Цифровая карта местности реферат

Обновлено: 04.07.2024

Инженерно-геодезические работы являются чрезвычайно важной частью комплекса работ по изысканиям, проектированию, строительству и эксплуатации сооружений различного назначения. Эти работы во многом определяют как стоимость и качество строительства, так и условия последующей эксплуатации инженерных объектов.

С развитием научно-технического прогресса происходят фундаментальные изменения технологий и методов проектно-изыскательских работ и строительства инженерных объектов, что находит отражение в изменении состава и методов производства инженерно-геодезических работ, а также в качественном изменении парка используемого геодезического оборудования. В проектно-изыскательских и строительных процессах широко применяются системы автоматизированного проектирования (САПР), автоматизированные системы управления строительством (АСУС), геоинформационные системы (ГИС) и т. д.

Инженер-строитель должен работать как с традиционными видами инженерно-геодезической информации – топографическими картами и планами, так и с их электронными аналогами – электронными картами (ЭК), являющимися основой ГИС, цифровыми (ЦММ) и математическими (МММ) моделями местности, на базе которых осуществляется системное автоматизированное проектирование инженерных объектов на уровне САПР.

В связи с тем, что при проектировании на уровне САПР резко увеличивается необходимый объем геодезической информации, инженер-строитель на современном этапе развития научно-технического прогресса должен владеть не только традиционными методами геодезических работ, но и методами, построенными на последних достижениях науки и техники.

Для выполнения инженерно-геодезических работ в настоящее время нашли широкое применение электронные тахеометры, электронные цифровые нивелиры, лазерные сканирующие системы, приборы спутниковой навигации и др.

Использование такого оборудования позволяет максимально сократить объемы и стоимость полевых работ за счет увеличения камеральных работ при широком применении средств автоматизации и вычислительной техники.

1. электронные карты, цифровые
и математические модели местности

Геоинформационная система (ГИС) – это автоматизированная интегрированная информационная система, предназначенная для обработки пространственно-временных данных, основой интеграции которых служит географическая информация.

Одним из основных принципов организации пространственной информации в ГИС является послойный принцип (рис. 1) [16].


Концепция послойного представления графической информации была заимствована из САПР, однако она получила новое качественное развитие, так, например: тематические слои в ГИС представляются не только в векторной как в САПР), но и в растровой форме; векторные данные в ГИС обязательно являются объектными, т. е. несут информацию об объектах, а не об отдельных их элементах, как в САПР; тематические слои в ГИС являются определенными типами цифровых картографических моделей, построенными на основе объединения пространственных объектов, имеющих общие свойства или функциональные признаки.
Рис. 1. Пример совокупности тематических слоев как интегрированной основы графической части ГИС

Совокупность тематических слоев образует интегрированную основу графической части ГИС, в которых объединяющей основой (подложкой) являются цифровые и электронные карты.

Цифровые и электронные топографические карты

Цифровая карта (ЦК) – цифровая модель местности, записанная на машинном носителе информации в установленных структурах и кодах, сформированная на базе законов картографии в принятых для карт проекции, разграфке, системе координат и высот, по точности и содержанию соответствующая карте определенного масштаба.

Электронная карта (ЭК) – векторная или растровая топографо-тематическая карта, сформированная на машинном носителе информации в принятой проекции, системе координат и высот, условных знаков, предназначенная для отображения, анализа и моделирования, а также для решения расчетных и информационных задач по данным о местности и обстановке.

Векторное представление графической информации (векторная модель данных) – цифровое представление точечных, линейных и полигональных пространственных объектов в виде набора координатных пар с описанием только геометрии объекта.

Растровое представление графической информации (растровая модель данных) – цифровое представление пространственных объектов в виде совокупности ячеек растра (пикселей). Пиксель – это неделимый двухмерный элемент изображения, наименьшая из его составляющих, получаемая в результате сканирования изображения или электронного фотографирования и характеризуемая прямоугольной формой и размерами, определяющими пространственное разрешение изображения.

При растровом представлении графической информации разрешение получаемого графического изображения характеризуется минимальным линейным размером наименьшего участка пространства (поверхности), отображаемым одним пикселем или числом пикселей на единицу длины изображения (например, dpi – число пикселей на дюйм). Существуют способы и технологии перехода от одних представлений графической информации в ГИС к другим, например векторно-растровое или растрово-векторное.

Традиционные технологии подготовки цифровых и электронных карт в ГИС с использованием для этой цели топографических карт на бумажных носителях представлены на рис. 2.

а) Визуализация
Цифрование Цифровая карта Графопостроитель Векторная карта
Карта
Метрика Семантика Дисплей
Электронная карта

б) Визуализация
Плоттер Векторная карта
Скани- Растровая цифровая карта Распозна- Векторная цифровая карта Принтер
Карта Растровая карта
рование вание
Дисплей Электронная карта

Рис. 2. Технология полуавтоматического цифрования (а)
и сканерная технология (б) подготовки электронных карт в ГИС

Данные космических съемок, аэросъемок и наземных фототеодолитных съемок, осуществляемые с использованием специальной электронной съемочной аппаратуры в цифровом виде (электронная фотография), вводят непосредственно в память компьютера, минуя бумажную стадию при подготовке графических данных в ГИС.

В отличие от цифровых карт точечные, линейные и площадные объекты которых характеризуются пространственными координатами и кодовыми обозначениями, электронные карты, наряду с указанными параметрами цифровых карт, имеют систему условных знаков (со своими размерами, шрифтом и цветом) и пространственно-логические связи между объектами и элементами изображения.

Представление и хранение картографической информации в виде ЭК имеет ряд существенных преимуществ по сравнению с традиционным хранением и использованием топографических карт на бумажных носителях (твердой основе) – это возможность:

постоянного внесения изменений и корректировок (обновления карт);

объединения в единой системе картографической и некартографической информации и различных взаимосвязей между ними;

оперативного обращения к ЭК как путем ввода запросов через клавиатуру, так и путем непосредственного указания на экране монитора интересующих пользователя картографических объектов;

за счет целостности модели проведения различных анализов и обобщений, отслеживания динамики изменения различных параметров с формированием необходимых справок, таблиц, диаграмм и т. д.;

создания по требованию пользователя любых нужных ему карт – требуемой тематики, масштабов и степени детализации как в электронном виде, так и на твердых носителях;

постоянного изменения работающих с моделью программ;

возможность получения экспертных решений в режиме реального времени.

Электронные карты классифицируют:

по форме представления (векторные, растровые, векторно-растровые);

по назначению (ГИС, АСУ, навигация);

по тематике, видам и масштабам (тематические карты разных масштабов, ЭК городов, электронные топографические карты, электронные кадастровые карты и т. д.);

по способам представления пространственной информации:

двухмерные модели (X, Y);

трехмерные модели (X, Y, Н);

пространственно-временные модели (X, Y, Н, t).

Пространственно-временные модели ЭК являются картографической основой современных ГИС.

Основные методы автоматизированного проектирования. Внедрение геоинформационных систем в различные отрасли жизнедеятельности человека. Схемы цифровых моделей местности. Крупномасштабные карты и планы. Математическая интерпретация цифровых моделей.

Рубрика География и экономическая география
Вид реферат
Язык русский
Дата добавления 25.09.2014
Размер файла 66,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Республики Казахстан

Алматинский Колледж Строительства и Менеджмента

На тему: Цифровая модель местности

Выполнил: Куликов А.В.

Студент группы СЗС 13-2

Проверила: Аблизова Д.Д.

Цифровые модели местности

В настоящее время в связи с повсеместным использованием в инженерной практике методов автоматизированного проектирования, а также с внедрением геоинформационных систем в различные отрасли жизнедеятельности человека всё более широкое применение находят цифровые модели местности.

Цифровая модель местности (ЦММ) - множество, элементами которого является топографо-геодезическая информация о местности. Она включает в себя:

· метрическую информацию - геодезические пространственные координаты характерных точек рельефа и ситуации;

· синтаксическую информацию для описания связей между точками - границы зданий, лесов, пашен, водоемов, дороги, водораздельные и водосливные линии, направления скатов между характерными точками на склонах и т.п.;

· семантическую информацию, характеризующая свойства объектов - технические параметры инженерных сооружений, геологическая характеристика грунтов, данные о деревьях в лесных массивах и т.п.;

· структурная информация, описывающая связи между различными объектами - отношения объектов к какому-либо множеству: раздельные пункты железнодорожной линии, здания и сооружения населенного пункта, строения и конструкции соответствующих производств и т.п.;

· общую информацию - название участка, система координат и высот, номенклатура.

Топографическая ЦММ характеризует ситуацию и рельеф местности. Она состоит из цифровой модели рельефа местности (ЦМРМ) и цифровой модели контуров (ситуации) местности (ЦМКМ). Кроме этого ЦММ может дополняться моделью специального инженерного назначения (ЦМИН). В инженерной практике часто используют сочетание цифровых моделей, характеризующих ситуацию, рельеф, гидрологические, инженерно-геологические, технико-экономические и другие показатели.

Цифровая модель местности, записанная на машинном носителе в определенных структурах и кодах представляет собой электронную карту.

При решении инженерно-геодезических задач на ЭВМ применяют математическую интерпретацию цифровых моделей, ее называют математической моделью местности (МММ). Автоматизированное проектирование на основе ЦММ и МММ сокращает затраты труда и времени в десятки раз по сравнению с использованием для этих целей бумажных топографических карт и планов.

Исходными данными для создания цифровых моделей местности являются результаты топографической съемки, данные о геологии и гидрографии местности.

По способу размещения исходной информации и правил ее обработки на ЭВМ цифровые модели местности делятся на регулярные, нерегулярные, структурные .

цифровой модель местность проектирование

Схемы цифровых моделей местности

Цифровая модель местности, в которой опорные точки с известными координатами располагаются в узлах геометрических сеток различной формы, например, в виде сети квадратов или равносторонних треугольников (рис. 34, а), называется регулярной. Используют также регулярные ЦММ на поперечниках к магистральному ходу .

Если на участок местности имеются крупномасштабные карты и планы, то создают ЦММ в виде массива точек, расположенных через определенные интервалы на горизонталях, путем перемещения визира дигитайзера по горизонтали .

В регулярных ЦММ геоморфология местности не учитывается, поэтому их предпочтительно использовать для равнинной местности.

Цифровая модель местности, в которой точки располагаются произвольно в пределах однородных по рельефу, геологии, гидрологии участков местности без какой-либо определенной системы, но с заданной густотой и плотностью называется нерегулярной.

Цифровая модель местности, которая состоит из точек с известными координатами, расставленных в вершинах переломов структурных (орографических) линий рельефа называется структурной.

Структурные ЦММ используют в основном для пересеченной местности. Точки структурных цифровых моделей рельефа могут располагаться:

· на основных перегибах всех структурных линий;

· в местах изменения кривизны склонов ;

· вдоль скатов по линиям наибольшей крутизны в местах характерных переломов с указанием крутизны и направлений линий .

Подобные документы

Виды, типы и свойства местности. Приемы и способы чтения топографических карт, измерения и ориентирование по карте и на местности. Использование топографических карт (планов) в оперативно-служебной деятельности ОВД. Ориентирование на местности по карте.

курс лекций [764,0 K], добавлен 27.06.2014

Стреотопографический и комбинированный методы создания топографических карт. Цифровые фотограмметрические технологии создания цифровых карт и ортофотопланов. Элементы внутреннего ориентирования снимка. Создание модели и взаимное ориентирование снимков.

курсовая работа [3,0 M], добавлен 12.02.2013

Полярный способ и методы обхода. Способы ориентирования на местности. Упрощенные способы топографической съемки. Составление "абриса", способ "обхода", "полярный" способ, способ "засечек" и способ "перпендикуляров". Производство глазомерной съемки.

реферат [1,2 M], добавлен 28.03.2013

Географическое положение Атырау, территория и граница местности. Рельеф местности, полезные ископаемые, их применение. Особенности климата, почв, растительности и животного мира. Воздействие природы на жизнь и хозяйственную деятельность населения региона.

практическая работа [4,8 M], добавлен 13.12.2012

Классификация местности в зависимости от абсолютного значения альтитуд точек и их взаимного расположения. Способы изображения рельефа на топографических картах и планах. Сечение между горизонталями, их зависимость от масштаба съемок и характера рельефа.

В статье рассматривается технология хранения и обработки цифровых карт в современных геоинформационных системах. Обсуждаются проблемы, связанные с использованием существующих подходов при создании сложных информационных систем, оперирующих с картографической информацией.

Одновременно предлагаются принципиально новый подход организации цифровой карты, основанный на объединении топологической, объектной и атрибутивной информации, а также методика хранения полученной таким образом цифровой модели местности в реляционных базах данных.

Несмотря на эволюцию подходов и идеологии построения ГИС, понятие электронной карты почему-то оказалось слабо трансформировано. Карта как совокупность объектов каким-либо образом сгруппированных по слоям, вместе с присоединенными базами данных об атрибутике объектов остается неизменной достаточно долго. В то же время именно такая структура цифровых карт порождает множество проблем.

Современные ГИС: проблемы создания цифровых основ

Другой интересный аспект создания современных цифровых карт связан с хранением атрибутивной информации об объектах. Естественно, что атрибутивная информация в силу сложившейся системы управления территориальными инфраструктурами требуется более часто, чем пространственная. Здесь следует упомянуть различные формы, отчеты, сводные ведомости, строящиеся на основе атрибутивной информации. Фактически все управленческие задачи так или иначе опираются на СУБД. Именно по этой причине атрибутивная информация сосредоточена, как правило, в интенсивно используемой базе данных. А связь с пространственной информацией реализована посредством назначения индекса каждому из объектов карты.

Представим ситуацию, когда нескольким городским службам необходимо привязать к одному объекту карты свои базы данных. Какая из служб должна назначить индекс объекту? В соответствии с какими правилами должен быть назначен этот идентификатор, если каждая из служб имеет, как правило, собственную систему классификации и кодирования объектов? Кроме того, в каком из тематических слоев карты должен располагаться объект? Ведь практически каждая служба группирует объекты по-своему, зачастую используя не послойную, а более общую, иерархическую модель группировки.

Карта как модель территориальной инфраструктуры

Взглянув несколько критически на общепринятые в области цифровой картографии модели, можно подвести следующие итоги. Любая служба или отрасль работает в первую очередь с совокупностью каким-либо образом классифицируемых и проиндексированных объектов (к которым добавляются атрибутивные и пространственные характеристики). Пространственное расположение объекта должно в идеале представляться совокупностью его границ, взятых из дуго-узловой модели местности. Это приводит к тому, что для каждой конкретной области возможно и, более того, необходимо расщепление цифровой карты на объектную и пространственную модели местности. Объектная модель местности может быть представлена в виде иерархии, которая продуцирует способы кодирования объектов. Конечно, можно было бы говорить о более общей форме иерархии – многосвязном графе, но в силу, вероятнее всего, ограниченности человеческого мышления такое представление лишь усложнит манипулирование информацией и сделает невозможным построение столь удобных в обращении иерархических цифровых кодов объектов. Кроме того, применяемые на практике отраслевые классификаторы всегда однозначны. Объектная модель местности должна быть тесно связана с пространственной моделью, определяя этими связями четкое расположение объектов в пространстве. Схематически такую тополого-объектную цифровую карту можно представить в следующем виде (рис. 1.).


Однако мы совершенно упустили из виду атрибутивные характеристики объектов. А ведь именно они несут отраслевую специфику. Несложно представить, что таблица обычной реляционной базы данных может быть введена в эту схему совершенно безболезненно и логично (рис. 2).


По сути дела, то, что изображено на рис. 2, отражает необходимую и достаточную информационную схему для успешного управления находящейся в распоряжении какой-либо службы территориальной инфраструктурой. Естественно, что такая схема является упрощенной, поскольку она получается путем абстрагирования от тех характеристик объектов, которые с точки зрения данного вида профессиональной деятельности просто не рассматриваются, то есть эта схема представляет собой модель, а точнее, цифровую модель местности, с точки зрения определенной службы, отрасли, предприятия.

Предпосылки хранения цифровой модели местности в реляционных базах данных

После того как мы представили все компоненты и структурные взаимодействия внутри цифровой модели местности, возникает резонный вопрос о том, каким образом осуществить техническую реализацию такого подхода? Каким образом хранить объектные иерархии, связанные с ними атрибутивные данные и пространственную модель территории? Ответ на этот вопрос не вполне однозначен. В классическом подходе ГИС отвечает за хранение пространственной и объектной модели, присоединенные базы данных – за хранение атрибутивной информации.

Представим на мгновение, что мы при решении своих задач отказались от карты. Естественно, что этот шаг ограничит спектр решаемых задач, но в то же время большинство задач можно будет решить, опираясь только на объектную модель и атрибутивную информацию. Множество предприятий и организаций в своей ежедневной работе просто не используют карту и ГИС-подход. Таким образом, если анализировать, что является основой для построения треугольника объектная модель – атрибутивные характеристики – пространственная модель (рис. 3), следует признать, что именно объектная модель, явно или неявно, является основой функционирования любой системы. Но такой выбор приводит к другому важному вопросу: чем отличается пространственная модель от атрибутивных характеристик объектов? Мы изначально разделили эти модели, более того, мы разделили средства хранения и обработки атрибутивной и пространственной информации. Все атрибутивные характеристики объектов лежат, как правило, в таблицах реляционных баз данных, в то время как пространственные характеристики – внутри геоинформационной системы, которая традиционно для их хранения использует обычные файлы. Существующее расщепление моделей не отличается особой логикой, в гораздо большей степени оно обусловлено историческими причинами развития ГИС. Это приводит, в свою очередь, к тому, что при обращении к атрибутивным данным обычно поддерживается механизм блокировок и транзакций – то есть многопользовательский доступ, в то время как для пространственных характеристик используются гораздо менее мощные механизмы обработки данных.


Все это не может не приводить к серьезным проблемам. Во-первых, существенно усложняется программное обеспечение для совместной обработки и анализа пространственных и атрибутивных характеристик объектов. Во-вторых, множество ГИС используют совершенно разные форматы хранения пространственных данных, зачастую принципиально несовместимые друг с другом. В-третьих, осложняется проблема многопользовательского доступа к пространственной информации, то есть сетевая многопользовательская ГИС за невысокую цену остается мифом.

Для решения проблемы достаточно взглянуть на пространственную модель местности немного с иной точки зрения. По сути дела, пространственная модель содержит границы объектов. Каждый объект имеет атрибутивные характеристики. Вполне разумным кажется интерпретация набора границ как дополнительных атрибутивных характеристик объекта. В этом случае представленная выше схема (рис. 2, 3) может существенно упроститься. Каждый объект характеризуется некоторым набором атрибутивных характеристик, в том числе и своими пространственными границами, которые также хранятся в таблицах реляционной базы данных.

Подобное объединение имеет ряд преимуществ, в том числе может решить проблему многопользовательского доступа, причем как для пространственных, так и для атрибутивных данных; появляется возможность создания единых средств пространственного анализа с привлечением атрибутики объектов; наконец, появляется возможность создания единой системы безопасности, регламентация прав доступа пользователей к данным цифровой модели местности. Также решается проблема совмещения форматов (в случае, если для представления цифровой модели местности в реляционных базах данных используются одинаковые правила). Более того, возможен переход к объемной модели, поскольку ничто не запрещает топологической (пространственной) модели представлять трехмерные границы объектов. В то же время при создании цифровой карты появляется возможность внесения в базу огромного количества характеристик, причем то, что окажется несущественным для решения каких-либо специальных задач, может быть отброшено тривиальным запросом.

Представление данных о цифровой модели местности в рамках реляционных СУБД

ID Attr1 Attr2 Attr3
0101 12 11.12.1999 Comment
0104 15 25.11.1987 Comment

HOI HDC DATA VAL
0104 050723 11.12.1999 27
0104 050721 08.11.1999 45.5
0104 096782 21.10.1999 Текст
0105 050723 15.10.1999 97

HOI – Hierarchy Object Identification (иерархический идентификатор объекта)

HDC – Hierarchy Data Classification (иерархический классификатор данных)

DATA – дата/время внесения характеристики

Единственной технической сложностью реализации такого представления данных является хранение значения атрибута, поскольку разные атрибуты могут быть представлены различными типами данных. Можно предложить несколько возможных вариантов решения проблемы. Например, использовать в качестве типа данных поля [VAL] тип BINARY или создать в таблице поля, соответствующие всем возможным используемым типам данных (фактически расщепление поля [VAL] на [VAL_INTEGER], [VAL_DOUBLE], [VAL_STRING], [VAL_DATA], [VAL_BINARY] и т.д.). Корректность информации, помещаемой в базу данных, может в этом случае обеспечиваться программным обеспечением.



Ответить на поставленный вопрос достаточно просто, если использовать обменные базы данных. Экспортируя информацию из первой таблицы в обменную, можно простым импортом из обменной таблицы заполнить вторую базу необходимыми данными. Непременным условием такого обмена информацией является одинаковая классификация типов данных. Таким образом, мы приходим к тому, что для успешного обмена межотраслевой информацией необходима одинаковая классификация типов данных. Наличие единого классификатора типов данных не является с практической точки зрения серьезным ограничением, особенно в силу того, что такого рода классификатор должен иметь иерархическую структуру. Всегда существует возможность кроме введения различных общих типов данных, например, геометрических характеристик объектов, вводить в этот классификатор специализированные отраслевые ветви, не нарушая при этом целостности системы.

Для решения проблемы достаточно завести таблицу уравнивания объектов, которая содержала бы всего две колонки, в первой из которых был бы первый идентификатор объекта, а во второй – второй идентификатор. Такая таблица позволила бы в случае операции импорта из обменной таблицы производить межотраслевой обмен информации. Необходимым условием индексации объектов в этом случае является уникальность отраслевых идентификаторов объектов. Этого несложно добиться, вводя в первых разрядах идентификатора объекта код отрасли.

Следует отметить, что если отраслевые классификаторы типов данных велись изолировано и как следствие одна и та же характеристика имеет разные коды в разных областях, можно ввести таблицу уравнивания и для классификационных кодов типов данных. Однако это решение не является лучшим, поскольку в дальнейшем будет показано, как именно межотраслевая таблица классификаторов данных может быть использована для разрешения проблемы параллелизма информации.

Таким образом, обменная таблица и таблица уравнивания объектов, а в худшем случае и таблица уравнивания типов данных, могут являться основой обмена и интеграции информации между любыми отраслями; более того, они являются уникальным способом разрешения коллизий, порожденных несовершенством способов ведения хозяйственной деятельности и существующей системой межотраслевого документооборота.

Представление пространственной модели в рамках реляционной СУБД

Последняя проблема, решение которой приводит нас к возможности реализации полноценной цифровой модели местности, заключается в способе приведения топологической пространственной модели местности к предлагаемой выше структуре баз данных. Основой формирования любой карты являются точки. Но что такое точки в контексте проведенной выше формализации? Точки создают топографы, геодезисты, которые представляют отрасль, по сути дела, вводящую в единую цифровую модель местности новые объекты. Эти объекты имеют свои отраслевые идентификаторы и, естественно, свойства, которые выражаются координатами X, Y, Z. Геометрические характеристики точки, конечно же, являются типами данных, которые, в свою очередь, имеют классификационный код. Таким образом, цифровая модель местности фактически поглощает точки как совершенно обычные объекты. Более того, зачастую нет необходимости вводить объекты-точки, а можно сразу назначить свойства X, Y и Z для любого объекта, например трубы, моста, столба и т.д. Механизмы синхронизации, которые детально обсуждались выше, позволят избежать дублирования или недостоверности информации внутри базы данных, содержащей модель местности. Можно даже предусмотреть механизм приоритетов в случае, если, например, координата X появилась у объекта дважды со стороны разных служб. Если различным службам назначить коды, которые появляются как в идентификаторе объекта, так и в идентификаторе типа данных, то координаты объекта разумно ввести как тип данных, принадлежащих, например, геодезической службе. Если какая-либо другая организация продублирует координату в своей базе с ошибкой, то выбор правильных данных допустимо произвести автоматически, следуя правилу, что наиболее достоверные данные поставляет та служба, код которой в идентификаторе объекта и идентификаторе класса данных совпадает. Это автоматически позволит избежать возникающего параллелизма в сборе информации.

Однако конечная цель – ввод в таблицы, хранящие информацию о цифровой модели местности, топологической пространственной структуры. В этом случае точки являются только средством построения межобъектных границ. Сами границы, в свою очередь, являются атрибутами объектов. В этом случае границу можно также интерпретировать как объект, свойствами которого являются идентификаторы точек.


В результате мы приходим к простейшей структуре базы данных, когда полная информация о цифровой модели местности может храниться в таблице, состоящей всего из пяти обязательных полей, причем при добавлении таблицы уравнивания объектов цифровая модель может служить централизованным хранилищем для обмена межотраслевыми данными. Благодаря обязательному полю дата/время появляется возможность хранения и накопления архивной информации и, что особенно важно, архивной картографической информации. В этом случае, используя фильтр по дате, мы можем увидеть, каким образом изменялась местность, когда появлялись новые дома, объекты инженерной инфраструктуры, а при необходимости можно отследить даже сезонные изменения границ объектов, например рек и болот.

Таким образом, единая цифровая модель местности является принципиально новым подходом к хранению данных в геоинформационных системах, открывающим возможность построения распределенных многопользовательских хранилищ и архивов данных, с возможностью обеспечения целостности, непротиворечивости и корректности как топологической структуры модели, так и атрибутивных данных объектов.

В наше время преобладает очень высокий уровень автоматизации, и это отражается практически на всех сферах человеческой деятельности. В связи с такой актуальностью технического прогресса возникла цифровая картография, которая представляет собой компьютерную обработку и анализ картографической информации. На данный момент именно цифровая картография является самой популярной в своей научной области, так как сейчас создание любых картографических изображений выполняется именно на компьютере.
Цифровую картографию нельзя назвать отдельной дисциплиной или разделом. Это, скорее всего эффективный инструмент, который позволяет удобно и быстро обрабатывать картографические данные при помощи ПК. Однако влияние цифровой картографии на науку является действительно сильным, и данный способ отображения местности в корне изменил принцип визуализации территории.
Сравним цифровую картографию со старым способом создания карт.

Содержание работы

План…………………………………………………………………. 1
I .Что такое цифровая картография………………………………..
2
1.Как используют цифровую картографию……………………….
2
1.1Преимущество использования цифровой картографий………
2
II. Новые методы создания картографических произведений……
3
2. Определения цифровых и электронных картографических произведений…………………………………………………………..
3
2.1 Виды атласов………………………………………………………
4
2.2 Виртуальные карты……………………………………………….
5
III. Определение цифровых карт………………………………………
6
3. Цифровое картографирование местности……………………. 6
3.1 Классификация цифровых карт……………………………………
7
3.2 Новое направление топографо-геодезического производства…. 7-8
Список литературы …………………………………………………… 9

Файлы: 1 файл

реферат.docx

При векторизации растра субъективные факторы влияют меньше, чем при дигитайзерном вводе, так как растровая подложка позволяет все время корректировать ввод. Программы векторизации растровых изображений условно можно разделить на три группы: ориентированные на ручную векторизацию, полуавтоматическую и автоматическую. Алгоритмы автоматической векторизации для ввода картографической информации в настоящее время не используются для массового ввода картографического материала. Полуавтоматическая векторизация дает хорошие результаты при цифровании чётких контуров на растре соответствующего качества, например расчленённые оригиналы рельефа на пластике.

3.1 Классификация цифровых карт

3.2 Новое направление топографо-геодезического производства

При автоматизации любого, в том числе и топографо-геодезического, производства можно проследить два взаимосвязанных, но имеющих при этом вполне самостоятельное значение направления. Одно из них заключается в создании новых технических средств, обеспечивающих замену ручного труда при выполнении отдельных операций и процессов работой автоматических устройств и систем; другое — в поиске принципиально новых технических идей и решений. Взаимосвязь этих направлений выражается в том, что, с одной стороны, разработка и использование средств автоматизации базируются на новых способах и приемах работ, а с другой - совершенствование методологии топографии требует учета возможностей современной техники.
Анализ содержания и задач крупномасштабного картографирования на современном этапе позволяет выделить три основополагающих принципа автоматизации геодезического производства.

В наше время преобладает очень высокий уровень автоматизации, и это отражается практически на всех сферах человеческой деятельности. В связи с такой актуальностью технического прогресса возникла цифровая картография, которая представляет собой компьютерную обработку и анализ картографической информации. На данный момент именно цифровая картография является самой популярной в своей научной области, так как сейчас создание любых картографических изображений выполняется именно на компьютере.

Содержание

I .Что такое цифровая картография………………………………..
1.Как используют цифровую картографию……………………….
1.1Преимущество использования цифровой картографий………
II. Новые методы создания картографических произведений……
2. Определения цифровых и электронных картографических произведений…………………………………………………………..
2.1 Виды атласов………………………………………………………
2.2 Виртуальные карты……………………………………………….
III. Определение цифровых карт………………………………………
3. Цифровое картографирование местности…………………….
3.1 Классификация цифровых карт……………………………………
3.2 Новое направление топографо-геодезического производства….
Список литературы ……………………………………………………

Вложенные файлы: 1 файл

реферат.docx

I .Что такое цифровая картография………………………………..

1.Как используют цифровую картографию……………………….

1.1Преимущество использования цифровой картографий………

II. Новые методы создания картографических произведений……

2. Определения цифровых и электронных картографических произведений……………………………………………… …………..

III. Определение цифровых карт………………………………………

3. Цифровое картографирование местности…………………….

3.1 Классификация цифровых карт……………………………………

3.2 Новое направление топографо-геодезического производства….

I .Что такое цифровая картография

  1. Как используют цифровую картографию
    1. Преимущество использования цифровой картографий

    II. Новые методы создания картографических произведений

    2. Определения цифровых и электронных картографических произведений

    2.1 Виды атласов

    2.2 Виртуальные карты

    III. Определение цифровых карт

    3. Цифровое картографирование местности

    3.1 Классификация цифровых карт

    3.2 Новое направление топографо-геодезического производства

    Основы геоинформатики: в 2 кн. Кн 1: учеб. пособие для студ. вузов/ Е.Г. Капралов, А.В. Кошкарёв, В.С. Тикунов и др.; под ред. В.С. Тикунова.- М.: Академия, 2004. -352 с.
    Лисицкий Д.В. Основные принципы цифрового картографирования местности/ Д.В. Лисицкий. – М.: Недра, 1988. - 261 с.: ил.
    Основы геоинформатики: в 2 кн. Кн 2: учеб. пособие для студ. вузов / Е.Г. Капралов, А.В. Кошкарёв, B.C. Тикунов и др.; под ред. B.C. Тикунова. - М.: Академия, 2004. - 480 с.
    ГОСТ 28441-99. Картография цифровая. Термины и определения. Межгосударственный совет по стандартизации, метрологии и сертификации. - Минск: 1999. - 10 с.
    I.Что такое цифровое картографирование

    “ Цифровая картография”- составная часть картографии. Он изучает и разробатывает теорию и методы создания цифровых и электронных карт,а также автоматизацию картографических работ.

    В наше время преобладает очень высокий уровень автоматизации, и это отражается практически на всех сферах человеческой деятельности. В связи с такой актуальностью технического прогресса возникла цифровая картография, которая представляет собой компьютерную обработку и анализ картографической информации. На данный момент именно цифровая картография является самой популярной в своей научной области, так как сейчас создание любых картографических изображений выполняется именно на компьютере.

    Цифровую картографию нельзя назвать отдельной дисциплиной или разделом. Это, скорее всего эффективный инструмент, который позволяет удобно и быстро обрабатывать картографические данные при помощи ПК. Однако влияние цифровой картографии на науку является действительно сильным, и данный способ отображения местности в корне изменил принцип визуализации территории.

    Сравним цифровую картографию со старым способом создания карт. В давние времена картографы проводили дни и ночи напролет, находясь у карты, вычерчивая каждый элемент тушью. Такая работа была очень кропотливая, и трудозатраты были просто неоправданны. Сейчас же технология создания карт существенно изменилась, и теперь всю рутинную работу выполняет компьютер, причем гораздо быстрее. Во время обработки картографической информации на ПК используют специальные автоматизированные системы, которые имеют большой функционал, состоящий из инструментов, необходимых для создания карт. Благодаря своей гибкости автоматизированные картографические системы дают массу возможностей современным картографам, которые действительно упрощают и улучшают процесс иллюстрации местности.

    1.1Преимущество использования цифровой картографий

    Цифравая картография- имеет следующие преимущества над традиционной:

    -практически исключается возможность ошибки. В старые времена картографам необходимо было приложить максимум усилий, чтобы описать карту максимально достоверно. К сожалению, чаще всего у картографов не получалось правильно изобразить пространство, его размеры и специфику. В современной картографии такая ошибка исключена, так как множество сложных расчетов выполняется компьютером. Это существенно упрощает работу картографа, делая ее более быстрой и продуктивной;

    -экономия трудовых ресурсов. Если бы в современном мире картографы не использовали автоматизацию, как они это делают сейчас, то одна карта стоила бы целое состояние, так как для ее создания требовались немыслимые трудозатраты. Сейчас же благодаря специально-разработанным системам, создание карты выполняется относительно просто, что и сказывается на их цене;

    -возможность редактирования. Если Вы нарисовали карту, но там изменилась местность (вырубили лес, высохла река и пр.), то ваше творение уже можно считать непригодным, так как оно несет в себе недостоверную информацию. Однако цифровая картография поддерживает возможность редактирования карт, что позволяет вернуть им их былую актуальность. Более того, это опять же приносит существенную экономию трудовых ресурсов.

    Цифровая картография – это настоящий прорыв в географической науке, так как она позволяет нам изобразить мир таким, какой он есть на самом деле.

    Преимуществами компьютерных технологий являются не только идеальное качество графических работ, но и высокая точность, значительное увеличение производительности труда, повышение полиграфического качества картографической продукции.

    II. Новые методы создания картографических произведений

    2. Определения цифровых и электронных картографических произведений

    Картография в настоящее время перешла на новый качественный уровень. В связи с развитием компьютеризации полностью изменились многие процессы создания карт. Появились новые методы, технологии и направления картографирования. Можно выделить различные направления, которыми сегодня занимается картография: цифровое картографирование, трехмерное моделирование , компьютерные издательские системы и т.д. В связи с этим появились новые картографические произведения : цифровые, электронные и виртуальные карты ,анимации , трехмерные картографические модели , цифровые модели местности .

    Кроме создания местности компьютерных карт стоит задача формирования и ведения баз цифровой картографической информации. Цифровые карты неотделимы от традиционных карт. Теоретические основы картографии, накоплены векам, остались прежними, изменились только технические сердства создания карт. Использование компьютерной техники привело к значительным изменениям технологии создания картографических произведений. Намного упростилась технология выполнения графических работ: исчезли трудоемкие чертежные работы, гравировальные и другие ручные работы. В результате вышли из употребления все традиционные чертежные материалы и принадлежности. Картограф, знающий программное обеспечение, можно быстро и качественно выполнить сложные картографические работы. Также появилось много возможностей выполнять на очень высоком уровне дизайнерские работы: оформление карт, обложек атласов, титульных листов и др.

    С внедрением компьютерной технологий обьединились процессы составления карт к изданию. Оплата необходимость делать высококачественную ручную копию составительского оригинала. Оформительский оригинал, выполненный на компьютере, позволяет очень легко редактировать и исправлять корректурные замечания без ухудшения его качества.

    2.1 Виды атласов

    Капитальные атласы традиционным методами создаются очень долго, десятки лет. Поэтому очень часто еще в процессе создания их содержания устаревает. Электронные атласы позволяют значительно сократить сроки изготовления. Поддержание электронных карт и атласов на уровне современности, их обновление делается в настоящее время очень быстро и качественно.

    Существует несколько типов электронных атласов:

    -Интерактивные атласы, в которых можно изменять оформление, способы изображения и классификацию картографируемых явлений, получать бумажные копии карт.

    - Аналитические атласы (ГИС-атласы), позволяющие комбинировать и сопоставлять карты, проводить их количественный анализ и оценку, выполнять наложение карт друг на
    друга.

    Во многих странах, в том числе и России, созданы и создаются Национальные атласы. Национальный атлас России является официальным государственным изданием, созданным по поручению Правительства Российской Федерации. Национальный атлас России дает комплексное представление о природе, населении, хозяйстве, экологии, истории и культуре страны.

    2.2 Виртуальные карты

    Картографические анимации - динамические последовательности электронных карт, которые передают на экране компьютера динамику и перемещение изображаемых объектов и явлений во времени и пространстве (например, движение атмосферных осадков, перемещение транспорта и т. п.).

    Анимации нам очень часто приходится наблюдать в повседневной жизни, например, телевизионные карты прогноза погоды, на которых хорошо видны перемещения фронтов, областей высокого и низкого давления, атмосферные осадки.

    Для создания анимации используют всевозможные источники: данные дистанционного зондирования, экономико-статистические данные, данные непосредственных натурных наблюдений (например, различные описания, геологические профили, наблюдения метеостанций, материалы переписей и т. п.). Динамические (двигающиеся) изображения картографических объектов могут быть различными:

    - перемещение всей карты по экрану и отдельных элементов содержания по карте;

    - изменение внешнего вида условных знаков (размеров, цвета, формы, яркости, внутренней структуры). Например, населенные пункты могут быть показаны в виде пульсирующих пунсонов и т. д.;

    - мультипликационные последовательности карт-кадров или трехмерные изображения.

    Так можно показать динамику таяния ледников, динамику развития эрозионных процессов;

    - панорамирование, вращение компьютерных изображений;

    - создание эффекта движения над картой (облет, объезд территории).

    Анимации могут быть плоскими и объемными, стереоскопическими, кроме того, могут сочетаться с фотоизображением.

    Трехмерные анимации, сочетающиеся с фотоизображением, называются виртуальными картами (создается иллюзия реальной местности).

    Технологии создания виртуальных изображений могут быть разными. Как правило, вначале по топографической карте, аэро или космическому снимку создается цифровая модель, затем - трехмерное изображение местности. Его окрашивают в цвета гипсометрической
    шкалы и потом используют как реальную модель.

    III. Определение цифровых карт

    3. Цифровое картографирование местности

    В результате автоматизации топографо-геодезического производства возникло новое направление - цифровое картографирование местности.
    Под цифровым картографированием местности как части топографо-геодезического производства понимается технологический процесс, объединяющий сбор и обработку цифровой топографической информации, формирование на ЭВМ цифровой модели местности, хранение, дополнение и обновление её с помощью машинного банка данных, получение по этой модели различных аналитических и графических материалов в соответствии с предъявленными требованиями.
    В научном плане цифровое картографирование представляет собой новый метод, принципиально отличающийся от традиционных аналоговых и предназначенный для создания цифровой модели местности (ЦММ). Топографические планы и карты при этом рассматриваются как её производные. Потребители топографо-геодезической информации имеют возможность получать не один универсальный документ (топографическую карту или план), требующий дополнительной переработки, а целый ряд материалов различного содержания и формы, необходимых для решения конкретных задач. Такой подход обеспечивает потребности различных отраслей народного хозяйства в топографо-геодезических и картографических материалах, дает большой экономический эффект, обусловленный многократным и многоцелевым их использованием.

    В научно-технической литературе и нормативных документах приведены понятия цифровых моделей местности, электронных, цифровых карт, цифровых топографических карт, различные их классификации.

    Цифровые карты (ЦК) в векторном формате - наиболее распространенный вид цифровой карты. Их создавали (в конце прошлого века) по технологии цифрования с помощью дигитайзера с ручным обводом или сканированием оригиналов с последующей векторизацией (в настоящее время), используя программные средства - векторизаторы. Альтернативный подход - растровая цифровая карта, создаваемая сканированием топографических карт.
    Векторная ЦК обладает рядом преимуществ. Тем не менее, практика показывает, что при отсутствии необходимости в векторной основе, ограниченности финансовых ресурсов и по другим причинам может быть использована растровая копия топографической карты (плана).

    Читайте также: