Влияния аэс на здоровья населения реферат

Обновлено: 02.07.2024

ОГЛАВЛЕНИЕ………………………………………………………………………………………………2 ВВЕДЕНИЕ. 3 ПОНЯТИЕ РАДИАЦИИ И ЕЁ ПОРАЖАЮЩИЕ ФАКТОРЫ. 4 СПОСОБЫ ЗАЩИТЫ ОТ РАДИАЦИИ ЧЕЛОВЕКУ………………………………………..5 ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА. 6 ЗАКЛЮЧЕНИЕ. 7 СПИСОК ЛИТЕРАТУРЫ. 8

Введение

Радиация является постоянным спутником жизни для человека. Мы живем в мире, в котором радиация присутствует повсюду. Свет и тепло ядерных реакций на Солнце являются необходимыми условиями нашего существования. Радиоактивные вещества естественного происхождения присутствуют в окружающей среде. Зарождение жизни на Земле и её последующая эволюция протекали в условиях постоянного воздействия радиации. Явление радиоактивности широко используется в науке, технике, медицине, промышленности. Рентгеновские лучи и радиоактивные изотопы используются в медицинских исследованиях. Однако сразу же стало ясно, что радиация является потенциально опасным источником для живых организмов в больших объёмах.

ПОНЯТИЕ РАДИАЦИИ И ЕЁ ПОРАЖАЮЩИЕ ФАКТОРЫ

Радиация - это излучение и распространение в виде потока элементарных частиц и квантов электромагнитного излучения.

Когда радиоактивное излучение проходит через тело человека или же когда в организм попадают зараженные вещества, то энергия волн и частиц передается нашим тканям, а от них клеткам. В результате атомы и молекулы, составляющие организм, приходят в возбуждение, что ведёт к нарушению их деятельности и даже гибели. Все зависит от полученной дозы радиации, состояния здоровья человека и длительности воздействия. Радиация воздействует на организм на микроуровне, вызывая повреждения, которые заметны не сразу, а проявляют себя через долгие годы. Поражение отдельных групп белков, находящихся в клетке, может вызвать рак, а также генетические мутации, передающиеся через несколько поколений. Даже самые малые дозы облучения вызывают необратимые генетические изменения. Радиации подвергаются любые вещи и пища.

СПОСОБЫ ЗАЩИТЫ ОТ РАДИАЦИИ

Радиация бывает первичной и вторичной. Первичная радиация образуется во время высвобождения ионизирующего излучения, а вторичная радиация распространяется в виде радиоактивных осадков (если сказать проще - в виде пыли), распространяемых ветром и облаками.

1. Альфа лучи. Это тяжелые радиоактивные частицы – нейтроны и протоны, которые несут наибольший вред для человека. Но они обладают малой пробивной силой и не способны проникнуть даже сквозь верхние слои кожи.

2. Бета. Это радиоактивные электроны. Их пробивная способность – 2 см. кожи.

3. Гамма. Это фотоны. Они свободно пронизывают тело человека, и защититься возможно только с помощью свинца или толстого слоя бетона.

При однократном внешнем облучении человека в зависимости от дозы излучения различают степени:

1. Лёгкая от 100-200 рад

2. Средняя от 200-400 рад

3. Тяжёлая от 400-600 рад

4. Тяжкая свыше 600 рад

ЗАКЛЮЧЕНИЕ

В заключение хотелось бы отметить, что, несмотря на то, что проникающая радиация в больших количествах приводит к необратимым последствиям, сегодня ученые говорят, что малые ее дозы полезны для здоровья и их следует рекомендовать для применения в медицине.

В течение многих десятилетий было известно, что длительное облучение радиацией приводит к развитию раковых опухолей, однако многие ученые утверждают, что ионизирующее излучение в определенных дозах может быть полезно для здоровья. низкие дозы радиации снижают частоту инфекционных заболеваний, уменьшают число случаев рака у молодых людей и существенно увеличивают среднюю продолжительность жизни.

Начало формирования загрязнения окружающей среды искусственными радионуклидами приходится на 1943-1944 гг., т.е. на время сооружения и пуска в эксплуатацию в США заводов по производству оружейного плутония и обогащенного урана. Однако, радиоактивное загрязнение, после которого за достаточно короткое время были загрязнены большие территории земной поверхности, произошло после первого испытательного взрыва 16 июля 1945 г., проведенного около г. Аламогордо (штат Нью Мехико, США)

Содержание

Введение
1.Источники радиоактивных излучений и их характеристика…………..3
2.Распространение радиационного загрязнения…………………………7
2.1 Радиоактивное загрязнение воздушной среды………………….….7
2.2 Радиоактивное загрязнение водной среды. ………………….……..8
2.3 Радиоактивное загрязнение почв. ………………………………….10
2.4 Радиоактивное загрязнение растительного и
животного мира. ……………………………………………………11
3.Возможные последствия облучения людей…………………………. 12
4.Переработка и нейтрализация радиационных отходов. …………. 14
Заключение
Список литературы

Прикрепленные файлы: 1 файл

экология реферат (2).docx

1.Источники радиоактивных излучений и их характеристика…………..3

2.Распространение радиационного загрязнения…………………………7

2.1 Радиоактивное загрязнение воздушной среды………………….….7

2.2 Радиоактивное загрязнение водной среды. ………………….……..8

2.3 Радиоактивное загрязнение почв. ………………………………….10

2.4 Радиоактивное загрязнение растительного и

3.Возможные последствия облучения людей…………………………. 12

4.Переработка и нейтрализация радиационных отходов. …………. 14

Начало формирования загрязнения окружающей среды искусственными радионуклидами приходится на 1943-1944 гг., т.е. на время сооружения и пуска в эксплуатацию в США заводов по производству оружейного плутония и обогащенного урана. Однако, радиоактивное загрязнение, после которого за достаточно короткое время были загрязнены большие территории земной поверхности, произошло после первого испытательного взрыва 16 июля 1945 г., проведенного около г. Аламогордо (штат Нью Мехико, США) [1]. Далее радиоактивное загрязнение окружающей среды происходило во всё возрастающих масштабах. В настоящее время проблема радиоактивного загрязнения актуальна. АЭС, конечно, удобны в использовании, они вырабатывают большее количество энергии в отличие от ТЭС, но очень пагубно влияют на окружающую среду, на все живые организмы. При авариях на АЭС особённо резко увеличивается загрязнение среды радионуклидами (стронций-90, цезий-137, церий-141, йод-131, рутений-106 и др.) Большое внимание к радиоактивным веществам стало уделяться после аварии на Чернобыльской АЭС в 1986 году и ряда инцидентов на других объектах с ядерным топливом. Поначалу важнейшими загрязняющими веществами являлись, главным образом, пыль, угарный и углекислый газы, оксиды серы и азота, углеводороды. Радионуклиды рассматривались в меньшей степени. Но в связи с факторами появления острых токсичных эффектов, вызывных загрязнением стронцием и цезием, интерес к загрязнению радиоактивными веществами вырос. Возникает проблема их захоронения. Главная цель моего реферата заключается в подробном рассмотрении источников радиоактивного загрязнения, а также изучить как радиация влияет на окружающую среду и на живые организмы.

  1. Источники и характеристика радиационного загрязнения

Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. В свою очередь последние представляют большую потенциальную опасность для человечества и всей биосферы. Этот потенциал на много порядков больше естественного радиационного фона, к которому адаптирована вся живая природа. Ниже описываются основные источники ионизирующего, излучения (ИИЙ), а также тот вклад, который они вносят, в среднем, в облучение населения.

Естественный радиационный фон обусловлен рассеянной радиоактивностью земной коры, проникающим космическим излучением, потреблением с пищей биогенных радионуклидов и составлял в недавнем прошлом 8—9 микрорентген в час (мкР/ч), что соответствует среднегодовой эффективной эквивалентной дозе (ЭЭД = НD) для жителя Земли в 2 миллизиверта (мЗв). Рассеянная радиоактивность обусловлена наличием в среде следовых количеств природных радиоизотопов с периодом полураспада (T1/2) более 105 лет (в основном урана и тория), а также 40К, 14С, 226Ra и 222Rn. Газ радон в среднем дает от 30 до 50% естественного фона облучения наземной биоты.[2]

Указанный уровень фона был характерен для доиндустриальной эпохи и в настоящее время несколько повышен техногенными источниками радиоактивности — в среднем до 11— 12 мкР/ч при среднегодовой ЭЭД в 2,5 мЗв. Этой прибавкой послужили технические источники проникающей радиации:

а) технические источники проникающей радиации (медицинская диагностическая и терапевтическая рентгеновская аппаратура, радиационная дефектоскопия, источники сигнальной индикации и т.п.);

б) извлекаемые из недр минералы, топливо и вода;

в) ядерные реакции в энергетике и ядерно-топливном цикле;

г) испытания и применение ядерного оружия. Деятельность человека в несколько раз увеличила число присутствующих в среде радионуклидов и на несколько порядков — их массу на поверхности планеты.

Главную радиационную опасность представляют запасы ядерного оружия и топлива и радиоактивные осадки, которые образовались в результате ядерных взрывов или аварий и утечек в ядерно-топливном цикле — от добычи и обогащения урановой руды до захоронения отходов. В мире накоплены десятки тысяч тонн расщепляющихся материалов, обладающих колоссальной суммарной активностью.

С 1945 по 1996 г. США, СССР (Россия), Великобритания, Франция и Китай произвели в надземном пространстве более 400 ядерных взрывов. В атмосферу поступила большая масса сотен различных радионуклидов, которые постепенно выпали на всей поверхности планеты. Их глобальное количество почти удвоили ядерные катастрофы, произошедшие на территории СССР. Долгоживущие радиоизотопы (углерод-14, цезий-137, стронций-90 и др.) и сегодня продолжают излучать, создавая приблизительно 2%-ю добавку к фону радиации. Последствия атомных бомбардировок, ядерных испытаний и аварий еще долго будут сказываться на здоровье облученных людей и их потомков.

Пока еще трудно говорить о влиянии техногенного превышения естественного фона радиации на биоту биосферы. Мы еще не знаем, как может сказаться на биоте океана разгерметизация затопленных контейнеров с радионуклидами и реакторов затонувших подводных лодок. Во всяком случае, можно предполагать некоторое повышение уровня мутагенеза.

Радиационные загрязнения, связанные с технологически нормальным ядерным топливным циклом, имеют локальный характер и доступны для контроля, изоляции и предотвращения эмиссий. Эксплуатация объектов атомной энергетики сопровождается незначительным радиационным воздействием. Многолетние систематические измерения и контроль радиационной обстановки не обнаружили серьезного влияния на состояние объектов окружающей природной среды. Дозы облучения населения, проживающего в окрестностях АЭС, не превышают 10 мкЗв/год, что в 100 раз меньше установленного допустимого уровня. Вероятность радиационных аварий реакторов АЭС сейчас оценивается как 10 –4 --10 -5 в год. [3]

В результате взрывов и пожара при аварии на четвертом энергоблоке ЧАЭС с 26 апреля по 10 мая 1986 г. из разрушенного реактора было выброшено примерно 7,5 т ядерного топлива и продуктов деления с суммарной активностью около 50 млн Ки. По количеству долгоживущих радионуклидов (цезий-137, стронций-90 и др.) этот выброс соответствует 500—600 Хиросимам. Кроме 30-километровой зоны, на которую пришлась большая часть выброса, в разных местах и/км2. Всего радиоактивным выбросом ЧАЭС в разной степени было загрязнено 80% территории Белоруссии, вся северная часть Правобережной Украины и 19 областей России. В целом по РФ загрязнение, обусловленное аварией на ЧАЭС, с плотностью 1 Ки/км2 и выше охватывает более 57 тыс. км2, что составляет 1,6% площади ЕТР. Уточненные в 1994 г. границы площадей, загрязненных цезием-137, по сравнению с 1993 г. почти не изменились. Следы Чернобыля обнаружены в большинстве стран Европы а также в Японии, на Филиппинах, в Канаде. [5]

После взрыва в Японии, согласно докладу японского агентства, выброс радиации в атмосферу с АЭС "Фукусима-1" в пересчете на йод-131 составил примерно 770 тысяч терабеккерелей. 12 апреля японское агентство оценило его всего лишь в 370 тысяч терабеккерелей. Повышение вдвое данных о выбросе связано, как сообщается, с новыми данными о состоянии трех аварийных реакторов станции, где зафиксировано полное расплавление ядерного топлива - полный мелтдаун. [6]

2 Распространение радиационного загрязнения.

2.1 Радиоактивное загрязнение воздушной среды.

Радиоактивные вещества, попадающие в атмосферу при их добыче, и эксплуатации атомных установок и двигателей, могут представлять опасность. Однако при современном уровне защитной техники этот Источник радиоактивности незначителен.

Наибольшее загрязнение атмосферы радиоактивными веществами происходит в результате взрывов атомных и водородных бомб. Каждый такой взрыв сопровождается образованием грандиозного облака радиоактивной пыли. Взрывная волна огромной силы распространяет ее частицы во всех направлениях, поднимая их более чем на 30 км. В первые часы после взрыва осаждаются наиболее крупные частицы, несколько меньшего размера — влечение 5 суток, а мелкодисперсная пыль потоками воздуха переносится на тысячи километров и оседает на поверхности земного шара в течение многих лет.

2.2 Радиоактивное загрязнение водной среды.

Основными источниками радиоактивного загрязнения Мирового океана являются:

- загрязнения от испытаний ядерного оружия (в атмосфере до 1963 г.);

- загрязнения радиоактивными отходами, которые непосредственно сбрасываются в море;

- крупномасштабные аварии (ЧАОС, аварии судов с атомными реакторами);

- захоронение радиоактивных отходов на дне и др. (Израиль и др., 1994).

Во время испытания ядерного оружия, особенно до 1963 г., когда проводились массовые ядерные взрывы, в атмосферу было выброшено огромное количество радионуклидов. Так, только на арктическом архипелаге Новая Земля было проведено более 130 ядерных взрывов (только в 1958 г. -46 взрывов), из них 87- в атмосфере.

Отходы от английских и французских атомных заводов загрязнили радиоактивными элементами практически всю Северную Атлантику, особенно Северное, Норвежское, Гренландское, Баренцево и Белое моря. В загрязнение радионуклидами акватории Северного Ледовитого океана некоторый вклад сделан и нашей страной. Работа трех подземных атомных реакторов и радиохимического завода (производство плутония), а также остальных производств в Красноярске-26 привела к загрязнению одной из самых крупных рек мира - Енисея (на .протяжении 1 500 км). Очевидно, что эти, радиоактивные продукты уже попали в Северный Ледовитый океан.

Воды Мирового океана загрязнены наиболее опасными радионуклидами цезия-137, стронция-90, церия-144, иттрия-91, ниобия-95, которые, обладая высокой биоаккумулирующей способностью переходят по пищевым цепям, и концентрируются в морских организмах высших трофических уровней, создавая опасность, как для гидробионтов, так и для человека. Различными источниками поступления радионуклидов загрязнены акватории арктических морей, так в 1982 г. максимальные загрязнения цезием-137 фиксировались в западной части Баренцева моря, которые в 6 раз превышали глобальное загрязнение вод Северной Атлантики. За 29-летний период наблюдений (1963-1992 гг.) концентрация стронция-90 в Белом и Баренцевом морях уменьшилась лишь в 3-5 раз. Значительную опасность вызывают затопленные в Карском море (около архипелага Новая Земля) 11 тыс. контейнеров с радиоактивными отходами, а также 15 аварийных реакторов с атомных подводных лодок. Работами 3-й советско-американской экспедиции 1988 г. установлено, что в водах Берингова и Чукотского моря, концентрация цезия-137 близка к фоновой для районов океана и обусловлена глобальным поступлением данного радионуклида из атмосферы за длительный промежуток времени. Однако эти концентрации (0,1,Ки/л) были в 10-50 раз ниже, чем в Черном, Баренцевом, Балтийским и Гренландском, морях, подверженных воздействию локальных источников радиоактивного загрязнения

Если заглянуть в учебник физики, радиоактивность - это неустойчивость ядер некоторых атомов. Из-за этой неустойчивости происходит распад ядра, сопровождаемый выходом так называемого ионизирующего излучения, то есть радиации. Существует несколько видов радиации: альфа-частицы, бета-частицы, гамма-излучение, нейтроны и рентгеновские лучи. Первые три - наиболее опасны для человека.[1]

Главная особенность радиоактивных превращений заключается в том, что они происходят самопроизвольно. Радиоактивные превращения протекают непрерывно и всегда сопровождаются выделением определенного количества энергии, которое зависит от силы взаимодействия атомных частиц между собой. На скорость протекания реакций внутри атомов не влияет ни температура, ни наличие электрического и магнитного полей, ни применение самого эффективного химического катализатора, ни давление, ни агрегатное состояние вещества.

Прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени называется дозиметром. Само измерение называется дозиметрией.

Помимо измерения дозы излучения могут измерять активность радионуклида в каком либо образце: предмете, жидкости, газе и т. д. Дозиметры-радиометры могут измерять плотность потока ионизирующих излучений для проверки на радиоактивность различных предметов или оценки радиационной обстановки на местности.

Недорогие индивидуальные дозиметры, которые измеряют мощность дозы ионизирующего излучения на бытовом уровне с не высокой точностью измерения - для проверки продуктов питания, строительных материалов.

2. Источники радиации

Теперь, имея представление о воздействии радиационного облучения на живые ткани, необходимо выяснить, в каких ситуациях мы наиболее подвержены этому воздействию.

Существует два способа облучения: если радиоактивные вещества находятся вне организма и облучают его снаружи, то речь идет о внешнем облучении. Другой способ облучения - при попадании радионуклидов внутрь организма с воздухом, пищей и водой - называют внутренним.

Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон.

1. Естественные источники радиации

Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).

Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения.

Всего за счет использование воздушного транспорта население Земли получало в год эффективную эквивалентную дозу.

2. Источники радиации, созданные человеком (техногенные)

Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных. Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природное обусловленное загрязнение.

Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия.

Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности.

Следующий источник облучения, созданный руками человека - радиоактивные осадки, выпавшие в результате испытания ядерного оружия в атмосфере. В результате взрыва часть радиоактивных веществ выпадает неподалеку от полигона, часть задерживается в тропосфере и затем в течение месяца перемещается ветром на большие расстояния, постепенно оседая на землю, при этом оставаясь примерно на одной и той же широте. Однако большая доля радиоактивного материала выбрасывается в стратосферу и остается там более продолжительное время, также рассеиваясь по земной поверхности.

Один из наиболее обсуждаемых сегодня источников радиационного излучения является атомная энергетика. На самом деле, при нормальной работе ядерных установок ущерб от них незначительный.

Но на примере Чернобыльской трагедии мы можем сделать вывод о чрезвычайно большой потенциальной опасности атомной энергетики: при любом минимальном сбое АЭС, особенно крупная, может оказать непоправимое воздействие на всю экосистему Земли.

Радиоактивные изотопы используются также в других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д.

При производстве детекторов дыма принцип их действия часто основан на использовании -излучения. При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран. Очень незначительны дозы облучения от цветных телевизоров и рентгеновских аппаратов для проверки багажа пассажиров в аэропортах.

3. Влияние радиоактивного облучения на живые организмы

Процесс воздействия на организм радиации называют облучением. Во время облучения негативная энергия радиации передаётся клеткам, меняя и разрушая их. Облучение может изменить ДНК, привести к генетическому повреждению и мутации, причём для этого достаточно одного кванта (частицы радиации). И чем выше уровень радиации, чем дольше воздействие, тем выше риск. Существует несколько путей поступления радиоактивных веществ в организм: при вдыхании воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку во-первых, объем легочной вентиляции очень большой, а во-вторых, значения коэффициента усвоения в легких более высоки. Излучения радиоактивных веществ оказывает очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001°С, нарушает жизнедеятельность клеток. [3]

При попадании радиоактивных веществ в организм любым путём они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.

На чёрном счету облучения ряд страшных и тяжёлых заболеваний: острая лучевая болезнь, всевозможные мутации в организме человека, бесплодие, нарушения в центральной нервной системе, иммунные заболевания, нарушения обмена веществ, инфекционные осложнения, раковые опухоли.

По результатам независимых исследований профессора Гофмана (1994), заболевания способны вызывать даже малые дозы радиации. Бич нашего времени, онкологические заболевания, ежегодно уносят жизни почти 8 миллионов человек по всему миру, и это страшное число непрерывно растёт. По прогнозам врачей, если ситуация не изменится, уже к 2030 году от рака ежегодно будет умирать 17 миллионов жителей нашей планеты.

Живые организмы обладают различной радиорезистентностью, т.е. устойчивостью к воздействию ионизирующих излучений. В целом она снижается по мере усложнения органического мира: максимальна у низших организмов (мхи и лишайники) и минимальная у высших (человек, животные).

4. Радиация друг или враг?

Чтобы изучить доступные сведения о радиации, мы собрали данные о том, в каких случаях радиация приносит пользу и используется в мирных целях, а когда становится угрозой для человечества. Полученные результаты представлены в таблице 1.

Но человечество, как и весь живой мир в целом, ранее не испытывало воздействия высоких доз ионизирующих излечений: в процессе эволюции не сформировались ни специфические органы восприятия данного вида воздействия, ни приспособительные защитные механизмы. За последние десятилетия человек создал сотни искусственных радионуклидов и научился использовать энергию атома в самых разных целях: для лечения и создания атомного оружия, для производства энергии и изготовления светящихся циферблатов часов.

Содержание

Введение 3
Действие ионизирующего излучения на организм человека 3
Виды радиационных поражений 5
Детергенные и стохастические последствия облучения 6
Снижение лучевой нагрузки на население 8
Заключение 10
Литература 10

Вложенные файлы: 1 файл

рад мед.docx

Министерство здравоохранения Республики Беларусь

Витебский Государственный медицинский университет

Кафедра Общей гигиены и экологии

Реферат на тему:

Влияние радиационных факторов на здоровье населения

Студентка II курса,

Лечебного факультета, 28 группы

Гардиеня Анна Михайловна

Царенко Юрий Юрьевич

Действие ионизирующего излучения на организм человека 3

Виды радиационных поражений 5

Детергенные и стохастические последствия облучения 6

Снижение лучевой нагрузки на население 8

Введение

Вопрос о действии радиации на человека и окружающую среду приковывает к себе пристальное внимание общественности и вызывает много споров. Достоверная научная информация по данному вопросу часто не доходит до населения, которое по этой причине вынуждено пользоваться всевозможными слухами. Радиоактивность и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни. Но человечество, как и весь живой мир в целом, ранее не испытывало воздействия высоких доз ионизирующих излечений: в процессе эволюции не сформировались ни специфические органы восприятия данного вида воздействия, ни приспособительные защитные механизмы. За последние десятилетия человек создал сотни искусственных радионуклидов и научился использовать энергию атома в самых разных целях: для лечения и создания атомного оружия, для производства энергии и изготовления светящихся циферблатов часов. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Радиация действительно опасна. В больших дозах она вызывает серьезные поражения тканей, а в малых способна вызывать рак и индуцировать генетические дефекты, которые могут проявиться у детей, внуков или более отдаленных потомков человека, подвергшегося облучению. В связи с ухудшением экологической ситуации в мире и в нашей республике, принявшим глобальные размеры после аварии на Чернобыльской АЭС, изучение всех аспектов влияния ионизирующих излучений на организм человека приобретает особую актуальность. Данное пособие в краткой форме излагает общую характеристику ионизирующих излучений, рассматривает их действие на организм человека, описывает развитие острой лучевой болезни, особенности внутреннего облучения, перечисляет основные мероприятия по оказанию доврачебной помощи населению при угрозе поражения, приводит рекомендации по радиационной безопасности в условиях проживания на загрязненной территории.

Действие ионизирующего излучения на организм человека

Степень воздействия ионизирующих излучений на организм человека, его реакция зависит от дозы излучения, ее мощности, плотности ионизации излучения, вида облучения, продолжительности воздействия, индивидуальной чувствительности, психофизиологического состояния организма и др. Под влиянием ионизирующих излучений в живой ткани в результате поглощения энергии могут происходить сложные физические и биологические процессы. Ионизация и возбуждение тканей приводят к разрыву молекулярных связей и изменение химической структуры раз-личных соединений, механизма митоза (деления) клеток, хромосомного аппарата, блокирование процессов обновления и дифференцирования клеток.

Наиболее чувствительными к действию радиации являются клетки постоянно обновляющихся тканей и органов (костный мозг, половые железы, селезенка и др.). Указанные изменения на клеточном уровне могут приводить к нарушениям функций отдельных органов и межорганных связей, нарушению нормальной жизнедеятельности всего организма и к его гибели.

Облучение организма может быть внешним, когда источник излучения находится вне организма и внутренним – при попадании радионуклидов внутрь организма через пищеварительный тракт, органы дыхания и кожу. При внешнем облучении наиболее опасными являются нейтронное, гамма и рентгеновское излучения. Альфа- и бета-частицы из-за их незначительной проникающей способности приводят в основном к кожным поражениям. Внутреннее облучение опасно тем, что оно вызывает на различных органах долго незаживающие язвы.

Нарушения биологических процессов могут быть либо обратимыми, когда нормальная работа клеток облученной ткани полностью восстанавливается, либо необратимыми, ведущими к поражению отдельных органов или всего организма и возникновению лучевой болезни – острой или хронической.

Острая форма лучевой болезни возникает в результате облучения большими дозами в короткий промежуток времени. Хронические поражения развиваются в результате систематического облучения и малыми дозами. Негативные биологические эффекты хронического облучения накапливаются в организме в течение дли-тельного времени и мало зависят от мощности дозы.

Облучение людей ионизирующими излучениями может привести к соматическим, сомато-стохастическим и генетическим последствиям.

Соматические эффекты проявляются в виде острой или хронической лучевой болезни всего организма, а также в виде локальных лучевых повреждений.

Соматостохастические реакции относятся к отдаленным повреждениям в виде сокращения продолжительности жизни, злокачественных изменений кровообразующих клеток (лейкозы), опухоли различных органов и клеток.

Генетические эффекты проявляются в последующих поколениях в виде генных мутаций как результат действия облучения на половые клетки при уровнях дозы не опасных данному индивиду.

Острая лучевая болезнь характеризуется цикличностью протекания со следующими периодами: период первичной реакции; скрытый период; период формирования болезни; восстановительный период; период отдаленных последствий и исходов заболевания.

Хроническая лучевая болезнь формируется постепенно при длительном и систематическом облучении дозами, превышающими допустимые (и близкими к ним), при внешнем и внутреннем облучении.

Лучевая болезнь может быть легкой (I ступень), средней (II ступень) и тяже-лая (III ступень).

Первая ступень лучевой болезни проявляется в виде незначительной головной боли, вялости, слабости, нарушении сна, аппетита и др.

Вторая ступень характеризуется усилением указанных симптомов и нервно-регуляторных нарушений с появлением функциональной недостаточности пищеварительных желез, нервной и сердечно-сосудистой систем, нарушением некоторых обменных процессов, стойкой лейко- и тромбоцитопенией.

При тяжелой (III) степени, кроме того, развивается анемия, появляется резкая лейко- и тромбоцитопения, возникают атрофические процессы в слизистой желудочно-кишечного тракта и др. (изменения в центральной нервной системе, выпадение волос).

Отдаленные последствия лучевой болезни проявляются в повышенной предрасположенности организма к злокачественным опухолям и болезням кроветворной системы.

Опасность радионуклидов, попавших внутрь организма обусловливается рядом причин, основными из которых являются способность некоторых из них избирательно накапливаться в отдельных органах, увеличением времени облучения до выведения нуклида из организма и его радиоактивного распада, ростом опасности высокоионизующих альфа- и бета-частиц, которое малоопасны при внешнем облучении.

Виды радиационных поражений

Радиационные поражения незащищенных людей возникают в результате внешнего кратковременного или продолжительного воздействия определенных доз проникающей радиации и при нахождении их на местности зараженной продуктами ядерного взрыва.

Поток проникающей радиации ядерного взрыва состоит из гамма - лучей и нейтронов, которые действуют на организм человека в момент взрыва (в течение 10 - 15 секунд). На местности, зараженной продуктами ядерного взрыва поражение незащищенных людей может наступить при внешнем воздействии смешанного бета - гамма - излучения и в результате попадания продуктов ядерного взрыва внутрь организма и на кожные покровы. В основе механизма возникновения радиационных поражений организма на первом этапе лежат физические процессы, связанные с поглощением энергии излучения и образованием ионизированных атомов и молекул. В результате нарушаются биологические процессы и функции в клетках, органах и системах организма и развивается лучевая болезнь. Наиболее радиочувствительными являются органы кроветворения, желудочно-кишечный тракт, половые клетки, подвергаются раздражению нервная и эндокринная системы. Нарушение деятельности центральной нервной системы приводит к изменениям в деятельности внутренних органов и тканей.

В условиях массового поражения населения наибольшее практическое значение имеет ОСТРАЯ ЛУЧЕВАЯ БОЛЕЗНЬ. Она возникает при однократном облучении, начиная с дозы в 100 рад. Доза в 1 рад характеризуется энергией любого вида ионизирующего излучения, поглощенной в одном грамме среды и равной 100 эргам. Под однократным облучением понимают дозу, полученную одномоментно или дробными частями за время не превышающими 4 суток. С увеличением дозы однократного облучения возрастает тяжесть острой лучевой болезни.

В течении острой лучевой болезни различают 4 периода:

- первичной лучевой реакции;

- выраженных клинических проявлений (разгара болезни);

- восстановления (исходов болезни).

В момент облучения человек никаких ощущений не испытывает.

Период первичной лучевой реакции в зависимости от величины полученной дозы облучения начинается либо непосредственно после облучения, либо через 1 - 10 часов и продолжается от нескольких часов до 2 - 3 суток. В этом периоде возникает возбуждение пострадавшего, раздражительность, общая слабость, тошнота, рвота, головная боль, повышение температуры тела. В след за выраженным возбуждением у пострадавшего наступает угнетение его психической деятельности.

Скрытый период наступает с момент, а исчезновения признаков первичной лучевой реакции. Самочувствие пораженного улучшается, могут быть жалобы на общую слабость и понижение аппетита иногда неустойчивый стул. Бывает нарушен сон. период скрытого действия продолжается от нескольких дней до 2 - 54 недель. Чем он короче, тем более тяжелая развивается острая лучевая болезнь. В наиболее тяжелых случаях скрытый период отсутствует совсем, сразу же наступает разгар острой лучевой болезни.

Этот период характеризуется проявлением всех ее признаков. У пострадавшего снова появляются головная боль, бессонница, тошнота, нарастает общая слабость, нередко возникают желудочно-кишечные расстройства с сильными болями в животе. Температура тела повышается до 380 - 400 и держится длительное время. Развивается истощение организма, на коже и слизистых оболочках появляются множественные точечные кровоизлияния, могут быть кровотечения из внутренних органов: легочные, желудочно-кишечные, почечные. На второй-третьей неделе начинают выпадать волосы. Часто возникают инфекционные осложнения: ангина, пневмония, абсцесс легких и общее заражение крови - сепсис.

При легкой и крайне тяжелой степени острой лучевой болезни период разгара не продолжителен. В первом случае он быстро заканчивается выздоровлением, во втором - наступлением смерти.

Период восстановления начинается уменьшением кровоточивости, улучшением двигательной активности и аппетита больного, нормализации температуры, восстановлением нормального стула. Улучшается общее состояние, увеличивается масса тела больного.

В зависимости от величины дозы однократного равномерного внешнего облучения всего тела человека принято различать четыре степени тяжелой острой лучевой болезни:

- легкая, возникает при дозах облучения 100- 200 рад;

- средней тяжести, когда дозы облучения равны 200 - 400 рад;

- тяжелая, возникает при дозах облучения 400 - 600 рад;

- крайне тяжелая, при которой полученная доза составляет более 600 рад.

ХРОНИЧЕСКАЯ ЛУЧЕВАЯ БОЛЕЗНЬ развивается в результате продолжительного облучения организма в малых дозах – мощности дозы 0,1-0,5рад/сутки после накопления суммарных доз около 100рад. Своеобразие ХЛБ состоит в том, что в активно размножающихся тканях благодаря интенсивным процессам клеточного обновления длительное время сохраняется возможность структурного восстановления целостности ткани. В то же время такие радиоустойчивые системы, как нервная, сердечно-сосудистая, эндокринная отвечают на хроническое лучевой воздействие сложным комплексом функциональных реакций.

Детергенные и стохастические последствия облучения

Действие излучения на организм зависит от многих факторов. Определяющими факторами являются: доза, вид излучения, продолжительность облучения, размеры облучаемой поверхности, индивидуальная чувствительность организма. Возможные последствия облучения человека дозами, бульшими фонового уровня, делятся на детерминированные и стохастические (вероятностные).

К детерминированным эффектам относятся поражения, вероятность возникновения и степень тяжести которых растут по мере увеличения дозы облучения и для возникновения которых существует дозовый порог. К таким эффектам относят, например, незлокачественное повреждение кожи (лучевой ожог), катаракту глаз (потемнение хрусталика), повреждение половых клеток (временная или постоянная стерилизация).

Детерминированные эффекты проявляются при достаточно высоких дозах облучения всего тела или отдельных органов. Последствия для здоровья от доз облучения всего тела за короткий период (секунды, минуты или часы) бывают следующими:

Читайте также: