Водно минеральный обмен реферат

Обновлено: 05.07.2024

Вода составляет 60-80 % от массы тела взрослого человека, т. е. при массе 70 кг на долю воды в организме будет приходиться от 42 до 50 литров. Распределяется она следующим образом: около 70 % находится внутри клеток в составе цитоплазмы, около 23 % распределено в межклеточном пространстве, образуя тканевую жидкость, и около 7 % циркулирует в сосудистом русле (кровь, лимфа). Чем моложе организм, тем больше в нем воды, старение сопровождается постепенным обезвоживанием клеток.

Содержание работы

1.Вода в организме: содержание и биологический функции………………2
2.Обмен воды………………………………………………………………….3
3. Минеральные вещества: содержание и биологический функции……….4
4.Минеральный обмен………………………………………………………. 7
5.Особенности обмена воды и минеральных соединений при занятиях физической культурой и спортом……………………………………………7

Файлы: 1 файл

Реферат.Обмен воды и минеральных веществ.docx

1.Вода в организме: содержание и биологический функции………………2

3. Минеральные вещества: содержание и биологический функции……….4

5.Особенности обмена воды и минеральных соединений при занятиях физической культурой и спортом……………………………………………7

1.Вода в организме: содержание и биологический функции.

Вода составляет 60-80 % от массы тела взрослого человека, т. е. при массе 70 кг на долю воды в организме будет приходиться от 42 до 50 литров. Распределяется она следующим образом: около 70 % находится внутри клеток в составе цитоплазмы, около 23 % распределено в межклеточном пространстве, образуя тканевую жидкость, и около 7 % циркулирует в сосудистом русле (кровь, лимфа). Чем моложе организм, тем больше в нем воды, старение сопровождается постепенным обезвоживанием клеток.

Вода в организме присутствует 2 видов:

1. Экзогенная (поступающая извне)

2. Эндогенная (образующаяся при окислении жиров)

Преобладание в организме человека (по сравнению с другими веществами) воды предопределило широкий спектр ее биологических функций. Вода участвует в следующих процессах:

  • в растворении многих веществ, что способствует увеличению скорости химических реакций;
  • в создании условий для метаболических реакций, так как вода является средой, где они протекают;
  • в транспорте веществ при усвоении пищи в желудочно- кишечном тракте, доставке питательных веществ к клеткам и выделении из организма продуктов обмена с мочой и потом;
  • в поддержании структур и функций клеточных органелл; благодаря этому свойству достигается тонкая упорядоченность химических процессов в организме; увеличение количества воды в организме может вызывать, например, набухание митохондрии, что ведет к изменению энергообразования (АТФ) в них;
  • в метаболизме углеводов, липидов, белков, АТФ (гидролиз, гидратация, дегидрирование); например, реакция распада АТФ протекает с участием воды и называется гидролизом АТФ;
  • в поддержании кислотно-основного равновесия среды организма, так как вода частично диссоциирует на ионы Н + и ОН - ,

- в создании осмотического давления, зависящего от концентрации органических и неорганических веществ, растворенные в ней, а также от степени гидратации белков;

- в механической защите трущихся поверхностей (в качестве смазки), таких как суставы, связки, мышцы;

  • в процессах терморегуляции организма, т. к. около 50 % отдаваемого тепла выделяется из организма путем испарения воды.

Таким образом, вода поддерживает динамическое постоянство химического состава, осмотического давления, метаболических реакций и температуры тела, что обеспечивает постоянство внутренней среды (гомеостаз) и кислотно-основное равновесие организма.

Потребность в воде взрослого человека равна приблизительно 40 мл на 1 кг массы тела или 2,0-2,5 л в сутки. Количество потребляемой воды зависит от возраста (для детей оно в 2-4 раза выше, чем для взрослого), массы тела человека, двигательной активности, климатических и температурных условий.

Наш организм нуждается в постоянном поступлении воды.

В организме происходит постоянный обмен воды , причём в состоянии физиологического покоя приход и расход воды должны быть относительно равны. Это равновесие между потреблением и выделением, воды в процессах жизнедеятельности называется водный баланс.

Обмен воды находится под контролем нервной и эндокринной систем. Дефицит воды в организме формирует чувство жажды. Механизм этого явления следующий: уменьшение количества воды в организме, в первую очередь, вызывает сгущение крови, и в ней, по сравнению с другими тканями, повышается осмотическое давление.

Изменившееся осмотическое давление воспринимается, осморецепторами расположеннвми на слизистой кровеносных сосудов, и передается в кору головного мозга, где на основе безусловного рефлекса формируется чувство жажды. В ответ на него из задней доли гипофиза в кровь поступает гормон вазопрес- син (вырабатывается он гипоталамусом, а хранится в задней доле гипофиза). Под воздействием вазопрессина в извитых канальцах почек усиливается реабсорбция воды, т. е. вода задерживается в организме, он ее экономит. Поэтому вазопрессин называют антидиуретическим (уменьшающим потерю воды) гормоном. Секреция этого гормона повышается при снижении объема плазмы крови, что способствует задержанию воды в организме и нормализует объем плазмы крови.

Кроме вазопрессина удержанию воды в организме способствует гормон альдостерон. Он вырабатывается корковым слоем надпочечников и относится к группе минералкортикоидов. Под влиянием альдостерона в извитых канальцах почек усиливается всасывание ионов натрия и увеличивается выведение ионов калия.

Ионы натрия задерживают воду в организме за счет гидратной оболочки, т. е. каждый ион натрия удерживает несколько молекул воды. Концентрация натрия в плазме крови и других тканях непосредственно влияет на содержание в них воды. Ионы калия способствуют выведению воды из организма.

В регуляции водного обмена участвуют тироксин (гормон щитовидной железы), паратгормон (гормон паращитовидных железез), половые гормоны. При избытке этих гормонов выведение воды усиливается, при недостатке - снижается.

Для организма неблагоприятны как недостаток, так и избыток воды.

3. Минеральные вещества: содержание и биологический функции.

Минеральные вещества составляют от 1 до 3 % от массы тела человека и зависят от возраста, характера питания, функциональной и двигательной активности. В организме минеральные вещества не образуются, поэтому они являются незаменимым фактором питания.

Большинство минеральных веществ в воде хорошо растворимы и находятся в тканях в виде ионов.

Минеральные соли поступают в организм с пищей и водой за исключением поваренной соли.

Функции минеральных солей:

1. Биологические постоянные гомеостаза

2. Создают и поддерживают осмотическое давление крови

3. Поддерживают pH крови – 7,36 – 7,42

4. Участвуют в ферментативных реакциях

5. Участвуют в водно – солевом обмене

6. Принимают участие в процессах возбуждения, торможения, мышечного сокращения, свертываемости крови

7. Являются составной частью костей, гемоглобина, пищеварительных соков

Виды минеральных солей:

  • макроэлементы - минералы, количество которых в организме измеряется сотнями или десятками граммов (натрий, магний, калий, кальций, фосфор, хлор)
  • микроэлементы - минералы, количество которых измеряется единицами граммов, миллиграммами и микрограммами (железо, марганец, кобальт, цинк, фтор, йод) – необходимы в очень небольших количествах

Натрий поступает в организм в виде поваренной соли – это единственная соль, которую добавляют к пище. Суточная потребность в натрии – 15 гр. Натрий участвует в поддержании осмотического равновесия, влияет на рост, регулирует работу сердечной мышцы. Дефицит натрия приводит к слабости, апатии, подергиванию мышц.

Калий поступает в организм с овощами, фруктами и мясом. Суточная потребность – 2 гр. Он регулирует сердечный ритм и поддерживает АД, автоматизм сердечной мышцы, важен для питания клеток, деятельности мышц, поддержания водно – солевого баланса, нейроэндокринной регуляции. Поддерживает осмотическое давление, стимулирует образование ацетилхолина. Дефицит калия приводит к слабости, сонливости, нарушению рефлексов. Увеличение калия может привести к остановке сердца.

Хлор поступает в организм виде поваренной соли. Участвует в поддержании осмотического давления крови, входит в состав соляной кислоты желудочного сока.

Кальций поступает в организм с молочными продуктами (особенно сырами), зеленью. Это важная константа крови, входит в состав костей (9 – 11 мг/ %).

В организме взрослого человека содержится 1-2 кг кальция, из них 99% входит в состав костной и хрящевой тканей, остальное содержится в мягких тканях и межклеточной жидкости. Уменьшение кальция приводит к кальциевой тетании и смерти в результате прекращения дыхания. Он необходим для процесса свертывания крови. Кальций уменьшает проницаемость клеточных мембран, активирует амилазу и липазу, стимулирует работу миокарда, способствует выведению свинца из костной ткани, играет во всех стадиях свертывания крови, оказывает антистрессовое воздействие, выводит тяжелые металлы, радионуклиды, обладает антиаллергическим действием. Он играет важную роль в сокращении мышц, снижает риск высокого АД, гипертонии беременных, рождения недоношенных детей, предохраняет от рака матки, поджелудочной железы и толстой кишки. Суточная потребность – 0,8 гр.

Магний оказывает влияние на тонус мышечной оболочки сосудов, снимает спазмы, понижает АД, снижает уровень холестерина в крови. Дефицит вызывает нарушения в эмоциональной сфере, он незаменим для профилактики стресса и синдрома хронической усталости. Суточная дозировка – 500 мг.

Медь участвует в синтезе коллагена и эластина, защищает от свободных радикалов, участвует в синтезе гемоглобина, необходима для усвоения железа, участвует в кроветворении, обладает противовоспалительным действием, необходима для вынашивания плода. Суточная дозировка 20 мг. Дефицит приводит к преждевременному старению кожи и сосудов, повышению уровня холестерина, инсультам, задержке полового развития и бесплодию.

Цинк (микроэлемент) входит в состав ферментов, укрепляет иммунитет, стимулирует работу всей гормональной системы, поджелудочной железы, стимулирует синтез гормона роста, тестостерона. Отвечает за обоняние, зрение, вкус и необходим для заживления ран. Цинк участвует в синтезе и сохранении инсулина. Суточная дозировка 200 мг. Дефицит приводит к снижению иммунитета, аппетита, анемии, аллергии и дерматиту, нарушению половых функций у мужчин. Содержится в семенах тыквы и подсолнечника.

Железо поступает в организм с мясом, печенью и бобовыми. Суточная потребность – 15млг. Является составной частью гемоглобина и дыхательных ферментов. В организме содержится 3 гр железа. Дефицит железа приводит к малокровию.

Йод поступает в организм с водой, протекающей через горные породы и обогащающийся там йодом. Также он может поступать с йодированной солью или морепродуктами. Суточная потребность – 0,03 мг. Участвует в синтезе гормонов щитовидной железы. Дефицит приводи к возникновению зоба.

Хром необходим для нормальной жизнедеятельности сосудов и сердечной мышцы, активности инсулина, способствует снижению уровня холестерина крови. Дефицит приводит к апатии и быстрому утомлению. Суточная дозировка – 200 мкг.

Марганец входит в состав ферментов, участвует в реакциях иммунитета, стимулирует процессы мышления, кроветворения и тканевого дыхания. Суточная дозировка – 10 мг. дефицит приводит к переутомлению, снижению внимания, памяти, нарушению сна, сахарному диабету и новообразованиям косвенно.

Кремний важен для поддержания стенок сосудов (придает прочность, эластичность и проницаемость). Дефицит приводит к инсультам и кровоизлияниям.

Селен – важнейший из микроэлементов. Он обладает защитным действием для организма – продлевает жизнь. Предохраняет от рака, стимулирует иммунитет, является антиоксидантом, способствует росту и развитию организма.

Дефицит приводит к:

  • нарушению роста и развития
  • воспалению в суставах
  • слабости мышц
  • склонности к новообразованиям
  • заболеваниям печени
  • нарушению работы щитовидной железы
  • мужскому бесплодию
  • ухудшению зрения
  • преждевременному старению

Минеральные вещества, поступающие с пищей, всасываются в тонком кишечнике и током крови заносятся в печень. Здесь, ионы, необходимые для работы печени, задерживаются, а остальные доставляются к различным органам и тканям. Выводятся минералы почками в составе мочи, кожей в составе пота и кишечником в составе кала.

Регуляция минерального обмена находится под контролем нервной и гуморальных систем. Рецепторы, расположенные в стенках кровеносных сосудов, реагируют на изменение осмотического давления крови. Со стороны желез внутренней секреции на сигналы из ЦНС реагируют кора надпочечников (минерал- кортикоиды), щитовидная железа (тироксин), паращитовидные (паратгормон и кальцитонин). Кроме этого, в регуляции обмена фосфора и кальция принимает участие витамин Д.

5.Особенности обмена воды и минеральных соединений при занятиях физической культурой и спортом.

Тяжелая мышечная работа, занятия физическими упражнениями, спортом вызывают существенные изменения в водно-минеральном балансе организма, обмене воды и минеральных соединений. При этом происходящие изменения зависят от параметров выполняемой тренировочной и соревновательной нагрузок (их интенсивности, продолжительности) и специфики вида спорта. Систематические занятия любыми видами спорта, связанными со значительными мышечными нагрузками, приводит к заметному увеличению минерального компонента костной ткани. Особенно заметно повышается содержание минеральных веществ в костной ткани у представителей видов спорта, в которых присутствуют большие нагрузки на костную систему: тяжелой атлетикой, акробатических прыжков, прыжков на батуте, прыжков с трамплина, легкоатлетических прыжков и др.

Исраилова В. К. – заведующая кафедрой анестезиологии и реаниматологии КазНМУ, доктор медицинских наук.


Составители: к.м.н. Батырханова Н.М., ассистент Прмагамбетов Г.К., резидент Иманбекова К.Б., резидент Тлеубаев С.С., под редакцией доцента Чурсина В.В.

Справочное пособие содержит информацию о физиологии водно-солевого обмена (ВСО). Также представлена информация о методах клинической и лабораторной диагностики нарушений ВСО. Перечислены варианты дисгидрий и методы лечения. Предназначается для врачей всех специальностей, курсантов ФПК и студентов медвузов.

Вода организма

В норме у взрослого человека на долю воды приходится около 60% массы тела. Оставшиеся 40% массы тела составляет сухой остаток, который содержит белки 18%, жиры 16%, углеводы 1% и минеральные соли 5%.
Вода является, универсальным биологическим растворителем и только в водной среде могут протекать все сложнейшие биохимические процессы в живом организме. Вода выполняет транспортную функцию, являясь переносчиком различных веществ по всему организму, а также участвуя в выведении из организма во внешнюю среду конечных продуктов обмена веществ. Кроме того, вода является основным пластическим материалом и принимает активное участие в терморегуляции.

Общее количество воды в организме человека колеблется в пределах 50-83% массы тела и зависит от таких факторов как возраст, пол и степень упитанности. Наибольшее количество воды содержится в организме новорождённых – до 83% массы тела. С возрастом её процентное содержание постепенно уменьшается, достигая у мужчин около 60%, а у женщин около 50% массы тела. В пожилом и старческом возрасте общее количество воды составляет лишь 40-45% массы тела.

Вся вода, содержащаяся в организме, распределяется по двум водным секторам, между которыми при нормальных условиях устанавливается строгое динамическое равновесие. В среднем 2/3 её объёма (около 40% массы тела) находятся в клетках, а остальное количество во внеклеточном пространстве.

Клеточная жидкость является основной частью цитоплазмы и по своему электролитному составу значительно отличается от внеклеточной воды.

Схема распределения воды в организме

Внутриклеточный сектор, вода которого составляет примерно 30-40% массы тела (около 28 л у мужчин при массе 70 кг), и внеклеточный - примерно 20% массы тела (около 14 л). Внеклеточный объем воды распределяется между интерстициальной водой (15-16% массы тела, или 10,5 л), в которую входит также вода связок хрящей, плазмой (около 4-5%, или 2,8 л), лимфой и трансцеллюлярной водой (цереброспинальная и внутрисуставная жидкости, содержимое желудочно-кишечного тракта), не принимающей активного участия в метаболических процессах.

Электролитный состав организма


Из таблицы 1, где представлен нормальный состав трех главных сред организма, следует, что Na+ является преимущественно катионом внеклеточной жидкости. Хлорид (С1-) и бикарбонат (НСО3 -) представляют собой анионную электролитную группу внеклеточного пространства. В клеточном пространстве определяющим катионом является К+, а к анионной группе относятся фосфаты, сульфат, белки, органические кислоты и в меньшей степени бикарбонат.

Электролитный состав сред человеческого организма

Факторы, влияющие на перемещение внеклеточной воды в организме

Физиология рассматривает три фактора, определяющих целенаправленное движение воды при транскапиллярном обмене:

Осмосом называют спонтанное движение растворителя из раствора с низкой концентрацией частиц в раствор с высокой концентрацией через мембрану, проницаемую только для растворителя. Осмотическое давление - избыточная величина гидростатического давления, которое должно быть приложено к раствору, чтобы уравновесить диффузию растворителя, через полупроницаемую мембрану.


Осмотическое давление плазмы крови составляет в среднем 6,62 атм (пределы колебаний 6,47-6,72 атм). Осмотическое давление зависит только от концентрации частиц, растворенных в растворе, и не зависит от их массы, размера и валентности. Таким образом, осмотическое давление создают в растворе все частицы - как ионы, так и нейтральные молекулы (глюкоза, мочевина).


В биологии и медицине осмотическое состояние сред принято выражать двумя понятиями: осмолярностью, представляющей собой суммарную концентрацию растворенных частиц в 1 л раствора (в миллиосмолях на литр), и осмоляльностью, являющейся концентрацией частиц в 1 кг растворителя, т. е. воды (мосмоль/кг).


Осмоляльность раствора численно равна суммарной концентрации, выраженной в количестве веществ (в миллимолях, но не в миллиэквивалентах), содержащихся в 1 кг растворителя (вода), плюс количество полностью диссоциированных электролитов, недиссоциированных веществ (глюкоза, мочевина) или слабодиссоциированных субстанций, таких как белок. Все одновалентные ионы (Na+, К+, С1-) образуют в растворе число осмолей, равное числу молей и эквивалентов (электрических зарядов). Двухвалентные ионы образуют в растворе каждый по одному осмолю (и молю), но по два эквивалента.


Осмоляльность нормальной плазмы - величина достаточно постоянная и равна 280-300 мосмоль/кг. Из общей осмоляльности плазмы лишь 2 мосмоль/кг обусловлены наличием растворенных в ней белков. Таким образом, главными компонентами, обеспечивающими осмоляльность плазмы, являются Na+ и С1- (около 140 и 100 мосмоль/кг соответственно). Постоянство осмотического давления внутриклеточной и внеклеточной жидкости предполагает равенство молярных концентраций содержащихся в них электролитов, несмотря на различия в ионном составе внутри клетки и во внеклеточном пространстве.


Вследствие того, что величина осмотического давления внеклеточной жидкости более чем на 90% обусловлена концентрацией солей натрия, именно натрию принадлежит главная роль в распределение воды по жидкостным секторам организма. Следовательно, первичное нарушение обмена натрия влечёт за собой нарушение водного обмена.


Если концентрация в плазме глюкозы и мочевины нормальна, то натриемия, умноженная в два раза будет примерно соответствовать осмолярности плазмы. Более точно она вычисляется по следующей формуле:


Конечно, значительно достоверней измерение осмолярности плазмы при помощи осмометра. Нормальная осмолярность плазмы: 280 – 300 мосм/л.

2. Часть осмотического давления, создаваемую в биологических жидкостях белками, называют коллоидно-осмотическим (онкотическим) давлением (КОД).

Оно составляет примерно 0,7% осмотического давления (или осмотической концентрации), т. е. около 25 мм рт. ст. (2 мосмоль/кг), но имеет исключительно большое функциональное значение в связи с высокой гидрофильностью белков и неспособностью их свободно проходить через полупроницаемые биологические мембраны.


Величина коллоидно-осмотического давления зависит, в основном, от количества общего белка плазмы (на 80% определяется концентрацией альбумина) и составляет в среднем 25 мм.рт.ст.


3. Одновременно на капиллярную стенку воздействует и другая сила – гидростатическое (точнее – гидродинамическое) давление, создаваемое самой массой крови за счёт энергии сердца. Оно направлено на то, чтобы вытолкнуть воду из капилляров в межклеточное пространство. В отличие от онкотического давления величина гидростатического давления в капиллярах непостоянна. В артериальном колене капилляра она составляет в среднем 32,5 мм.рт.ст., а в венозном – 17,5 мм.рт.ст.. Вследствие градиента давлений (в среднем 9 мм рт.ст.) из артериального колена капилляра жидкость с растворёнными в ней электролитами диффундирует в межклеточное пространство. С другой стороны, в венозном колене капилляра, благодаря градиенту в пользу онкотического давления, вода из межклеточного сектора начинает поступать в кровеносное русло.
Величина обмена тканевой жидкости более чем в 40 раз превышает объём кровотока. Более 200 л жидкости в минуту циркулирует в пределах сосудистого тканевого сектора, вызывая постоянное обновление окружающей ткани среды. В течение суток примерно 20 л жидкости покидает сосудистое русло через артериальное колено капилляров и столько же возвращается назад – 18 л через венозное колено капилляров и 2 л дренируются лимфатической системой.

Баланс факторов, определяющих движение жидкости на капиллярном уровне

В венозном конце капилляра решающая роль в возврате воды в сосудистое русло принадлежит коллоидно-онкотическому давлению плазмы. Ему противостоит величина венозного давления.


1) В случае снижения коллоидно-онкотического давления плазмы (гипопротеинемия) даже при нормальном венозном давлении нарушается резорбция жидкости в сосудистое русло, что проявляется отёками (безбелковыми, голодными).


3) Ещё один механизм образования отёков формируется при синдроме капиллярной утечки – за счёт повышения проницаемости капиллярной стенки в интерстиций проникает много белка. В результате этого повышается коллоидно-онкотическое давление интерстиция при уменьшенном коллоидно-онкотическом давлении плазмы.


Исходя из знаний этих механизмов образования отёков, можно сделать клинически важный вывод – нелогично, малоэффективно, а иногда и опасно применять мочегонные для устранения отёков. Мочегонные оправданы только в случае нарушений функции почек, в остальных клинических ситуациях необходимо устранять патогенетическую причину их образования – повышать уровень белка или лечить сердечную недостаточность или устранять причину синдрома капиллярной утечки.


Необходимо помнить о важной роли в постоянстве интерстициального объема жидкости лимфодренажной системы, постоянно сбрасывающей в вену небольшой избыток жидкости и белка.

Механизмы поддержания внутриклеточного объема жидкости и внутриклеточного ионного состава


Осмотические и электрические силы. Основным условием постоянства объема водных внутри- и внеклеточных сред, разделенных клеточной мембраной, является их изотоничность.


Тоничностью называют компонент осмолярности внеклеточной жидкости, обусловленный концентрацией растворенных веществ, плохо проникающих через клеточные мембраны (Na+, в отношении некоторых тканей - глюкоза). Обычно осмолярность и тоничность изменяются однонаправлено, поэтому гиперосмолярность означает и гипертоничность [Loeb J. Н., 1984].

Однако возможно повышение осмолярности без увеличения тоничности (в частности, при повышении в плазме концентрации мочевины, этанола, для которых тканевые мембраны хорошо проницаемы) [Fabri Р. J., 1988]. В этом случае существенных перемещений жидкости между внутри- и внеклеточным пространствами не происходит.


Анионы, находящиеся внутри клетки, обычно поливалентны, велики и не могут свободно проникнуть через клеточную мембрану. Единственным катионом, для которого клеточная мембрана проницаема и который находится в клетке в свободном состоянии и в достаточном количестве, обеспечивающем частичную нейтрализацию клеточных анионов, является К+.

Как уже говорилось, Na+ является внеклеточным катионом. Его локализация обусловлена двумя обстоятельствами: относительно низкой способностью проникать через клеточную мембрану и наличием особого механизма вытеснения Na+ из клетки - так называемого натриевого насоса. Сl- также является внеклеточным компонентом, но его потенциальная способность проникать через клеточную мембрану относительно высока. Она не реализуется потому, что клетка имеет достаточно постоянный состав фиксированных клеточных анионов, создающих в ней преобладание отрицательного потенциала, вытесняющего С1-. Таким образом, осмотическое и электрическое равновесие между клеточным и внеклеточным пространством может быть достигнуто при относительно высокой концентрации К+ внутри клетки и соответствующей высокой концентрации С1- за ее пределами. Эти различия в концентрациях мобильных ионов внутри клетки и вне ее обеспечивают постоянную разность потенциалов - так называемый трансмембранный потенциал, равный примерно 60—80 мВ, причем внутриклеточный заряд имеет отрицательное значение.

В действительности этого не происходит, поскольку такая сила оказывается сбалансированной другой, действующей в обратном направлении и называемой натриевым насосом. Энергия натриевого насоса, являющегося специфическим свойством клеточной мембраны, обеспечивается гидролизом аденозинтрифосфата (АТФ) и направлена на выталкивание Na+ из клетки [Whittman R., Wheeler К. Р., 1970].

Эта же энергия способствует движению К+ внутрь клетки. Установлено, что противоположно направленные движения К+ и Na+ осуществляются в пропорции 2:3. По мнению М. W. В. Bradbury (1973), с физиологической точки зрения для К+ этот механизм не столь существен, так как последний в норме обладает высокой способностью проникать через клеточную мембрану. Описанный механизм является основным для обеспечения постоянства концентрации клеточных и внеклеточных компонентов. Принципиально важен тот момент, что осмолярность внутриклеточной воды величина достаточно постоянная и не зависящая от осмолярности внеклеточного пространства. Это постоянство обеспечивается энергозависимым механизмом.


Гипоксия, так же как и гипогликемия или дефицит инсулина приводит к нарушению синтеза энергии, что может привести к остановке насоса. Если функция натриевого насоса оказывается нарушенной, то это приводит к неконтролируемой ситуации, когда клеточное пространство почти свободно доступно для Na+. В результате уменьшается внутриклеточный отрицательный потенциал и клетка становится более доступной и для С1-. Связанное с этим повышение осмотического давления в клетке приводит к перемещению воды внутрь клетки и ее набуханию, а в дальнейшем и к нарушению ее целостности.

Таким образом, дисфункция натриевого насоса приводит к трансминерализации и является патофизиологической основой гибели клетки.

Перемещение воды в организме


Внеклеточная жидкость омывает клетки и является транспортной средой для метаболических субстанций, обеспечивающих нормальную жизнедеятельность клеток. Через нее в клетку проникают кислород, различные вещества из крови и желудочно-кишечного тракта и выводятся продукты метаболизма клетки, которые затем попадают в кровь и экскретируются легкими, почками и печенью.


Плазма - часть внеклеточной жидкости - служит средой для эритроцитов, лейкоцитов и тромбоцитов. Содержание белков в плазме примерно 70 г/л, что значительно превышает содержание их в интерстициальной жидкости (10-30 г/л). На долю чистой воды в плазме приходится в связи с этим 93% объема, т. е. несколько меньше, чем в инстерстициальной жидкости.

Строго говоря, интерстициальное пространство заполнено не свободно перемещающейся жидкостью, а гелем, удерживающим воду в фиксированном состоянии. Основу геля составляет преимущественно гиалуроновая кислота.


Значение интерстициального пространства невозможно оценивать и обсуждать без упоминания о лимфатической системе. Лимфа по существу является составной частью интерстициальной жидкости и предназначена в основном для транспорта химических крупномолекулярных субстратов, главным образом белков, а также (частично) жировых конгломератов и углеводов из интерстициального пространства (куда они проникают из клеток) в кровь. На терминальных концах лимфатических сосудов имеются клапаны, которые регулируют этот процесс. Движение лимфы по сосудам осуществляется за счет насосного действия миоэндотелиальных волокон, функционирующих синхронно с клапанным аппаратом, расположенным по всей длине лимфатического сосуда. Лимфатическая система обладает также концентрационной функцией, поскольку осуществляет реабсорбцию воды в зоне венозного конца капилляра.


Быстрое удаление белков из интерстициального пространства снижает тканевое коллоидно-осмотическое давление (КОД). Этот механизм вместе с насосной функцией лимфатической системы обеспечивает слабое гидростатическое давление (около 3 мм рт. ст., в лёгких – 6 мм рт.ст.) в интерстициальном пространстве [Guyton А. С. 1971]. Значение низкого давления в интерстициальном пространстве переоценить невозможно, поскольку оно не только определяет клеточную архитектуру, но и создает оптимальные условия для жизнедеятельности клеток. При отечных состояниях, когда давление в интерстициальной жидкости повышается, клеточная архитектура нарушается. Отрицательное давление в интерстициальном пространстве является также гарантией постоянства интерстициального водного объема, предупреждает накопление излишних объемов жидкости и, наконец, улучшает условия метаболизма, поскольку сближает поверхности сосудистой и клеточной диффузионных мембран.


Факторами, повышающими интерстициальное давление, являются: увеличение внутрикапиллярного давления и снижение КОД плазмы, возрастание интерстициального КОД и, наконец, повышение проницаемости капилляров. Сначала влияние названных факторов компенсируется усилением лимфатического тока, иногда в 10—50 раз [Hillman К., 1990]. С исчерпанием компенсирующего лимфатического механизма интерстициальное давление поднимается выше нуля. При этом в интерстициальном пространстве накапливается большое количество жидкости. Отношения между давлением и объемом жидкости в разных зонах интерстициального пространства неодинаковы, поскольку различные ткани имеют разную степень податливости, растяжимости (compliance).


Примерно те же механизмы определяют динамику легочного интерстициального пространства. Однако легочное капиллярное давление ниже и легочные капилляры относительно легко пропускают молекулы белка. Вместе с тем движение лимфы по легочным лимфатическим сосудам осуществляется быстрее из-за выраженного пульсирующего характера кровотока в близи расположенных легочных кровеносных сосудах. В целом же относительная величина легочного интерстициального пространства значительно меньше тканевого и альвеолярный легочный эпителий может противостоять давлению со стороны интерстиция не выше 2 мм рт. ст. При превышении этого значения начинается отек легких. В норме жидкость не накапливается в интерстициальном пространстве легких благодаря лимфодренажу.
Однако в последнее время широкое распространение в онкохирургии получила лимфодиссекция – удаление лимфодренажа. При лимфодиссекции в верхнем этаже брюшной полости и грудной клетки нарушаются противоотёчные механизмы, и у больных даже при небольшой по объёму инфузии развивается интерстициальный отёк лёгких и гипоксемия.

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

Нарушение водного обмена: причины, заболевания, при которых развивается, методы диагностики и лечения.

Определение

Больше всего воды содержится в организме младенцев – до 86%. Затем ее уровень постепенно начинает снижаться, достигая минимума у людей пожилого возраста.

Вода в организме человека.jpg

Вода работает как растворитель, составляет основу биологических сред, является участником различных биохимических реакций, терморегуляции и выполняет множество других функций.

Каждую секунду наш организм теряет определенное количество воды с дыханием в виде паров. Другими путями элиминации жидкости из организма являются потоотделение, выработка ферментов в желудочно-кишечном тракте.

В процессе прохождения крови через почки в мочу поступает вода, минеральные и органические вещества, которые не требуются организму по причине своей вредности или избыточности.

Для компенсации потерь жидкости организму требуется ее поступление извне. Естественное восполнение воды происходит за счет питья и еды. Внутривенное введение используют при тяжелом обезвоживании для быстрого восполнения потерь жидкости или невозможности употребления воды и пищи через рот.

Жидкость в нашем организме условно подразделяется на внутриклеточную и внеклеточную. Внутриклеточная жидкость, как следует из названия, присутствует внутри клетки и отграничена полупроницаемой мембраной от окружающего клетку пространства. Вне клетки жидкость находится в межклеточном пространстве и внутри кровеносных и лимфатических сосудов.

Под водным балансом в организме следует понимать не просто общее количество воды, но и ее распределение между перечисленными структурами, что напрямую влияет на жизнедеятельность органов и тканей человека.

Разновидности нарушения водного обмена

В зависимости от общего содержания воды в организме человека нарушения водного обмена можно разделить на дегидратацию (уменьшение общего количества воды) и гипергидратацию (избыток воды).

Дегидратация проявляется уменьшением количества отделяемой мочи, сухостью слизистых оболочек, часто сопровождается выраженным чувством жажды, снижением эластичности кожи, в более тяжелых случаях развивается клиническая картина поражения тех или иных органов, в первую очередь – нервной системы в виде общей слабости, сонливости, нарушения или потери сознания.

Симптомы дегидратации.jpg

Избыток воды в организме, напротив, проявляется образованием периферических отеков, в первую очередь – отека подкожно-жировой клетчатки, а также накоплением жидкости в клетках, межклеточном пространстве и различных полостях организма: в плевральной полости, брюшной и т.д.

Отдельно выделяют изменение количества воды в сосудистом русле: состояния гиповолемии (недостаточного объема крови) и гиперволемии (избыточного объема крови).

Возможные причины нарушения водного обмена

Выше были рассмотрены основные пути поступления и выведения жидкости из организма. Исходя из этого, становится понятно, что заболевания почек, сопровождающиеся повышенным мочеотделением, приводят к дегидратации, а поражения почек с невозможностью выполнения ими функции фильтрации – к гипергидратации.

Поражения желудочно-кишечного тракта, которые протекают с выраженной многократной рвотой и диареей, могут стать причиной нарушения водного баланса из-за избыточной потери жидкости.

В регуляции водного обмена важную роль играет эндокринная система. Так, повышение концентрации антидиуретического гормона приводит к задержке жидкости в организме, а увеличение выработки предсердного натрийуретического гормона – к ее усиленному выведению. Помимо этого, опосредованно через изменение концентрации солей в организме на водный баланс влияют и другие гормоны, например альдостерон.

Важно помнить, что глюкоза является осмотически активным веществом, способным притягивать воду. В случае избыточного количества глюкозы в крови, например при сахарном диабете, она начинает выделяться с мочой и увлекает за собой воду, что также приводит к развитию выраженного обезвоживания.

При каких заболеваниях развиваются нарушения водного обмена

Нарушения водного обмена могут возникать при различных заболеваниях почек и, как правило, являются признаками почечной недостаточности. При остро развившемся нарушении функции почек, например, при шоке, отравлении химическими веществами, некоторых воспалительных заболеваниях происходит, как правило, задержка воды в организме (гипергидратация). В то время как хронически развивающиеся болезни почек могут сопровождаться как гипергидратацией, так и гипогидратацией (в зависимости от стадии процесса).

Одной из частых причин хронической болезни почек является артериальная гипертензия и сахарный диабет.

К другим эндокринным заболеваниям, приводящим к выраженной дегидратации, относится несахарный диабет – группа заболеваний, в основе которых лежит нарушение работы в системе антидиуретического гормона. Врожденная дисфункция коры надпочечников, или адреногенитальный синдром может сопровождаться выраженными нарушениями баланса солей в организме и нарушением обмена жидкостей.

Острые кишечные инфекции, хронические расстройства питания, сопровождающиеся диареей и рвотой, некоторые врожденные заболевания желудочно-кишечного тракта у детей, такие как пилоростеноз, часто приводят к обезвоживанию и нарушению водно-солевого баланса организма.

К каким врачам обращаться при появлении симптомов нарушения водного обмена

Среди заболеваний, приводящих к нарушению жидкостного обмена, присутствуют расстройства самых различных органов и систем, требующие конкретных видов обследования и лечения. Поэтому в случае появления симптомов нарушения водного обмена следует вначале обратиться к специалисту широкого профиля, такому как терапевт или педиатр. По мере проведения клинического и лабораторно-инструментального обследования определяется система органов, причастная к развитию водных нарушений, поэтому может потребоваться консультация эндокринолога, нефролога, гастроэнтеролога, инфекциониста и т.д.

Диагностика и обследования при нарушениях водного обмена

В основе первичной диагностики заболеваний, вызывающих нарушения водного обмена, лежит тщательно собранная история развития патологического состояния. Врач проводит опрос пациента, в ходе которого уточняет возможные причины, сроки, течение заболевания, проводившееся лечение и т.д.

После клинического обследования различных органов и систем, как правило, требуется лабораторно-инструментальное подтверждение диагноза. Пациенту назначают исследование концентрации глюкозы в крови с целью исключения сахарного диабета.

Глюкоза – основной источник энергии для метаболических процессов в организме человека, является обязательным компонентом большинства внутриклеточных структур, участвует в синтезе нуклеиновых кислот (рибоза, дезоксирибоза), образует соединения с белками (гликопротеиды, протеогликаны) и липидами (гликолипиды).

Нажмите, чтобы узнать подробности

Общая характеристика водно-солевого обмена. Значение воды и обмен ее в организме. Обмен минеральных солей. Витамины и их значение. Питание.

ЦЕЛЬ: Представлять значение воды и минеральных веществ для нормальной жизнедеятельности, обмен их в организме и проявления нарушений водного и минерального обменов.

Знать роль, функции витаминов, их классификацию и основные нарушения, возникающие при гипо- и авитаминозах.

Водно-солевой обмен - это совокупность процессов распределения воды и минеральных веществ между вне- и внутриклеточным пространствами организма, а также между организмом и внешней средой. Обмен воды в организме неразделимо связан с минеральным (электролитным) обменом. Распределение воды между водными пространствами организма зависит от осмотического давления жидкостей в этих пространствах, что во многом определяется их электролитным составом. От количественного и качественного состава минеральных веществ в жидкостях организма зависит протекание всех жизненно важных процессов

Поддержание постоянства осмотического, объемного и ионного равновесия вне- и внутриклеточных жидкостей организма с помощью рефлекторных механизмов называется водно-электролитным гомеостазом. Изменение потребления воды и солей, избыточная потеря этих веществ и т.д. сопровождаются изменением состава внутренней среды и воспринимаются соответствующими рецепторами

Вода необходима любому животному организму и выполняет следующие функции:

является обязательной составной частью протоплазмы клеток, тканей и органов; тело взрослого человека на 50-60% состоит из воды, т.е. она достигает 40-45 л;

является хорошим растворителем и переносчиком многих минеральных и питательных веществ, продуктов обмена;

принимает активное участие во многих реакциях обмена (гидролиз, набухание коллоидов, окисление белков, жиров, углеводов);

ослабляет трение между соприкасающимися поверхностями в теле человека;

является основным компонентом водно-электролитного гомеостаза, входя в состав плазмы, лимфы и тканевой жидкости;

участвует в регуляции температуры тела человека;

обеспечивает гибкость и эластичность тканей;

входит вместе с минеральными солями в состав пищеварительных соков.

Суточная потребность взрослого человека в воде в состоянии покоя составляет 35-40 мл на каждый килограмм массы тела, т.е. при массе 70 кг - в среднем около 2,5 л. Это количество воды поступает в организм из следующих источников:

1) вода, потребляемая в виде питья (1-1,1 л) и вместе с пищей (1-1,1 л);

2) вода, которая образуется в организме в результате химических
превращений питательных веществ (0,3-0,35 л).

Основными органами, удаляющими воду из организма, являются почки, потовые железы, легкие и кишечник. Почками в обычных условиях за сутки в виде мочи удаляется 1-1,5 л воды. Потовыми железами в покое через кожу в виде пота выделяется 0,5 л воды в сутки (при усиленной работе и в жару - больше). Легкими в покое выдыхается за сутки в виде водяных паров 0,35 л воды (при учащении и углублении дыхания - до 0,8 л/сутки). Через кишечник с калом в сутки выделяется 100-150 мл воды. Соотношение между количеством поступившей в организм и выведенной из него воды составляет водный баланс. Для нормальной жизнедеятельности организма важно, чтобы приход воды полностью покрывал расход, иначе в результате потери воды наступают серьезные нарушения жизнедеятельности. Потеря 10% воды приводит к состоянию дегидратации (обезвоживания), при потере 20% воды наступает смерть.. Как местные, так и общие нарушения водного обмена в тканях могут проявляться в форме отеков и водянки. Отеком называется накопление жидкости в тканях водянкой - скопление жидкости в полостях организма. Жидкость, скашивающуюся в тканях при отеках и в полостях при водянке, называют транссудатом. В зависимости от причин и механизмов развития различают сердечные, или застойные, отеки, почечные отеки, кахектические, токсические, травматические отеки и т.д.

Минеральные соли поступают в организм с пищевыми продуктами и водой, за исключением поваренной соли, которая специально добавляется к пище. Всего в организме животных и человека найдено около 70 химических элементов, из которых 43 считаются незаменимыми (эссенциальными; лат. essentia - сущность).

- Потребность организма в различных минеральных веществах неодинакова. Одни элементы, называемые макроэлементами, вводятся в организм в значительном количестве (в граммах и десятых долях грамма в сутки). К макроэлементам относятся натрий, магний, калий, кальций, фосфор, хлор. Другие элементы - микроэлементы (железо .маргатец, ковальт, цинк, фтор, йод и др.) нужны организму в крайне малых количествах (в микрограммах - тысячных долях миллиграмма).

Функции минеральных солей:

1) являются биологическими константами гомеостаза;

создают и поддерживают осмотическое давление в крови и тканях (осмотическое равновесие);

поддерживают постоянство активной реакции крови (рН=7,36-7,42);

участвуют в ферментативных реакциях;

участвуют в водно-солевом обмене;

ионы натрия, калия, кальция, хлора играют большую роль в процессах возбуждения и торможения, мышечного сокращения, свертывания крови;

являются составной частью костей (фосфор, кальций), гемоглобина (железо), гормона тироксина (йод), желудочного сока (соляная кислота) и т.д.;

8) являются составными компонентами всех пищеварительных соков, которые выделяются в больших количествах.

Обмен натрия, калия, хлора, кальция, фосфора, железа и йода.

Натрий поступает в организм в виде поваренной (столовой) соли. Растительная пища бедна поваренной солью. Суточная потребность в поваренной соли для взрослого человека составляет 10-15 г. Натрий активно участвует в поддержании осмотического равновесия и объема жидкости в организме, влияет на рост организма. Совместно с калием натрий регулирует деятельность сердечной мышцы, существенно изменяя ее возбудимость. Симптомы дефицита натрия: слабость, апатия, подергивание мышц, потеря свойства сократимости мышечной ткани.

Калий поступает в организм с овощами, мясом, фруктами. Суточная норма его - 1 г. Вместе с натрием участвует в создании биоэлектрического мембранного потенциала (калиево-натриевый насос), поддерживает осмотическое давление внутриклеточной жидкости, стимулирует образование ацетилхолина. При недостатке калия наблюдается торможение процессов ассимиляции (анаболизма), слабость, сонливость, гипорефлексия (снижение рефлексов).

Хлор поступает в организм в виде поваренной соли. Анионы хлора вместе с катионами натрия участвуют в создании осмотического давления плазмы крови и других жидкостей организма. Хлор входит также в состав соляной кислоты желудочного сока. Симптомов дефицита хлора у человека не обнаружено.

Кальций поступает в организм с молочными продуктами, овощами (зелеными листьями). Содержится в костях вместе с фосфором и является одной из важнейших биологических констант крови. Содержание кальция в крови человека в норме составляет 2,25-2,75 ммоль/л (9-11 мг%). Снижение кальция приводит к непроизвольным мышечным сокращениям (кальциевая тетания) и смерти вследствие остановки дыхания. Кальций необходим для свертывания крови. Суточная потребность в кальции - 0,8 г.

Фосфор поступает в организм с молочными продуктами, мясом, злаками. Суточная потребность в нем - 1,5 г. Вместе с кальцием содержится в костях и зубах, входит в состав макроэргических соединений (АТФ, креатинфосфат и др.). Отложение фосфора в костях возможно только при наличии витамина D. При недостатке фосфора в организме наблюдается деминерализация костей.

Железо поступает в организм с мясом, печенью, бобами, сухофруктами. Суточная потребность - 12-15 мг. Является составной частью гемоглобина крови и дыхательных ферментов. В организме человека содержится 3 г железа, из которого 2,5 г находится в эритроцитах как составная часть гемоглобина, остальные 0,5 г входят в состав клеток организма. Недостаток железа нарушает синтез гемоглобина и как следствие приводит к малокровию.

7) Йод поступает с питьевой водой, обогащенной им при протекании через горные породы или со столовой солью с добавлением йода. Суточная потребность - 0,03 мг. Участвует в синтезе гормонов щитовидной железы. Недостаток йода в организме приводит к возникновению эндемического зоба - увеличению щитовидной железы (некоторые области Урала, Кавказа, Памира и т.д.).

Нарушение минерального обмена может приводить к заболеванию, при котором в почечных чашках, лоханках и мочеточниках образуются камни разной величины, структуры и химического состава (почечнокаменная болезнь - нефролитиаз). Оно может способствовать также образованию камней в желчном пузыре и желчных протоках (желчнокаменная болезнь).

Витамины (лат. vita - жизнь + амины) - поступающие с пищей незаменимые вещества, необходимые для поддержания жизненных функций организма. Основоположником учения о витаминах является отечественный ученый Н.И. Лунин (1880), а термин "витамин" был предложен К. Функом в 1911 г. В настоящее время известно более 50 витаминов.

Функции витаминов многообразны:

они являются биологическими катализаторами и активно взаимодействуют с ферментами и гормонами;

многие из них являются коферментами, т.е. низкомолекулярными компонентами ферментов;

принимают участие в регуляции процесса обмена веществ в виде ингибиторов или активаторов;

некоторые из них играют определенную роль в образовании гормонов и медиаторов;

отдельные витамины снижают воспалительные явления и способствуют восстановлению поврежденной ткани;

способствуют росту, улучшению минерального обмена, сопротивляемости к инфекциям, предохраняют от малокровия, повышенной кровоточивости;

7) обеспечивают высокую работоспособность.

Заболевания, которые развиваются при отсутствии витаминов в пище, называются авитаминозами. Функциональные нарушения, возникающие при частичной недостаточности витаминов, - это гиповитаминозы. Заболевания, вызываемые избыточным потреблением витаминов, называются гипервитаминозами.

По растворимости все витамины делят на 2 большие группы: водорастворимые - витамины группы В, витамин С, витамин Р и др.; жирорастворимые - витамины A, D, Е, К, F.

Рассмотрим кратко некоторые витамины из этих групп.

А. Водорастворимые витамины.

Витамин С - аскорбиновая кислота, антицинготный. Суточная потребность - 50-100 мг. При отсутствии витамина С у человека развивается цинга (скорбут): кровоточивость и разрыхление десен, выпадение зубов, кровоизлияния в мышцах и суставах. Костная ткань становится более пористой и хрупкой (могут быть переломы). Возникает общая слабость, вялость, истощение, пониженная сопротивляемость к инфекциям.

Витамин В1 - тиамин, антиневрин. Суточная потребность - 2-3 мг. При отсутствии витамина В1 развивается заболевание "бери-бери": полиневрит, нарушение деятельности сердца и желудочно-кишечного тракта.

Витамин В2 - рибофлавин (лактофлавин), антисеборейный. Суточная потребность - 2-3 мг. При авитаминозе у взрослых наблюдается поражение глаз, слизистой оболочки полости рта, губ, атрофия сосочков языка, себорея, дерматит, падение веса; у детей - задержка роста.

Витамин В3 - пантотеновая кислота, антидерматитный. Суточная потребность - 10 мг. При авитаминозе возникает слабость, быстрая утомляемость, головокружение, дерматиты, поражение слизистых оболочек, невриты.

Витамин В6 - пиридоксин, антидерматитный (адермин). Суточная потребность - 2-3 мг. Синтезируется микрофлорой толстого кишечника. При авитаминозе наблюдается дерматит у взрослых. У младенцев специфическим проявлением авитаминоза являются судороги (конвульсии) по типу эпилептиформных.

Витамин В12 - цианокобаламин, антианемический. Суточная потребность - 2-3 мкг. Синтезируется микрофлорой толстого кишечника. Влияет на кроветворение и предохраняет от злокачественной анемии Т.Аддисона- А.Бирмера.

Витамин Вс - фолиевая кислота (фолацин), антианемический. Суточная потребность - 3 мг. Синтезируется в толстом кишечнике микрофлорой. Влияет на синтез нуклеиновых кислот, кроветворение и предохраняет от мегалобластной анемии.

Витамин Р - рутин (цитрин), капилляроукрепляющий витамин. Суточная потребность - 50 мг. Уменьшает проницаемость и ломкость капилляров, усиливает действие витамина С и способствует накоплению его в организме.

Витамин РР - никотиновая кислота (никотинамид, ниацин), противопеллагрический. Суточная потребность - 15 мг. Синтезируется в толстом кишечнике из аминокислоты триптофана. Предохраняет от пеллагры: дерматита, диареи (поноса), деменции (нарушения психики Б. Жирорастворимые витамины.

Витамин А - ретинол, противоксерофтальмический. Суточная потребность - 1,5 мг. Способствует росту и предохраняет от куриной, или ночной, слепоты (гемералопии), сухости роговицы глаза (ксерофтальмии), размягчения и некроза роговицы (кератомаляции). Предшественником витамина А является каротин, содержащийся в растениях: моркови, абрикосах, листьях петрушки.

Витамин D - кальциферол, противорахитический. Суточная потребность - 5-10 мкг, для детей грудного возраста - 10-25 мкг. Регулирует обмен кальция и фосфора в организме и предохраняет от рахита. Предшественником витамина D в организме является 7-дегидро-холестерин, который под действием ультрафиолетовых лучей в тканях (в коже) превращается в витамин D.

Витамин Е - токоферол, противостерильный витамин. Суточная потребность - 10-15 мг. Обеспечивает функцию размножения, нормальное протекание беременности.

Витамин К - викасол (филлохинон), антигеморрагический витамин. Суточная потребность - 0,2-0,3 мг. Синтезируется микрофлорой толстого кишечника. Усиливает биосинтез протромбина в печени и способствует свертыванию крови.

Витамин F - комплекс ненасыщенных жирных кислот (линолевой, линоленовой, арахидоновой) необходим для нормального жирового обмена в организме. Суточная потребность - 10-12 г.

Питание - сложный процесс поступления, переваривания, всасывания и усвоения организмом пищевых веществ, необходимых для покрытия его энергетических трат, построения и возобновления клеток, тканей и регуляции функций. В процессе питания пищевые вещества поступают в пищеварительные органы, подвергаются различным изменениям под действием пищеварительных ферментов, попадают в циркулирующие жидкости организма и таким образом превращаются в факторы его внутренней среды.

Питание обеспечивает нормальную жизнедеятельность организма при условии его снабжения необходимым количеством белков, жиров, углеводов, витаминов, минеральных веществ и воды в нужных для организма соотношениях. При сбалансированном питании основное внимание уделяется так называемым незаменимым компонентам пищи, которые не. синтезируются в самом организме и должны поступать в него в необходимых количествах с пищей. К таким компонентам относятся незаменимые аминокислоты, незаменимые жирные кислоты, витамины. Незаменимыми компонентами являются также многие минеральные вещества и вода. Oптимальным для питания практически здорового человека является соотношение белков, жиров и углеводов в пищевом рационе, близкое 1:1:4.

Читайте также: