Влияние интенсивности света на число и размер хлоропластов реферат

Обновлено: 16.05.2024


Зеленый лист – источник жизни на нашей планете. Если бы не зеленые растения, на Земле не было бы ни животных, ни людей. Так или иначе, растения служат источником пищи для всего животного мира.

Человек использует энергию не только солнечных лучей, падающих на землю сейчас, но и тех, что падали на нее десятки и сотни миллионов лет назад. Ведь и уголь, и нефть, и торф – химически измененные остатки растений и животных, живших в те далекие времена.

В последние десятилетия к проблеме фотосинтеза приковано внимание ведущих специалистов ряда отраслей естествознания, ее различные аспекты всесторонне и глубоко исследуются во многих лабораториях мира. Интерес определяется прежде всего тем, что фотосинтез составляет основу энергообмена всей биосферы.

Интенсивность фотосинтеза зависит от многих факторов. Интенсивность света, необходимая для наибольшей эффективности фотосинтеза, у различных растений различна. У теневыносливых растений максимум активности фотосинтеза достигается примерно при половине полного солнечного освещения, а у светолюбивых растений – почти при полном солнечном освещении.

У многих теневыносливых растений не развивается палисадная (столбчатая) паренхима в листьях, и имеется только губчатая (ландыш, копытень). Кроме того, эти растения имеют более крупные листья и более крупные хлоропласты.

Также на интенсивность фотосинтеза влияет температура окружающей среды. Наибольшая интенсивность фотосинтеза наблюдается при температуре 20–28 °С. При дальнейшем повышении температуры интенсивность фотосинтеза падает, а интенсивность дыхания возрастает. Когда интенсивности фотосинтеза и дыхания совпадают, говорят о компенсационном пункте.

Компенсационный пункт изменяется в зависимости от интенсивности света, повышения и понижения температуры. Например, у холодостойких бурых морских водорослей он соответствует температуре около 10 °С. Температура влияет, в первую очередь, на хлоропласты, у которых в зависимости от температуры изменяется структура, что хорошо видно в электронном микроскопе.

Очень большое значение для фотосинтеза имеет содержание углекислого газа в окружающем растение воздухе. Средняя концентрация углекислоты в воздухе составляет 0,03% (по объему). Понижение содержания углекислого газа неблагоприятно влияет на урожай, а его повышение, например до 0,04% может повысить урожай почти в 2 раза. Более значительное повышение концентрации вредно для многих растений: например, при содержании углекислого газа около 0,1% растения томатов заболевают, у них начинают скручиваться листья. В оранжереях и теплицах можно повысить содержание углекислого газа, выпуская его из специальных баллонов или давая испаряться сухой углекислоте.

Свет разных длин волн также по-разному влияет на интенсивность фотосинтеза. Впервые интенсивность фотосинтеза в различных лучах спектра исследовал физик В. Добени, показавший в 1836г., что скорость фотосинтеза в зеленом листе зависит от характера лучей. Методические погрешности при проведении эксперимента привели его к неправильным выводам. Ученый поместил отрезок побега элодеи в пробирку с водой срезом вверх, освещал пробирку, пропуская солнечный свет через цветные стекла или окрашенные растворы, и учитывал интенсивность фотосинтеза по количеству пузырьков кислорода, отрывающихся с поверхности среза за единицу времени. Добени пришел к выводу, что интенсивность фотосинтеза пропорциональна яркости света, а наиболее яркими лучами в то время считались желтые. Этой же точки зрения придерживался и Джон Дрепер (1811–1882), который изучал интенсивность фотосинтеза в различных лучах спектра, испускаемых спектроскопом.

Роль хлорофилла в процессе фотосинтеза доказал выдающийся российский ботаник и физиолог растений К.А. Тимирязев. Проведя в 1871–1875 гг. серию опытов, он установил, что зеленые растения наиболее интенсивно поглощают лучи красной и синей части солнечного спектра, а не желтые, как это считалось до него. Поглощая красную и синюю часть спектра, хлорофилл отражает зеленые лучи, из-за чего и кажется зеленым.

На основании этих данных немецкий физиолог растений Теодор Вильгельм Энгельман в 1883 г. разработал бактериальный метод изучения ассимиляции углекислого газа растениями.


Он предположил, что если поместить в каплю воды клетку зеленого растения вместе с аэробными бактериями и осветить их разноокрашенными лучами, то бактерии должны концентрироваться у тех участков клетки, в которых сильнее всего разлагается углекислый газ и выделяется кислород. Чтобы проверить это, Энгельман несколько усовершенствовал световой микроскоп, укрепив над зеркальцем призму, которая разлагала солнечный свет на отдельные составляющие спектра. В качестве зеленого растения Энгельман использовал зеленую водоросль спирогиру, крупные клетки которой содержат длинные спиральные хроматофоры.

Поместив в каплю воды на предметном стекле кусочек водоросли, Энгельман внес туда же немного аэробных бактерий, после чего, рассмотрел препарат под микроскопом. Оказалось, что в отсутствии призмы приготовленный препарат освещался ровным белым светом, и бактерии равномерно распределялись вдоль всего участка водоросли. В присутствии призмы отраженный от зеркальца луч света преломлялся, освещая участок водоросли под микроскопом светом с разной длиной волны. Спустя несколько минут, бактерии сконцентрировались на тех участках, которые были освещены красным и синим светом. На основании этого Энгельман сделал вывод о том, что разложение углекислого газа, (а, значит, и выделение кислорода) у зеленых растений наблюдается в дополнительных к основной окраске (т.е. зеленой) лучах – красных и синих.


Данные, полученные на современном оборудовании, полностью подтверждают результаты, полученные Энгельманом более 120 лет назад.

Поглощенная хлорофиллом световая энергия принимает участие в реакциях первого и второго этапов фотосинтеза; реакции третьего этапа являются темновыми, т.е. происходит без участия света. Измерения показали, что процесс восстановления одной молекулы кислорода требует минимум восьми квантов световой энергии. Таким образом, максимальный квантовый выход фотосинтеза, т.е. число молекул кислорода, соответствующее одному кванту поглощенной растением световой энергии, составляет 1/8, или 12,5%.

Р.Эмерсон с сотрудниками определили квантовый выход фотосинтеза при освещении растений монохроматическим светом различной длины волны. При этом установлено, что выход остается постоянным на уровне 12% в большей части видимого спектра, но резко снижается вблизи дальней красной области. Это снижение у зеленых растений начинается при длине волны 680 нм. При длине больше 660 нм свет поглощает только хлорофилл a; хлорофилл b имеет максимум поглощения света при 650 нм, а при 680 нм практически свет не поглощает. При длине волны больше, чем 680 нм, квантовый выход фотосинтеза может быть доведен до максимальной величины 12% при условии, что растение одновременно будет освещаться также светом с длиной волны 650 нм. Иначе говоря, если свет, поглощаемым хлорофиллом а дополняется светом, поглощаемый хлорофиллом b, то квантовый выход фотосинтеза достигает нормальной величины.

Усиление интенсивности фотосинтеза при одновременном освещении растения двумя лучами монохроматического света различной длины волны по сравнению с его интенсивностью, наблюдаемой при раздельном освещении этими же лучами, получило название эффекта Эмерсона. Опыты с различными комбинациями дальнего красного света и света с более короткой длиной волны над зелеными, красными, синезелеными и бурыми водорослями показали, что наибольшее усиление фотосинтеза наблюдается в том случае, если второй луч с более короткой длиной волны поглощается вспомогательнымих пигментами.


У зеленых растений такими вспомогательными пигментами являются каротиноиды и хлорофилл b, у красных водорослей – каротиноиды и фикоэритрин, у синезеленых – каротиноиды и фикоцианин, у бурых водорослей – каротиноиды и фукоксантин.

Дальнейшее изучение процесса фотосинтеза привело к заключению, что вспомогательные пигменты передают от 80 до 100% поглощенной ими световой энергии хлорофиллу а. Таким образом, хлорофилл а аккумулирует световую энергию, поглощаемую растительной клеткой, и затем использует ее в фотохимических реакциях фотосинтеза.

Позже было обнаружено, что хлорофилл а присутствует в живой клетке в виде форм с различными спектрами поглощения и различными фотохимическими функциями. Одна форма хлорофилла а, максимум поглощения у которой соответствует длине волны 700 нм, принадлежит к пигментной системе, получившей название фотосистема I, вторая форма хлорофилла а с максимумом поглощения 680 нм, принадлежит к фотосистеме II.

Итак, в растениях была открыта фотоактивная пигментная система, особенно сильно поглощающая свет в красной области спектра. Она начинает действовать уже при ничтожной освещенности. Кроме того, известна и другая регуляторная система, которая избирательно поглощает и использует для фотосинтеза синий цвет. Эта система работает при достаточно сильном свете.

Установлено также, что фотосинтетический аппарат одних растений в значительной степени использует для фотосинтеза красный свет, других – синий.

Для определения интенсивности фотосинтеза водных растений можно использовать метод подсчета пузырьков кислорода. На свету в листьях происходит процесс фотосинтеза, продуктом которого является кислород, накапливающийся в межклетниках. При срезании стебля избыток газа начинает выделяться с поверхности среза в виде непрерывного тока пузырьков, быстрота образования которых зависит от интенсивности фотосинтеза. Данный метод не отличается большой точностью, но зато прост и дает наглядное представление о зависимости процесса фотосинтеза от внешних условий.

Опыт 1. Зависимость продуктивности фотосинтеза от интенсивности света

Материалы и оборудование: элодея; водные растворы NaHCO3, (NH4)2CO3 или минеральная вода; отстоявшаяся водопроводная вода; стеклянная палочка; нитки; ножницы; электролампа мощностью 200 Вт; часы; термометр.

1. Для опыта отбирали здоровые побеги элодеи длиной около 8 см интенсивного зеленого цвета с неповрежденной верхушкой. Их подрезали под водой, привязывали ниткой к стеклянной палочке и опускали верхушкой вниз в стакан с водой комнатной температуры (температура воды должна оставаться постоянной).

2. Для опыта брали отстоявшуюся водопроводную воду, обогащенную СО2 добавлением NaHCO3 или (NH4)2CO3, или минеральную воду, и выставляли стакан с водным растением на яркий свет. Наблюдали за появлением пузырьков воздуха из среза растения.

3. Когда ток пузырьков становился равномерным, подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, данные записывали в таблицу, определяли средний результат.

4. Стакан с растением удаляли от источника света на 50–60 см и повторяли действия, указанные в п. 3.

5. Результаты опытов сравнивали и делали вывод о различной интенсивности фотосинтеза на ярком и слабом свету.

Результаты опытов представлены в таблице 1.

Вывод: при использованных интенсивностях света интенсивность фотосинтеза увеличивается с ростом интенсивности света, т.е. чем больше света, тем лучше идет фотосинтез.

Таблица 1. Зависимость фотосинтеза от интенсивности света

Читайте также: