Реферат на тему призма и пирамида

Обновлено: 05.07.2024

Общий исторический обзор Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны и т. п. Однако человек не только пассивно наблюдал природу, но практически осваивал и использовал ее богатства. В процессе практической деятельности он накапливал геометрические сведения. Материальные потребности

побуждали людей изготовлять орудия труда, обтесывать камни и строить жилища, лепить глиняную посуду и натягивать тетиву на лук. Конечно, десятки и сотни тысяч раз натягивали люди свои луки изготовляли разные предметы с прямыми ребрами и т. п., пока постепенно дошли до отвлеченного понятия прямой линии. Примерно то же можно сказать о других основных геометрических понятиях. Практическая деятельность человека служила основой

длительного процесса выработки отвлеченных понятий, открытия простейших геометрических зависимостей и соотношений. Начало геометрии было положено в древности при решении чисто практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилось потребность обобщения, уяснения зависимости одних элементов от других, установления логических связей и доказательств. Постепенно

создавалась геометрическая наука. Примерно в VI - V вв. до н. э. в Древней Греции в геометрии начался новый этап развития, что объясняется высоким уровнем, которого достигла общественно-политическая и культурная жизнь в греческих государствах. Произведения, содержащие систематическое изложение геометрии, появились в Греции еще в V до н.э., но они были вытеснены “Началами” Евклида. Геометрические знания примерно в объеме

современного курса средней школы были изложены еще 2200 лет назад в “Началах” Евклида. Конечно, изложенная в “Началах” наука геометрия не могла быть создана одним ученым. Известно, что Евклид в своей работе опирался на труды десятков предшественников, среди которых были Фалес и Пифагор, Демокрит и Гиппократ, Архит, Теэтет, Евдокс и др. Ценой больших усилий, исходя из отдельных геометрических сведений, накопленных тысячелетиями

Параллелепипед - призма, основаниями которой служат параллелограммы. Основные свойства прямого и прямоугольного параллелепипедов. Объем куба. Призма, ее основания, боковые поверхности, вершины и боковые ребра. Площадь боковой поверхности пирамиды.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.10.2011
Размер файла 211,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Параллелепипед

Параллелепипедом называется призма, основаниями которой служат параллелограммы. Все шесть граней параллелепипеда (рис. 1) - параллелограммы. Отрезки, соединяющие вершины параллелепипеда, не принадлежащие одной и той же грани, называются диагоналями параллелепипеда.

Свойства параллелепипеда: 1) Середина диагонали параллелепипеда является его центром симметрии. 2) Противолежащие грани параллелепипеда попарно равны и параллельны. 3) Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

Параллелепипед, боковые ребра которого перпендикулярны плоскости основания параллелепипеда, называется прямым параллелепипедом (на рис. 2 ABCDA1B1C1D1 - прямой параллелепипед). Прямой параллелепипед, основанием которого служит прямоугольник, называется прямоугольным параллелепипедом. Все грани прямоугольного параллелепипеда - прямоугольники. Длины трех ребер прямоугольного параллелепипеда, выходящих из одной вершины, называются измерениями прямоугольного параллелепипеда.

Свойства прямоугольного параллелепипеда: 1) Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:

2) Все диагонали прямоугольного параллелепипеда равны. Так как параллелепипед есть частный случай призмы, то площадь поверхности и объем параллелепипеда вычисляются по формулам для площади поверхности и объема призмы. Кроме того, объем прямоугольного параллелепипед можно вычислять по формуле

где a,b,c - три измерения прямоугольного параллелепипеда.

Куб. Прямоугольный параллелепипед с равными измерениями называется кубом. Все грани куба - равные квадраты. Объем куба вычисляется по формуле

где a - измерение куба.

Призма

Многогранник, две грани которого - равные n-угольники, лежащие в параллельных плоскостях, а остальные n граней - параллелограммы, называется n-угольной призмой. Пару равных n-угольников называют основаниями призмы. Остальные грани призмы называют ее боковыми гранями, а их объединение - боковой поверхностью призмы. На рис. 1 изображена пятиугольная призма.

Стороны граней призмы называют ребрами, а концы ребер - вершинами призмы. Ребра, не принадлежащие основанию призмы, называют боковыми ребрами. Призму, боковые ребра которой перпендикулярны плоскостям оснований, называют прямой призмой. В противном случае призма называется наклонной. Отрезок перпендикуляра к плоскостям оснований призмы, концы которого принадлежат этим плоскостям, называют высотой призмы. Прямая призма, основанием которой является правильный многоугольник, называется правильной призмой.

Площадь боковой поверхности призмы. Пусть дана произвольная призма (на рис. 2 пятиугольная призма). Через точку А, принадлежащую одному из ее боковых ребер, проведем плоскость б, перпендикулярную этому ребру (и, следовательно, перпендикулярную всем остальным боковым ребрам). Если плоскость б пересекает все боковые ребра призмы, то многоугольник, полученный в результате сечения всех боковых граней плоскостью б (на рис. 2 пятиугольник ABCDE), называется перпендикулярным сечением призмы (если такого многоугольника не существует, то за перпендикулярное сечение призмы принимают многоугольник с вершинами в точках пересечения плоскости б с продолжениями боковых ребер). Площадь боковой поверхности призмы вычисляется по формуле

пирамида параллелепипед параллелограмм пирамида

где - периметр перпендикулярного сечения призмы, - длина бокового ребра.

Пирамида

Многогранник, одна из граней которого - произвольный многогранник, а остальные грани - треугольники, имеющие одну общую вершину, называется пирамидой. Многоугольник называется основанием пирамиды, а остальные грани (треугольники) называютсябоковыми гранями пирамиды.

Различают треугольные, четырехугольные, пятиугольные и т. д. пирамиды в зависимости от вида многоугольника, лежащего в основании пирамиды.

Треугольную пирамиду также называют тетраэдром. На рис. 1 изображена четырехугольная пирамида SABCD с основанием ABCD и боковыми гранями SAB, SBC, SCD, SAD.

Стороны граней пирамиды называются ребрами пирамиды. Ребра, принадлежащие основанию пирамиды, называют ребрами основания, а все остальные ребра - боковыми ребрами. Общая вершина всех треугольников (боковых граней) называется вершиной пирамиды (на рис. 1 точка S - вершина пирамиды, отрезки SA, SB, SC, SD - боковые ребра, отрезки АВ, ВС, CD, AD - ребра основания).

Высотой пирамиды называется отрезок перпендикуляра, проведенного из вершины пирамиды S к плоскости основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра). На рис. 1 SO - высота пирамиды. Правильная пирамида. Пирамида называется правильной, если основанием пирамиды является правильный многоугольник, а ортогональная проекция вершины на плоскость основания совпадает с центром многоугольника, лежащего в основании пирамиды. Все боковые ребра правильной пирамиды равны между собой; все боковые грани - равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой этой пирамиды. На рис. 2 SN - апофема. Все апофемы правильной пирамиды равны между собой. Площадь боковой поверхности пирамиды равна сумме площадей треугольников боковых граней, а площадь полной поверхности равна сумме площади боковой поверхности и площади основания. Площадь боковой поверхности правильной пирамиды вычисляется по формуле

где P - периметр основания пирамиды, h - апофема. Объем пирамиды вычисляется по формуле

где Sосн - площадь основания пирамиды, h - высота пирамиды.

Подобные документы

Краткий обзор развития геометрии. Призма. Площадь поверхности призмы. Призма и пирамида. Пирамида и площадь ее поверхности. Измерение объемов. О пирамиде и ее объеме. О призме и параллелепипеде. Симметрия в пространстве.

реферат [19,7 K], добавлен 08.05.2003

Изучение понятия и видов призм. Основные параметры прямой призмы, у которой все основания являются правильными многоугольниками. Понятие и свойства параллелепипеда – призмы, основанием которого является параллелограмм. Соотношения между элементами призмы.

реферат [310,7 K], добавлен 09.11.2010

Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.

реферат [73,5 K], добавлен 08.05.2011

Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.

презентация [147,7 K], добавлен 20.12.2010

Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.

курсовая работа [4,6 M], добавлен 02.04.2012

Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.

презентация [82,8 K], добавлен 17.05.2012

Определение призмы как геометрической фигуры. Свойства призмы, нормальное сечение. Правильная призма – призма, в основании которой лежит правильный многоугольник, а боковые рёбра перпендикулярны основаниям. Диагональное сечение. Элементы призм и ее виды.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

7 Общий исторический обзор

Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны и т. п. Однако человек не только пассивно наблюдал природу, но практически осваивал и использовал ее богатства. В процессе практической деятельности он накапливал геометрические сведения. Материальные потребности побуждали людей изготовлять орудия труда, обтесывать камни и строить жилища, лепить глиняную посуду и натягивать тетиву на лук. Конечно, десятки и сотни тысяч раз натягивали люди свои луки изготовляли разные предметы с прямыми ребрами и т. п., пока постепенно дошли до отвлеченного понятия прямой линии. Примерно то же можно сказать о других основных геометрических понятиях. Практическая деятельность человека служила основой длительного процесса выработки отвлеченных понятий, открытия простейших геометрических зависимостей и соотношений. Начало геометрии было положено в древности при решении чисто практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилось потребность обобщения, уяснения зависимости одних элементов от других, установления логических связей и доказательств. Постепенно создавалась геометрическая наука. Примерно в VI - V вв. до н. э. в Древней Греции в геометрии начался новый этап развития, что объясняется высоким уровнем, которого достигла общественно-политическая и культурная жизнь в греческих государствах. Произведения, содержащие систематическое изложение геометрии, появились в Греции еще в V до н.э., но они были вытеснены “Началами” Евклида. Геометрические знания примерно в объеме современного курса средней школы были изложены еще 2200 лет назад в “Началах” Евклида. Конечно, изложенная в “Началах” наука геометрия не могла быть создана одним ученым. Известно, что Евклид в своей работе опирался на труды десятков предшественников, среди которых были Фалес и Пифагор, Демокрит и Гиппократ, Архит, Теэтет, Евдокс и др. Ценой больших усилий, исходя из отдельных геометрических сведений, накопленных тысячелетиями в практической деятельности людей, эти великие ученые сумели на протяжении 3 - 4 столетий привести геометрическую науку к высокой ступени совершенства. Историческая заслуга Евклида состоит в том, что он, создавая свои “Начала”, объединил результаты своих предшественников, упорядочил и привел в одну систему основные геометрические знания того времени. На протяжении двух тысячелетий геометрия изучалась в том объеме, порядке и стиле, как она была изложена в “Началах” Евклида. Многие учебники элементарной геометрии во всем мире представляли (а многие и поныне представляют) собой лишь переработку книги Евклида. “Начала” на протяжении веков были настольной книгой величайших ученых. В XVII в. Декарт благодаря методу координат сделал возможным изучение свойств геометрических фигур с помощью алгебры. С этого времени начала развиваться аналитическая геометрия. В XVII - XVIII вв. зарождается и разрабатывается дифференциальная геометрия, изучающая свойства фигур с помощью методов математического анализа. В

Похожие работы

2014-2022 © "РефератКо"
электронная библиотека студента.
Банк рефератов, все рефераты скачать бесплатно и без регистрации.

"РефератКо" - электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Основные фигуры в пространстве — это точка, линия и плоскость. Помимо этих простейших фигур, стереометрия учитывает также геометрические тела и их поверхности. При изучении геометрических тел используйте изображения на чертеже.

Эти геометрические тела называются многогранниками. Рассмотрим некоторые типы и свойства многогранников.

Многогранная поверхность. Комплекс

Многостороннее поверхностное именование ассоциации конечного числа плоских многоугольников, так что каждая сторона любого многоугольника одновременно является стороной другого (но только одного) многоугольника, названного рядом с первым многоугольником.

Из каждого из полигонов, составляющих полигональную поверхность, можно добраться до любого другого, двигаясь по соседним полигонам.

Многоугольники, составляющие многогранную поверхность, называются ее гранями; стороны многоугольников называются рёбрами, а вершины — вершинами многогранной поверхности.

Показаны комбинации полигонов, которые соответствуют заданным требованиям и являются многогранными поверхностями. Отображаются фигуры, не являющиеся многогранными поверхностями.

Многосторонняя поверхность делит пространство на две части — внутреннюю часть многогранной поверхности и внешнюю часть. Из двух частей внешней области той, в которой можно провести прямые, полностью принадлежащие поверхности, будет внешняя область.

Сочетание поверхности многогранника и его внутренней поверхности называется многогранником. Поверхность многогранника и его внутренняя площадь называются соответственно поверхностью многогранника и его внутренней площадью. Кромки, края и наконечники поверхности многогранника называются многогранными гранями, краями и наконечниками многогранника.

Пирамида

Многогранник, где одно ребро — это любой многогранник, а другое — треугольник с общей вершиной, называется пирамидой.

Многоугольник называется основанием пирамиды, а другие стороны (треугольники) называются сторонами пирамиды.

Пирамиды отличаются треугольником, четырёхугольником, пятиугольником и т.д. в зависимости от типа многоугольника у основания пирамиды.

Треугольная пирамида также называется тетраэдром. Показана квадратная пирамида SABCD с базой ABCD и сторонами SAB, SBC, SCD, SAD.

Боковые стороны краев пирамид называются краями пирамид. Ребра, принадлежащие к основанию пирамиды, называются ребрами основания, а все остальные ребра — боковыми. Общая вершина всех треугольников (боковые ребра) называется вершиной пирамиды (точка S — вершина пирамиды, сечения SA, SB, SC, SD — боковые ребра, сечения AB, BC, CD, AD — ребра основания).

Высота пирамиды называется отрезком вертикали, проходящей от вершины пирамиды S до плоскости основания (концы этого отрезка — вершина пирамиды и вертикаль основания). SO — это высота пирамиды.

Правильная пирамида. Пирамида считается правильной, если основание пирамиды является правильным многоугольником, а ортогональная проекция вершины на плоскость основания совпадает с центром многоугольника, лежащего в основании пирамиды.

Все боковые грани реальной пирамиды одинаковы; все боковые грани равны равнобедренным треугольникам.

Высота боковой поверхности реальной пирамиды, видимая с ее вершины, называется апофеозом этой пирамиды. SN — это апофема. Все апопеи правильной пирамиды равны между собой.

Призма

Многогранник, две стороны которого равны n-угольникам, лежащим в параллельных плоскостях, а остальные n сторон являются параллелограммами, называется n-угольной призмой.

Пара одинаковых n-угольников называется основами призмы. Остальные стороны призмы называются боковыми краями, а их сочетание называется боковой стороной призмы.

Боковые стороны краев призм называются ребрами, а концы ребер — кончиками призм. Ребра, не относящиеся к основанию призмы, называются боковыми ребрами.

Призма, боковые грани которой перпендикулярны плоскостям основания, называется прямой призмой. Иначе, призма называется наклонная.

Сечение, перпендикулярное базовым плоскостям призмы, концы которых принадлежат этим плоскостям, называется высотой призмы.

Прямая призма, основанная на правом многоугольнике, называется правой призмой.

Параллелепипед — это шестигранник, противоположные стороны которого параллельны попарно. Параллелепипед имеет 8 верхних сторон и 12 краев; его стороны параллельны попарно.

Параллелепипед называется прямой линией, если его боковые ребра перпендикулярны плоскости основания (в данном случае 4 боковых ребра — прямоугольники); прямоугольником, если этот параллелепипед прямой, а основание — прямоугольник (поэтому 6 сторон — прямоугольники);

Параллелепипед, все стороны которого квадратные, называется куб.

Объем параллелепипеда соответствует по высоте работе его основания.

Каждый многогранник имеет объем, который может быть измерен с помощью выбранных единиц объема. За единицу измерения объема принимается куб с краем, соответствующим единице измерения сегментов. Куб с краем 1см называется кубическим сантиметром. Кубический метр и кубический миллиметр и т.д. определяются аналогичным образом.

При измерении объема в выбранных единицах измерения объем тела выражается положительным числом, указывающим на то, сколько единиц объема и его частей вписывается в данный корпус. Число, выражающее объем тела, зависит от единицы измерения объема. Поэтому после этого номера дается единица измерения объема.

Основные свойства объемов:

  1. Те же самые комитеты имеют те же самые тома.
  2. Если тело состоит из нескольких тел, то его объем равен сумме объемов этих тел.

Для определения объема тел в некоторых случаях полезно использовать теорему, называемую принципом Кавальери.

Принцип Кавальери заключается в том, что если при пересечении двух тел любая плоскость, параллельная любой заданной плоскости, сечения одной и той же поверхности равны, то объемы тел равны друг другу.

Заключение

Итак, многогранники изучают участок геометрии, называемый стереометрией. Полиэдры бывают разных типов (пирамида, призма и т.д.) и обладают разными свойствами. Следует также отметить, что многогранники, в отличие от плоских фигур, имеют объем и расположены в пространстве.

Большинство вещей, которые нас окружают, находятся в пространстве, и изучение многогранников помогает нам понять реальность вокруг нас с точки зрения геометрии.

Список литературы

  1. Геометрия. Учебник для 7-9 классов.
  2. Авторы: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Е. Г. Позняк, И. И. Юдина.
  3. Википедия.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: