются. В противном случае производят проточку на токарно-винторезном станке. Клееные изношенные накладки удаляют резцом на токарном станке или выдерживают в печи при температуре 350 °С и времени от 5 до 6 ч., с последующим простукиванием молотком.


В статье описываются методы и технология восстановления и ремонта изделий из композиционных материалов на основе пластических масс (термопластов, реактопластов). Анализируются основные факторы, влияющие на выбор типа соединений деталей. Обосновывается выбор совмещенного механо-клеевого метода восстановления деталей машин из полимерных материалов, как имеющий наиболее высокие физико-механические и эксплуатационные показатели.

Ключевые слова: технологические параметры, восстановление, полимерные материалы, адгезивные соединения, экспериментальные исследования, композиты.

Замена традиционных материалов (металлы, сплавы, стекло) используемых в машиностроении композитными материалами на полимерной матрице протекает интенсивно. В этой связи вопросы ремонта изделий из таких материалов на стадиях производства, эксплуатации являются весьма актуальными и важными.

Для восстановления и ремонта изделий из композиционных материалов на основе пластических масс (термопластов, реактопластов) существует несколько методов: механическое соединение материалов; клеевое соединение материалов; сварное соединение. Применение того или иного вида соединения зависит от типа нагрузок (статические, динамические, усталостные), технологичности в процессе производства, стоимости исполнения, серийности и от специальных условий (необходимости получения съемных, подвижных или других видов соединений) [1,2,3].

Механические соединения композитных деталей различаются по геометрии соединений, видам используемых металлических креплений: клепаные, резьбовые и штифтовые. Могут осуществляться и механические соединения слоистых и дисперсных полимерных композитов с металлами, деревом, резиной, стеклом (для этого они совмещаются, сверлятся и соединяются заклепками, болтами, винтами или штифтами) [1]. Следует отметить, что механически соединяются изделия на основе пластических масс как вновь изготавливаемые, так ремонтируемые. На рис.1 представлены типы соединений изделий из дисперсных и волокнистых композитов на основе пластических масс [1]. Каждый из выше перечисленных методов имеет свои недостатки. Изделия соединенные механически ослаблены элементами отверстий, пазов, не эстетичны, не имеют гладкую внешнюю поверхность, места соединений не герметичны, не однородны и т. д.


Рис. 1. Типы механических соединений деталей из полимерных композитов: а — простые соединения:1 –обычное нахлесточное; 2 — нахлесточное с изгибом; 3 — стыковое с простой накладкой; 4 –стыковое со скошенной накладкой; 5 — соединения в ус с накладкой; б — двойные соединения: 6 — стыковое с двумя накладками; 7 — двустороннее нахлесточное; 8 — скошенное двустороннее нахлесточное.

Сварка и склеивание применяется для неразъемных соединений пластмассовых деталей или полуфабрикатов — пленок, листов, труб. При сварке участки свариваемых поверхностей нагреваются до температуры плавления и соединяют при сравнительно небольшом давлении (0,1…1,0 МПа). При этом происходит взаимная диффузия свариваемого материала в зоне контакта [2]. Следует особо отметить, что сварке подвергаются изделия только на основе термопластичных пластмасс (полиэтилен, полипропилен, поливинилхлорид и т. п.), места сваривания имеют меньшие прочностные показатели вследствие деструкции макромолекул полимеров в зоне контакта сварки.

Физико-химический процесс склеивания сложен и недостаточно изучен. Разрушение клеевого соединения происходит либо на границе клеевого слоя с подложкой, либо по самому клеевому шву, в зависимости от соотношения сил адгезии и когезии. Адгезия клея, прежде всего определяться диффузией клея в подложку, его адсорбционным взаимодействием со склеиваемыми поверхностями, электрическим взаимодействием поверхности подложек и клея, а также образованием механических и химических связей между ними [2,3].

В качестве основы клеев используют следующие промышленные адгезивы:

1. термопластичные (акриловые, целлюлозные, сульфоновые, виниловые, резиноподобные, неорганические, натуральные);

2. термореактивные (эпоксидные, фенолоформальдегидные, полиэфирные, полиимидные, карбомидные).

Классическими для соединений адгезионного типа являются следующие: соединения в ус, нахлесточное со скосом, простое нахлесточное и модифицированное нахлесточное. На рис. 2. схематично изображены эти виды соединений. Каждый из типов соединений имеет свои преимущества в зависимости от характера и направления приложения нагрузок.


Рис. 2. Типы клеевых соединений деталей из композитов: 1 — в ус; 2 — нахлесточное со скосом; 3 — простое нахлесточное; 4 — двойное нахлесточное; 5 — модифицированное нахлесточное

К недостаткам адгезионных соединений можно отнести:

1) после отверждения связующего соединение становится неразъемным;

2) сопротивление ползучести при повышении температуры невелико для большинства типов адгезивов;

3) эффективность полученных связей зависит от точности взаимного расположения деталей [1].

Проведенные экспериментальные исследования показали, что наиболее высокие физико-механические и эксплуатационные показатели имеют механо-клеевыесоединения, получаемые совмещенным методом.

Для этих целей наиболее эффективными являются не вспененные эпоксиполиуретановые клеи с малым временем отверждения (0,5…15,0 мин.), и высокой адгезионной способностью к различным подложкам (термопластичным материалам, металлам, стеклу, керамики, дереву и др.) [4,5].

С целью получения жестких малопористых уретанов разработан метод опережающей полимеризации, заключающийся в том, что в эпоксиполиэфирную смесь вводятся модификаторы-ускорители. При совмещении модифицированной эпоксиполиэфирной смеси с полиизоцианатом, модификаторы-ускорители связывают структурную влагу и ускоряет реакцию взаимодействия полиэфира и отвердителя. При этом взаимодействие изоцианата и воды сводится к минимуму и протекает медленнее основной реакции полимеризации. В целом, увеличивается скорость полимеризации эпоксиполиуретана и снижается реактивность изоцианата по отношению к воде, что нивелирует эффект вспенивания [5].

Совмещенный метод позволяет эффективно соединять элементы изделия встык при толщине от 1,0 до 10,0 мм. При этом возможно соединять изделия, имеющие рваный характер разрушенных поверхностей.

Операционная технология соединения разрушенных изделий на основе пластических масс аналогична технологии ремонта изделий из волокнисто-армированных композитов, но имеет свои особенности.

Технологический процесс соединения ремонтируемых изделий состоит из следующих операций:

1) подготовка основных и вспомогательных материалов;

2) подготовка разрушенных элементов изделия;

3) очистка соединяемых поверхностей от загрязнений;

4) подгонка соединяемых поверхностей;

5) придание шероховатости основным и прилегающим поверхностям;

6) сверление отверстий по границе разрушения поверхностей (рекомендуемый диаметр отверстий должен соответствовать сумме 0,3…0,4 мм + Ø проволоки; расстояние от края разрушенной поверхности должно соответствовать 3,0…10,0 мм, расстояние между отверстиями — до 5 Ø в зависимости от толщины изделия);

7) стягивание разрушенных краев металлическими скобами встык, проволокой диаметром 0,5…2,0 мм., см. рис. 2 (стягивание скоб осуществляется при помощи специального приспособления, принцип работы которого заключается в винтовом скручивание свободных концов провода до момента соединения встык и полного охвата металлической арматуры поверхностей соединяемых элементов);

8) окончательная очистка соединяемых поверхностей от загрязнений;

9) смешение компонентов клея в тех случаях, когда готовый клей быстро отверждается и его нельзя долго хранить в готовом виде;

10) нанесение жидкого адгезива (с высокой проникающей способностью) на подложку кистью, распылением или другими способами;

11) укладка тканного армирующего материала предварительно пропитанного адгезивом на внутреннюю область изделия согласно условиям нагрузки (армирование является обязательным условие предлагаемого метода, в качестве армирующего материала рекомендуется использовать стеклоткань с ячейками 0,1×0,1 ÷ 0,5×0,5 мм);

12) соединение склеиваемых деталей под давлением (0,1…1,0 МПа) и выдержка;

13) испытание клеевого соединения (простукиванием, ультразвуковым методом, рентгеноскопией и т. д.);

14) окончательный отделочный ремонт;

15) косметический ремонт;

17) выходной контроль качества.

Механо-клеевой ремонт можно эффективно применять в различных отраслях: автомобилестроения, судостроения, машиностроения, строительства и т. д., ввиду его высокой производительности, надежности и долговечности. При помощи этого метода удается быстро ремонтировать и восстанавливать изделия встык из волокнисто- и диспесно-армированных полимерных композитов. Предлагаемый метод ремонта и восстановления рекомендуется использовать, прежде всего, для молонагруженных и ненагруженных пластмассовых и композитных деталей: бампера автомобилей, панели, фары, защитные кожухи, трубы и т. п.

Предложенный метод ремонта и восстановления изделий является универсальным для любых полимерных композитов, применяемые невспененные эпоксиполиуретановые адгезивы позволяют получать монолитные соединения способные существенно продлить период эксплуатации изделия.

1. Справочник по композиционным материалам. Том 2 / Под ред. Дж. Любина. — М.: Машиностроение, 1988. — 580 с.

3. Зубарев, П. А. Производственный процесс получения защитных полиуретановых покрытий [Текст] / П. А. Зубарев, А. В. Лахно, Е. Г. Рылякин // Молодой ученый. — 2014. — № 5. — С. 57–59.

4. Лахно А. В. Универсальный эпоксиполиуретановый композитный клей для ремонта элементов кузова автомобиля / А. В. Лахно, А. Н. Бобрышев. Пенза: ПГУАС, 2006. — 99 с.

5. Зубарев, П. А. Планирование оптимального соотношения компонентов в полиуретановой системе [Текст] / П. А. Зубарев, В. О. Петернко, А. В. Лахно, Е. Г. Рылякин // Молодой ученый. — 2014. — № 6. — С. 164–166.

Основные термины (генерируются автоматически): соединение, композит, материал, ремонт изделий, вид соединений, изделие, масса, совмещенный метод.

Читайте также: