Влияние немонохроматичности света и размеров источника на видимость интерференционных полос реферат

Обновлено: 02.07.2024

Способы наблюдения интерференции света делением волнового фронта. Метод Юнга, бизеркало и бипризма Френеля.

Для наблюдения интерференции свет от одного и того же источника нужно разделить на два пучка (или несколько пучков) и затем наложить их друг на друга подходящим способом. Если разность хода этих пучков от источника до точки наблюдения не превышает длины отдельного цуга, то случайные изменения амплитуды и фазы световых колебаний в двух пучках происходят согласованно, т.е. эти изменения скоррелированы. О таких пучках говорят, что они полностью или частично когерентны, в зависимости от того, будет ли эта корреляция полной или частичной.

В интерференционных опытах по методу деления волнового фронта два когерентных световых пучка возникают как вторичные волны от близких участков волновой поверхности излучения, исходящего из одного и того же источника малых размеров.

Во всех перечисленных устройствах с первичным монохроматическим источником S (например, щелью, освещаемой ртутной лампой через светофильтр, выделяющий одну из узких спектральных линий) интерференционные полосы можно наблюдать в любом месте в области перекрытия расходящихся пучков от вторичных источников S1 и S2 (нелокализованная интерференционная картина).

При описании интерференционных опытов предполагалось, что колебания векторов E в обоих световых пучках происходят в точке наблюдения по одному направлению. В случае ортогональной поляризации налогающихся пучков E1E2 = 0 и происходит просто сложение интенсивностей, приводящее к равномерной освещенности в области перекрытия пучков. Это легко продемонстрировать, если в обычном интерференционном опыте на пути каждого из двух пучков поставить поляризаторы: полосы, отчетливо видные при совпадающих направлениях колебаний в обоих пучках, пропадают при повороте одного из поляризаторов на 90 (опыты Араго и Френеля).

Но для наблюдения интерференции нет необходимости использовать поляризованный свет. Неполяризованный (естественный) свет можно представить в виде суперпозиции двух некогерентных волн, поляризованных во взаимно перпендиклярных направлениях. В расмотренных выше интерференционных опытах эти волны создают две независимые, но пространственно совпадающие системы полос, так как свет распространяется в изотропной среде, где фазовые скорости ортогонально поляризованных волн одинаковы и, следовательно, для каждой точки наблюдения обе волны имеют одну и ту же разность хода интерферирующих пучков.

Если на пути одного из интерферирующих пучков естественного света поместить кристаллическую пластинку в половину длины волны, вносящую разность фаз между волнами с ортогональной поляризацией, то светлые полосы одной из независимых интерференционных картин совпадут с темными полосами другой, что приведет к равномерной освещенности. Но в скрытом виде интерференционная картина все же существует: полосы можно наблюдать если смотреть на экран через анализатор, направление пропускания которого соответствует поляризации одной из волн. При повороте анализатора на 90 видна вторая картина, смещенная относительно первой на полполосы (опыт С.И.Вавилова).

Если же на пути одного из пучков поместить слой оптически активного вещества (например кварцевую пластинку, грани которой перпендикулярны оптической оси), при прохождении через которое происходит поворот направления колебаний. Когда толщина пластинки подобрана так, что направление колебаний изменяется на 90, интерференционная картина полностю пропадает: теперь в двух пучках, приходящих в точку наблюдения, одинаковое направление колебаний имеют некогерентные волны, которые в исходном пучке естественного света имели ортогональные поляризации.

Впервые экспериментальная установка для демонстрации интерференции света была осуществлена Томасом Юнгом в начале XIX в. Яркий пучок солнечных лучей освещал экран A с малым отверстием S (см. рисунок).

Схема опыта Юнга


Прошедший через отверстие свет вследствие дифракции образует расходящийся пучок, который падает на второй экран B с двумя малыми отверстиями S 1 и S 2, расположенными близко друг к другу на равных расстояниях от S. Эти отверстия действуют как вторичные точечные синфазные источники, и исходящие от них волны, перекрываясь, создают интерференционную картину, наблюдаемую на удаленном экране C. Положение светлых и темных полос в ней можно находить, пользуясь монохроматической идеализацией. Расстояние между соседними полосами равно(см. Интерференция монохроматического света).

Трудности наблюдения интерференции света в таком опыте связаны с тем, что длина волны видимого света очень мала. При см и расстоянии d между отверстиями S1 и S2, равном всего 0,5 мм, ширина интерференционных полос составляет только 1 мм при удалении экрана C на 1 м от отверстий. Измеряя ширину интерференционных полос, Юнг в 1802 г. впервые определил длины световых волн для разных цветов, хотя эти измерения и не были точными.

Введение дополнительного отверстия S (оно необходимо для когерентного возбуждения источников S1 и S2, см Роль конечных размеров источника света) резко уменьшает световой поток, что также затрудняет осуществление этого опыта. Интенсивность наблюдаемой в опыте Юнга интерференционной картины можно заметно увеличить, если вместо точечных отверстий S, S1 и S2 в экранах применить узкие длинные параллельные между собой щели. Вид полос вблизи центра интерференционного поля будет при этом таким же, как при использовании точечных отверстий. Поясним это. Если точечное отверстие S перемещать перпендикулярно плоскости чертежа на рисунке, то интерференционные полосы на экране C, получаемые от точечных отверстий S1 и S2, будут просто смещаться вдоль своих направлений, т.е. также перпендикулярно плоскости чертежа. Поэтому замена отверстия S длинной щелью, т.е. непрерывной цепочкой точечных некогерентных источников, не приведет к ухудшению четкости интерференционных полос, по крайней мере в той области, где их кривизна незначительна. Аналогично, не ухудшит четкости и замена отверстий S1 и S2 на узкие длинные щели, перпендикулярные плоскости чертежа на рисунке.

Увеличение размера первого отверстия или щели S в плоскости чертежа (т.е. увеличение ширины) неизбежно приводит к уменьшению контрастности (видности) интерференционных полос (см. Роль конечных размеров источника света). В современной демонстрационной модификации опыта Юнга в качестве источника света используют лазер. При этом для когерентного возбуждения вторичных источников S1 и S2 необходимость во вспомогательном отверстии S отпадает, так как в лазерном излучении световые колебания когерентны по всему поперечному сечению пучка (высокая пространственная когерентность лазерного излучения), и щели вводят непосредственно в пучок лазерного излучения.

Бипризма Френеля, представляющая собой две призмы, соединенные основаниями, формирует два мнимых источника. Преломляющий угол обеих половин одинаков и (у бипризмы хорошего качества) чрезвычайно мал: ребро ее отличается от 180° на единицы угловых минут. В данном интерференционном опыте, также предложенном Френелем, для разделения исходной световой волны на две используют призму с углом при вершине, близким к 180. Источником света служит ярко освещенная узкая щель S, параллельная преломляющему ребру бипризмы (см. рисунок).


Можно считать, что здесь образуются два близких мнимых изображения S1 и S 2 источника S, так как каждая половина бипризмы отклоняет лучи на небольшой угол (n-1)S.

Бизеркала Френеля составляют плоский угол (близкий к 180°) и позволяют за счет отражения сформировать два мнимых источника. Как и в любой системе плоских зеркал, все три источника находятся на одинаковом расстоянии от ребра плоского угла (на окружности с центром в ребре). Хотя при отражении от зеркала происходит фазовый сдвиг, дополнительной разности фаз не возникает - ведь сдвигаются фазы обоих пучков.

Другой интерференционный опыт, аналогичный опыту Юнга, но в меньшей степени осложненный явлениями дифракции и более светосильный, был осуществлен Френелем в 1816 г. Две когерентные световые волны получались в результате отражения от двух зеркал, плоскости которых наклонены под небольшим углом друг к другу (см. рисунок).



Источником служит узкая ярко освещенная щель S, параллельная ребру между зеркалами. Отраженные от зеркал пучки падают на экран, и в той области, где они перекрываются, возникает интерференционная картина. От прямого попадания лучей от источника S экран защищен ширмой. Для расчета освещенности I(x) экрана можно считать, что интерферирующие волны испускаются вторичными источниками S1 и S2, представляющими собой мнимые изображения щели S в зеркалах. Поэтому I(x) будет определяться формулой двухлучевой интерференции, в которой расстояние l от источников до экрана следует заменить на a + b, где a - расстояние от S до ребра зеркал, b - расстояние от ребра до экрана (см. рисунок). Расстояние d между вторичными источниками равно. Поэтому ширина интерференционной полосы на экране равна .

Интерференция света — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн.
Анализ интенференции можно провести временным и спектральным способом (немонохроматический .
Целью данной работы является рассмотрение влияния немонохроматичности света и размеров источника на видимость интерференционных полос, длины и ширины когерентности.
Задачи работы:
1) ознакомиться с влиянием размеров источника на видимость полос;
2) рассмотреть влияние немонохроматиности света на видимость полос;
3) изучить понятия длины и ширины когерентности.

Фрагмент работы для ознакомления

Работа написана по ГОСТ, шрифт 14, интервал 1,5, выравнивание по ширине, Times new roman, сноски в квадратных скобках, источники за последние 5 лет.

Список литературы

1. Борн, М. Основы оптики / М. Борн, Э. Вольф. - М.: [не указано], 2017. - 993 c.
2. Бутиков, Е.И. Оптика / Е.И. Бутиков. - М.: [не указано], 2017. - 913 c.
3. Короленко, П.В. Оптика когерентного излучения / П.В. Короленко. - М.: [не указано], 2015. - 856 c.
.
Всего 7

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

В этом параграфе мы рассмотрим изменения в интерференционных явлениях, которые вызываются отказом от монохроматической идеализации и учетом спектрального состава излучения реальных источников света.

Простейшая модель немонохроматического источника. Начнем с простейшего случая точечного источника, излучающего две очень узкие, близкие друг к другу спектральные линии с частотами Если бы излучение на каждой из частот являлось бесконечной синусоидой, то результирующее излучение представляло бы собой волну средней частоты с периодически меняющейся амплитудой. Но в действительности вместо бесконечных синусоид излучаются более или менее длинные цуги волн определенной длины, причем начальные фазы колебаний в последовательно идущих цугах произвольны и никак не связаны друг с другом. Обычно за время наблюдения проходит много таких цугов, и поэтому излучения на частотах можно считать независимыми.

Другими словами, в описанной ситуации можно считать, что вместо одного имеется два расположенных в одном месте точечных источника, независимо друг от друга излучающих волны с частотами При выполнении интерференционных опытов с таким источником света каждая из волн создает свою интерференционную картину, и эти картины просто налагаются друг на друга.

Если частоты и мало отличаются друг от друга, то интерференционные полосы в каждой картине имеют почти одинаковую ширину. В тех местах, где светлые полосы одной картины налагаются на светлые полосы другой, резкость суммарной картины наибольшая. Наоборот, там, где светлые полосы одной картины приходятся на темные полосы другой, резкость интерференционных полос уменьшается вплоть до их полного исчезновения.

Картина от двух близких спектральных линий. Найдем распределение освещенности в интерференционной картине, получаемой от двух вторичных источников, если первичный источник излучает две близкие спектральные линии одинаковой интенсивности. Интерференционная картина для отдельной спектральной линии была рассмотрена в § 30. Зависимость освещенности от разности хода I от вторичных источников до точки наблюдения дается формулой (5) этого параграфа:

Здесь — равномерная освещенность, которую создавал бы только один вторичный источник.

В рассматриваемом случае каждая спектральная линия первичного источника дает интерференционную картину, распределение освещенности в которой описывается формулой (1) с соответствующим значением частоты или Поэтому полное распределение освещенности, получающееся в результате наложения двух интерференционных картин от двух некогерентных источников, имеет следующий вид:

Поскольку спектральные линии имеют одинаковую интенсивность, то и формулу (2) можно преобразовать с помощью формулы для суммы косинусов двух углов:

где — средняя частота, а — разность частот спектральных линий.

Рис. 218, Интерференционная картина и случае, когда источник света излучает две близкие спектральные линии

Если частоты и близки, так что , то резкость интерференционных полос медленно меняется с изменением разности хода I и распределение освещенности в зависимости от I имеет вид, показанный на рис. 218.

Расстояние между соседними полосами определяется множителем и соответствует разности хода равной одной длине волны к: откуда Период изменения резкости полос определяется множителем и соответствует разности хода равной произведению длины волны к на отношение . Действительно, как видно из рис. 218, период изменения резкости полос равен половине периода поэтому откуда

Опыты с квазимонохроматическим светом. Как можно наблюдать на опыте такую интерференционную картину с периодическим изменением резкости полос? Так как для этого необходима разность

хода, равная очень большому числу длин волн, то наиболее удобно использовать интерферометр Майкельсона с подвижным зеркалом, схема которого приведена на рис. 198.

Если плечи интерферометра почти равны друг другу, то наблюдаемые полосы соответствуют разностям хода, равным небольшому числу длин волн. При этом, как видно из рис. 218, полосы имеют наибольшую резкость — почти равную нулю освещенность на месте темных полос. При перемещении зеркала разность хода I возрастает, а резкость интерференционных полос при этом постепенно убывает, так что при порядка полосы пропадают совсем. При дальнейшем перемещении зеркала полосы появляются снова, и при их резкость опять становится максимальной. Затем резкость снова убывает, и т. д.

Из изложенного ясно, что, наблюдая за изменением резкости интерференционных полос в зависимости от разности хода, можно получить информацию о спектральном составе исследуемого света.

Первые наблюдения такого рода были выполнены А. Физо в середине XIX века. В использованном им интерферометре появлялись кольца Ньютона при освещении желтым светом натриевой лампы. Интерференционные полосы в данном случае имеют вид колец, так как разность хода волн, отразившихся от нижней поверхности линзы и верхней поверхности стеклянной пластинки (рис. 219), одинакова вдоль окружностей. Если линзу постепенно отводить от пластинки, то та же самая разность хода будет получаться на окружности меньшего радиуса, поэтому интерференционные кольца будут стягиваться к центру.

Рис. 219. К опыту Физо с кольцами Ньютона

Физо нашел, что при контакте линзы с пластинкой кольца были резкими. При отодвигании линзы от пластинки резкость колец убывала, и при прохождении примерно кольца интерференционная картина исчезала. При дальнейшем увеличении расстояния кольца появлялись вновь и приобретали приблизительно первоначальную резкость при стягивании примерно кольца. Физо проследил периодическое изменение резкости полос в 52 периодах из 980 колец каждый! Отсюда он сделал правильный вывод о том, что натриевый свет состоит из двух спектральных линий почти равной интенсивности. Глядя на рис. 218, легко сообразить, что результаты опытов Физо дают для отношения к у желтого дублета натрия значение, равное 980.

Длина и время когерентности. Рассмотренный пример света, состоящего из двух близких по частоте монохроматических волн, позволяет глубже проанализировать вопрос об использовавшейся в предыдущих параграфах монохроматической идеализации. Спектр испускания достаточно разреженных газов состоит из резких ярких линий, разделенных темными промежутками. Выделим свет одной

из этих почти монохроматических линий и используем его в интерферометре Майкельсона. Мы увидим, что интерференционные полосы будут резкими, если длины путей обоих интерферирующих пучков примерно одинаковы. Если отодвигать одно из зеркал так, чтобы разность хода пучков увеличивалась, то резкость интерференционных полос будет постепенно уменьшаться, и в конце концов они исчезнут.

Такое исчезновение интерференционных полос легко объяснить, если считать, что свет излучается отдельными цугами, содержащими конечное число длин волн. Допустим для простоты, что все волновые цуги одинаковы. Каждый попадая в интерферометр, делится на два цуга равной длины. Если разность хода в плечах интерферометра больше этой длины, один из цугов минует точку наблюдения раньше, чем другой дойдет до нее, и интерференция наблюдаться не будет.

Естественно ввести понятие длины когерентности как наибольшей разности хода интерферирующих лучей, при которой еще возможно наблюдение интерференционной картины. Длина когерентности характеризует степень отклонения рассматриваемого излучения от монохроматической идеализации и равна длине отдельных волновых цугов. Длину цуга волн можно характеризовать промежутком времени, в течение которого он проходит через точку наблюдения. Этот промежуток времени х называется временем когерентности.

• Почему источник, излучающий свет двух узких спектральных линий, можно рассматривать как два независимых монохроматических источника, расположенных в том же месте?

• Опишите качественно вид интерференционных полос в случае источника, излучающего свет двух близких спектральных линий. При какой разности хода полосы исчезают?

• Каким образом Физо установил на опыте, что желтый свет натрия состоит из двух близких спектральных линий?

• Что такое длина и время когерентности квазимонохроматического света? Как связаны эти величины с длиной волновых цугов?

• Как с помощью представления о волновых цугах объясняется исчезновение интерференционных полос при больших разностях хода?

Время когерентности и ширина спектра. Исчезновение интерференционных полос при увеличении разности хода можно объяснить и на другом языке, рассматривая спектральный состав излучения. Строго монохроматической волне (бесконечной синусоиде) соответствует единственная частота, т. е. бесконечно узкая спектральная линия. Будем считать, что излучению, состоящему из волновых цугов конечной протяженности, соответствует спектральная линия некоторой конечной ширины. Другими словами, такое излучение можно рассматривать как совокупность отдельных монохроматических волн, частоты которых сплошь

заполняют некоторый интервал малый по сравнению со средней частотой . Каждая монохроматическая волна из этой совокупности создает в интерферометре свою интерференционную картину, и полное распределение освещенности определяется наложением этих картин.

При малых разностях хода интерферирующих лучей (порядка нескольких длин волн) положение интерференционных полос в картинах, создаваемых отдельными монохроматическими составляющими, будет практически совпадающим, и полосы суммарной картины будут отчетливыми. По мере увеличения разности хода отдельные интерференционные картины будут смещаться относительно друг друга, и в конце концов суммарная картина окажется полностью размытой.

Оценить разность хода, при которой происходит исчезновение интерференционных полос, можно следующим образом. Мысленно разобьем весь спектральный интервал занимаемый рассматриваемым излучением, на пары монохроматических компонент, отстоящих друг от друга на Распределение освещенности от каждой пары дается формулой (3), в которой следует теперь заменить на Оно показано на рис. 218. Как видно из этого рисунка, полосы пропадают при такой разности хода I, когда аргумент первого косинуса в (3) становится равным Заменяя на получаем

Условие исчезновения полос для всех пар монохроматических компонент одинаково. Поэтому при разности хода даваемой соотношением (4), происходит размытие полной интерференционной картины.

Теперь мы можем сопоставить две возможные интерпретации размывания интерференционных полос при достаточно большой разности хода — в рамках представлений о волновых цугах конечной протяженности и о суперпозиции монохроматических компонент, распределенных в некотором интервале частот. Так как при этом максимальная разность хода I равна длине цуга, то отношение в соотношении (4) есть время когерентности . Переходя для удобства от циклической частоты к частоте переписываем (4) в виде

Соотношение (5) следует рассматривать не как точное равенство, а только как оценку эффективного интервала частот границы которого в известной мере являются условными.

Мы видим, что чем больше длительность волновых цугов тем более узок интервал частот в котором спектральные компоненты этого излучения имеют заметную величину. Иначе

говоря, ширина спектральной линии излучения обратно пропорциональна времени когерентности.

Приведем оценки допустимых значений разности хода при наблюдении интерференции света с использованием разных источников. Для белого солнечного света или света, излучаемого раскаленными телами, интервал длин волн в спектре одного порядка со средней длиной волны. Поэтому наблюдать интерференцию можно только при очень малых разностях хода, равных небольшому числу длин волн.

Если воспользоваться излучением газоразрядной плазмы низкого давления, то при выделении какой-либо одной спектральной линии допустимая разность хода может быть значительно больше. Например, для красной линии кадмия с длиной волны нм, ширина которой составляет всего лишь

0,0013 нм, допустимая разность хода превышает 500 000 длин волн, т. е. 30 см. А ширина линии излучения лазера может быть сделана настолько малой, что удается наблюдать интерференцию при разности хода в несколько километров!

• Как объясняется исчезновение интерференционных полос при больших разностях хода на основе представлений о конечной ширине частотного спектра квазимонохроматического излучения?

• Как связано время когерентности квазимонохроматического излучения с его спектральным составом?

• Оцените ширину спектральной линии излучения, с помощью которого можно было бы наблюдать интерференцию при разности хода в

Почему в интерферометре Майкельсона можно наблюдать интерференцию света только при одинаковой длине плеч? При какой максимальной разности хода можно наблюдать интерференционные полосы, если источник. света излучает спектральную линию шириной

Источник света – точечный (нитевидный). Свет есть смесь излучения с разными длинами волн.

Пусть свет есть совокупность двух длин волн. Свет разной частоты – волны некогерентные и не интерферируют, поэтому, интенсивность есть сумма интенсивностей, возникающих при интерференции первой и второй волн.

С удалением от центра картина начинает размываться.

Интерференционная картина имеет характер световых биений.

Принцип Гюйгенса-Френеля.

Каждый элемент поверхности, достигнутый в данный момент световой волной, является центром одной из элементарных волн, огибающая которых становится волновой поверхностью в следующий момент времени. При этом обратные элементарные волны во внимание не принимались.



Согласно принципу Гюйгенса-Френеля, волновое возмущение в точке P, создаваемое источником P0, можно рассматривать как результат интерференции вторичных элементарных волн, излучаемых каждым элементом dS некоторой волновой поверхности S с радиусом r0. Амплитуда вторичных волн пропорциональна амплитуде первичной волны, приходящей в точку Q, площади элемента dS и убывает с возрастанием угла между нормалью к поверхности S и направлением излучения вторичной волны на точку P. Амплитуда EQ первичной волны в точке Q на поверхности S даётся выражением , где A - амплитуда волны на расстоянии единицы длины от источника, k - волновой вектор, - циклическая частота. Вклад в волновое возмущение в точке P, вносимый элементом поверхности dS, запишется в виде

где - расстояние от точки Q до P, - функция, описывающая зависимость амплитуды вторичных волн от угла . Полное поле в точке наблюдения P представляется интегралом

Если за элемент поверхности взять площадь кольца, вырезаемого из волнового фронта S двумя бесконечно близкими концентрическими сферами с центрами в точке наблюдения P, и выразить dS через приращение , то получим

Верхний предел интеграла Rmax=R+2r0. Функция теперь рассматривается как функция от . Точное вычисление невозможно без знания , однако Френель дал метод приближённого его вычисления, используя разбиение поверхности S на так называемые зоны Френеля. Вид функции в принципе Гюйгенса-Френеля остается неопределенным, но при . Множитель i означает, что фазы вторичных волн отличаются на от фазы первичной волны в точке Q. Получаем .

Зоны Френеля.

Участки, на которые разбивают поверхность фронта световой волны для упрощения вычислений при определении амплитуды волны в заданной точке пространства. Метод зон Френеля используется при рассмотрении задач о дифракции волн в соответствии с Гюйгенса - Френеля принципом. Согласно принципу Гюйгенса - Френеля, действие источника заменяют действием воображаемых источников, расположенных на вспомогательной поверхности, в качестве которой выбирают поверхность фронта сферической волны.

Эту поверхность разбивают на кольцевые зоны так, чтобы расстояния от краёв зоны до точки наблюдения отличались на /2. Построенные таким способом равновеликие участки поверхности называются зонами Френеля.

Радиус m-й зоны в случае дифракции на круглых отверстиях и экранах определяется следующим приближенным выражением (при m


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.



Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Читайте также: