Вклад отечественных ученых в развитие инженерных наук реферат

Обновлено: 05.07.2024

Страны, интеллектуальная элита которых способна создавать и продвигать на рынок инновации, прежде всего высокие технологии.

Страны, имеющие возможности пользоваться нововведениями.

Страны, преимущественно потребительского, дотационного развития.

По разным причинам СССР не смог вовремя выйти из холодной войны, изменить цели своего развития, проект своего будущего так, как, например, сделал это Китай, и его правопреемнице, России, приходится начинать конкурентную борьбу за место под новым мировым экономическим солнцем заново. Определяющим здесь является выбор верного целеполагания, пути дальнейшего развития, нового проекта будущего, беспристрастный анализ прошлого и признание неверного в нем. Важным в этом процессе является осознание произошедшего в последние десятилетия в мире, анализ и реализация в полной мере возможностей России в мире глобализации, в новом пространстве соревнования и соперничества.

1.Использование бюджетных денег в качестве катализатора для привлечения частных капиталов и создания первых успешных примеров инноваций.

2. Инвентаризация государственной собственности в научно-техническом секторе и передача ее более эффективным собственникам.

3. Подготовка кадров – главного ресурсного механизма инновационной экономики и наиболее слабого звена отечественного инновационного процесса.

Для инженерного образования России наступает время изменений, новых перспектив и возможностей и новых, хотелось бы сказать, только творческих и организационных проблем. На этом практическом пути создания адекватного новым запросам времени инженерного образования важно не только знать, что делается вокруг в мире, но и понимать, что не так у нас. Как бы часто не повторялись слова о прошлых успехах российского образования, рассмотренные выше задачи подготовки нового инженерного корпуса ставятся впервые для всех стран мира и аналогов их решения в прошлом нет ни у кого. Для нашей страны этот вопрос не является вопросом просто нового качества образования. Речь идет ни мало, ни много о будущем страны, о ее долгосрочном проекте развития.

СОСТОЯНИЕ ОТДЕЛЬНЫХ ВОПРОСОВ ИНЖЕНЕРНОГО ОБРАЗОВАНИЯ В РОССИИ

Высшую школу в связи со всеобщей перестройкой и переориентацией политической системы в последнее время также пытаются реформировать. Так ли уж плоха наша российская классическая схема инженерного образования?

Россия почти полностью вернулась к образовательной системе, которая существовала перед коммунистической революцией. Традиции старой школы оказались очень сильными, и с помощью остатков старых преподавательских кадров было возможно привести в порядок инженерное образование, разрушенное во время революции.

В настоящее время Россия имеет большое количество инженерных учебных заведений с компетентными преподавательскими кадрами и достаточным оборудованием, что дает возможность будущим инженерам в процессе обучения получать необходимые знания. Созданы особые программы подготовки инженеров-исследователей, а учебные специальности организованы по большинству отраслей. Таким образом, созданы благоприятные условия для будущего развития технических наук, и в настоящее время Россия занимает ведущее положение во всех подобных областях.

Подготовка в высшей степени квалифицированных и компетентных инженеров невозможна без досконального изучения основных дисциплин.

Преподавание математики и механики велось на очень высоком уровне, особенно благодаря деятельности математика М.В.Остроградского.

Ряд важных публикаций в течение второй половины девятнадцатого века принадлежит ученикам М.В.Остроградского. Один из них И.А.Вышнеградский (1831-1895). Его теория регуляторов получила известность во всем мире и послужила основой для развития важной отрасли механики, имеющей дело с регулированием скоростей машин.

В это время студенты на инженерных специальностях получали более широкую математическую подготовку, чем на математическом отделении в Университете Санкт-Петербурга.

Обучение сопротивлению материалов и строительной механике в России в середине девятнадцатого века стояло на высоком уровне. Изучение механических свойств строительных материалов, конструктивных особенностей металлоизделий было также хорошо поставлено.

Позднее в Москве было организовано Техническое училище. Это высшее учебное заведение было одним из первых в мире, где началось преподавание аэродинамики в лаборатории. В 1912 году появилась книга Н.Е.Жуковского, представляющая собой первое в мировой литературе систематическое изложение аэродинамики.

Научная деятельность русских инженерных учебных заведений в девятнадцатом веке была на очень высоком уровне. Россия в этот период внесла значительный вклад в развитие инженерных наук.

В области строительной механики кораблей и подводных лодок Россия имеет в настоящее время наиболее полную и современную литературу.

Большинство нововведений, внедренных в учебные планы коммунистическим режимом, было упразднено. В скором времени преподавание в средних школах начало быстро улучшаться, в особенности по естественным наукам и математике. По-видимому, к концу тридцатых годов требования по математике в средних школах уже приблизилось к дореволюционному стандарту.

Учебники в России стоили очень дешево, и купить эти книги для многих студентов не представляло затруднений. Кроме того, институтские библиотеки обычно имеют достаточное количество экземпляров требуемых учебников для студентов.

В дореволюционные годы Россия имела большое количество средних специальных учебных заведений. В настоящее время их число значительно увеличилось. Теперь направление политики состоит в том, чтобы на предприятии или стройке соблюдалось соотношение: два техника на одного инженера.

В системе инженерного образования постоянно были поиски наиболее актуальных и результативных методов обучения. Большое значение уделяется технологической практике будущих инженеров.

Лекционная система, практиковавшаяся в дореволюционные годы, осталась, но в нее были внесены некоторые улучшения. В старое время профессора читали лекции для всего курса, иногда состоявшего из 300 или400 студентов. В настоящее время большие курсы разделяются на потоки, не превышающие 150 человек Посещение лекций строго контролируется, и студенты могут быть наказаны за любую неаккуратность в посещении, так как право на стипендию в бюджетных группах зависит от регулярности работы студента. Для решения задач студенты подразделяются на небольшие группы по 25-30 человек. Каждый лектор должен вести по крайней мере одну такую группу.

Ряд российских ученых, передовых инженеров делают выводы по результатам чтения лекций в американских учебных заведениях: американские студенты только на более старших курсах частично изучают материал по техническим дисциплинам, который изучается студентами первых курсов технических российских вузов.

Наряду с этим система технического инженерного образования постоянно изменяется, улучшается.

ПОЛОЖЕНИЕ ИНЖЕНЕРНОГО ОБРАЗОВАНИЯ НА СЕГОДНЯШНИЙ ДЕНЬ

Для развития инженерного образования в России существует несколько очень важных заделов.

1. Российское общество в целом позитивно настроено к обучению. Число студентов вузов увеличилось в течение последнего десятилетия практически вдвое. В 1990 году на 10 000 жителей в России приходилось 190 студентов, в 2001 году – 330 студентов.

3. Имеется разнообразный опыт многих научных школ, достигших мирового уровня.

5. Число людей, имеющих различный опыт научно-исследовательских работ, в России по-прежнему велико и превышает число научно-исследовательских работников в США: у нас 4.35 тысяч человек на 1 миллион жителей, в США – 3.73 тысяч. При успехе инновационной экономики в России они могут сыграть важную роль в разворачивании инновационных программ, создании позитивной инновационной среды.

6. В течение нескольких десятилетий накоплен опыт отбора и работы с одаренными школьниками в специализированных школах: школах космонавтики, физ-мат. школах, биологических школах и т.д., в летних школах, в большом числе олимпиад и конкурсов. Весь этот опыт может быть успешно перенесен при необходимости на специализированные инновационные классы и школы при или вокруг технических университетов.

7. И, наконец, в России объективно возникает спрос на новые инженерные кадры. Они нужны уже действующему пока в ограниченном количестве инновационному сектору российской экономики, они необходимы для кадрового обеспечения федеральных программ инновационного развития, впервые утвержденных правительством РФ в 2002 году.

Процесс реформирования российской высшей школы в последние годы, по сути, представляет собой пополнение учебных программ культуроведческими и другими неинженерными дисциплинами: экономическими, финансовыми, юридическими. Предлагаемое трехступенчатое образование (обычное, бакалавриат, магистратура) неотвратимо ведет к деформированию устоявшейся классической схемы высшего инженерного образования, существенно лучшего, чем в США, и лучшего инженерного образования в мире.

Академическая и научная деятельность не имеет в нашей стране того престижа, что в Европе, и лучшие молодые таланты обычно не выбирают для себя научной карьеры. Возможно, эта ситуация может быть исправлена путем развития усиленной подготовки по математике и естественным наукам в средней школе и интенсификации фундаментальной подготовки в университетах. Нет сомнения, что будущее инженерного дела неизбежно станет все более и более тесно связано с развитием "чистой" науки.

Русские высшие технические учебные заведения уделяют большое внимание проектированию, и посредством выполнения дипломного проекта они стараются подготовить своих студентов к реальной практической работе. Американские высшие технические учебные заведения дают очень мало своим студентам в этой области. В области конструирования машин они разбираются очень мало. Многие из них считали, что инженер должен только готовить эскизы, а конструировать должен чертежник, который выберет требуемые размеры на основе прошлого опыта и при помощи справочника. Ситуация за последние 30 лет значительно улучшилась, но с нашей слабой подготовкой в средней школе мы не сможем, по-видимому, достичь того, что имеют сегодня высшие учебные заведения в России.

Наиболее важным достижением России в инженерном образовании является организация подготовки инженеров нового типа, которых мы назовем инженерами-исследователями. Эта подготовка базируется на широком изучении таких фундаментальных наук, как математика, механика, физика, с целью устранения разрыва между "чистыми" и прикладными науками.

ПРОБЛЕМЫ В ИНЖЕНЕРНОМ ОБРАЗОВАНИИ РОССИИ

Список требующих разрешения проблем внушителен. Первая часть проблем связана с созданием в России впервые в ее истории устойчивой и успешной инновационной среды, преодоление в течение короткого времени трех важных психологических барьеров в обществе и внутри научно-образовательных сообществ.

1. В России нет традиций объединять инновационное творчество ученых и инженеров с рыночными механизмами, с коммерческим успехом. До сих пор отсутствует эффективный механизм персонифицированного поощрения технического творчества, защиты прав интеллектуальной собственности на результаты инженерного труда. Из всех видов творческой деятельности инженерная наименее статусная, инженеры из всех слоев творческой интеллигенции находятся в самом бедственном положении. Начало подготовки инновационных менеджеров, нового типа инженеров происходит в минимуме престижа инженерной профессии и требуется большая работа по коренному изменению отношения общества к инженерному труду.

2. Нет традиций работать с разнообразными заказчиками кроме государства, которое в советские времена руководствовалось, прежде всего, политическими соображениями. Как результат, в стране не получили развития целые направления инженерного творчества, нет систем обратной связи, позволяющих вносить коррекции в создаваемые продукты в соответствии с требованиями конечных потребителей (за исключением лишь военных разработок). Все системы образования в течение десятилетий работали в условиях 100% госзаказ. Переход к рыночным отношениям в подготовке нового инженерного корпуса требует освоения непривычного деятельного пространства, воли и умения. Фактически вузы, начиная свой инновационный путь в образовании, должны одновременно изменять самих себя, т.е. вынуждены будут применить искусство обновления, инновирования в целях своего творческого, организационного и финансового развития.

Вторая, основная, часть проблем касается собственно изменений внутри инженерного образования. Система подготовки инженеров в целом в стране осталась традиционной, отраслевой. Консерватизм системы образования с одной стороны сыграл свою положительную стабилизирующую роль в прошедшее десятилетие реформ, сохранив все положительно, что было накоплено за многие годы, но с другой стороны он не позволил выработать внутренние стимулы модернизации образования.

Практики нового инженерного образования не могут зачастую быть реализованы из-за недостаточной информатизации вузов, отсутствия мощных Интернет центров, электронных библиотек, устойчивых связей с зарубежными университетами, обмена студентами, аспирантами и преподавателями, возможностей работы с зарубежными инновационными центрами.

Существует проблемы преподавательских кадров: возрастная, средний возраст преподавателей в вузах зачастую превышает 50 лет, и профессиональная. Спектр дисциплин и методологии обучения во многих случаях предстоит еще определить. Освоение новых курсов и технологий обучения требует новых мотиваций, знаний, умений и навыков преподавательского корпуса.

Список проблем может быть продолжен, но самыми главными из них, на наш взгляд, являются: выход вузов на прямой контакт с рынком, с производством, с инновационной деятельностью, всемерное развитие научных исследований, смена парадигмы образования. Вхождение вузов в разнообразные экономические, образовательные, исследовательские и инновационные сетевые структуры позволит решить эти проблемы наиболее успешно. Инженерному образовательному сообществу предстоит осознать полезность перемен для своего нового будущего, превратить вместе с государством и разными отраслями промышленности и бизнеса от ВПК и естественных монополий до банков и малых инновационных предприятий нынешнее кризисное состояние России в ее инновационный ресурс развития.

МЕТОДЫ РЕШЕНИЯ НАСУЩНЫХ ВОПРОСОВ

1.Планового систематического улучшения всего того, что делается. Накапливаемые постепенно изменения через некоторое время превращаются в новое качество, в данном случае, инженерного образования.

2. Использование успехов в своих интересах для новых приложений и достижения новых целей.

Этот принцип особенно важен, на наш взгляд, в России, поскольку только зримые успехи в состоянии убедить многих в перспективности инновационной экономики в нашей стране и необходимости перемен в инженерном образовании.

3. Инициирование перемен как постоянный процесс обучения создания инноваций и выработки установки на то, что инновации могут и должны быть организованы как систематический процесс.

Знания, производство, бизнес, образование становятся взаимосвязаны. Университеты становятся одним из главных мест их встреч. Какая бы модель дальнейшего развития России не была бы выбрана: развитие национального рынка, экспорт готовых решений и продуктов на внешний рынок, развитие оффшорного программирования и инновационной деятельности, стержнем любой из них могут быть только согласованные действия образования, науки, промышленности и бизнеса ради экономического успеха.

Превратить знания в источник успешного развития страны становится основной задачей нового инженерного образования России.

Работа по выживанию российской инженерной школы была проведена огромная. И – не только выжила школа, но окрепла, стабилизировалась и стала альтернативной. Не разрушилась система общешкольного образования, являющаяся базовой для подготовки инженерных кадров.

В настоящее время статус инженера приобрел прежнее исконно ему соответствующее содержание. Система обучения инженеров, оставив основутеоретических знаний, претерпела изменения в плане возможности обрабатывать и предоставлять информацию техники и других дидактических материалов.

Второе становление учебных заведений, занимающихся инженерной подготовкой, произошло за последнее десятилетие. Трудно различить четко, в какой год началось запустение в образовательном процессе, и в какие годы началось возрождение в сфере технического образования.

Инженерная школа устояла перед невзгодами периода перестройки и в постперестроечный этап. На сегодняшний день разница между формой обучения дореволюционного периода и нынешнего разительна.

Хочется верить, что общими останется только содержание технических специальностей и стремление к полноте содержания. Изменится техническое оснащение учебных заведений и самого процесса обучения. Изменится в лучшую сторону менталитет студентов, станет выше интеллект и стремление к приобретению знаний.

Также верится в то, что прежняя гордость будет сопровождать в звучании гордое слово "инженер"!

1. Хуунинг А.Н., Инженерная деятельность с точки зрения этической и социальной ответственности, М., 1989.

2. Горохов В.Г., знать, чтобы делать. История инженерной профессии и её роль в современной культуре, М., 1987.

3. Горохов В.Г.,Розин В.М., Формирование и развитие инженерной деятельности, М., 1984.

С глубокой древности Русь славилась своими умельцами – литейщиками, оружейниками, ювелирами, строителями ветряных и водяных мельниц. Средневековые русские мастера умели делать сложные механические устройства – часы, хитроумные замки, сверлильные и токарные станки, станки для чеканки монет, ткацкие станки, самопрялки, копры для забивания свай, подъемные сооружения, лесопильни. Опыт, накопленный русскими ремесленниками, создал благодатную почву для развития теории, накопления практических знаний.

В начале XVIII века в России стали появляться сочинения, написанные уже специалистами-учеными:

Заслуга Ломоносова перед механикой состоит и в том, что под его руководством работали мастерские Академии наук, ставшие одним из центров русской технической мысли. После его смерти они пришли в упадок и только после того как в 1769 г. во главе мастерских становится Иван Петрович Кулибин, они занимают то место, которое занимали при Ломоносове.

Многочисленные изобретения Кулибина свидетельствуют, что он был инженером в современном смысле слова. Он строил свои творческие замыслы на прочной основе строгих расчетов и тщательных исследований. Задумав мост через Неву, Кулибин воплотил его в точные и подробные чертежи. К 1776 г. изобретатель закончил проект, доныне удивляющий нас замечательной глубиной инженерного решения, красотой и изяществом конструкций. Интересен метод, при помощи которого Кулибин провел предварительную проверку возможностей сооружения. Натянув веревку и подвешивая к ней в определенных местах грузики, изобретатель воспроизвел как бы подобие своего моста и сил, действующих на мост. Построил Кулибин и специальную испытательную машину, с помощью которой он проверял свои расчеты.

Создав подобие моста и определив нагрузки, которые способна выдержать модель, Кулибин мог совершенно точно установить и наибольшую нагрузку, которую сможет вынести его мост-гигант. Таким образом, знаменитый российский механик внес важное решение: как в модели воспроизвести точное механическое, а не только геометрическое, внешнее подобие крупного сооружения. Эйлер тщательно проверил расчеты Кулибина и, убедившись в их абсолютной правильности, дал о них восторженный отзыв. Эйлер облек теоретическое открытие Кулибина в математическую форму. Метод подобия вошел в технику как одно из мощнейших ее средств. В практике ни одно ответственное сооружение не строится, прежде чем его маленькое подобие – модель – не пройдет всесторонних испытаний.

Трудно перечислить все имена выдающихся деятелей российской науки и техники. Имена многих из них стали гордостью всего передового человечества. Одним из таких людей был гениальный математик и механик Михаил Васильевич Остроградский (1801–1862). Принцип Остроградского–Гамильтона – жемчужина теоретической механики. Все механические системы подчиняются этому принципу. Руководствуясь им, можно в математических уравнениях отобразить механические процессы. Остроградский занимался теорией волн, теорией теплоты, изучал упругие колебания тел, вопросы равновесия и движения твердых тел, вековые неравенства в движении планет. Большое внимание он уделял педагогической работе.

Богатейшее наследство оставили в механике Пафнутий Львович Чебышев и его ученики Александр Михайлович Ляпунов, Хаим Иегудович Гохман и др.

Период конца ХІХ и первые десятилетия ХХ века − чрезвычайно плодотворный в истории развития теоретической и прикладной механики. В эти годы были высказаны многие идеи, развитые впоследствии в целые научные направления.

Активно велись математические исследования, возникали новые направления. Важную роль в развитии отечественного математического естествознания сыграла московская математическая школа, основанная А. Д. Егоровым и его учеником Н.Н. Лузиным. Лузин и его ученики развили ряд важнейших направлений математики и создали математический аппарат для решения многих задач теоретической и прикладной механики.

В 20-е гг. ХХ века развивалась кинематика механизмов в направлении решения задач теории пространственных механизмов, значение которых возросло в связи со становлением авиационного и сельскохозяйственного машиностроения. Бурное развитие машиностроения в довоенные пятилетки заставило обратить внимание на создание его теоретических основ. Сложность задач кинематики пространственных механизмов вызвало поиски общей методики решения. Первыми обратились к изучению пространственных механизмов Н. И. Мерцалов, И. И. Артоболевский, Н. Г. Бруевич и В. В. Добровольский.

С появлением и развитием автомобильного, а затем авиационного транспорта повысился интерес к нефти и ее транспортировке. Возникла практическая задача движения вязкой жидкости. Над ее решением работал один из учеников Жуковского – Л. С. Лейбензон. В 20-30-е годы самыми важными задачами в области аэрогидродинамики продолжали оставаться те, что были связаны с теорией самолета.

Огромные преобразования, происшедшие в народном хозяйстве СССР в 30-х годах, не могли не отразиться и на развитии не только механики, но и других инженерных наук. Проблемы, которые имели ранее только теоретическое значение, получили важное практическое применение. К ним относилась, в частности, проблема устойчивости. Она имеет важное значение для самых различных областей науки и техники, имевших дело с системами, состояниями и процессами. Исследования А.Н.Ляпунова, И. М. Крылова и Н. Н. Боголюбова привели к созданию нового научного направления, получившего название нелинейной механики. Методы нелинейной механики тогда же были применены к решению важнейших задач строительной механики, авиастроения, машиностроения, электротехники и радиотехники.

В эти годы началась разработка механики материалов и теории их прочности. Большие объемы строительных работ, новые отрасли машиностроения (авто- и авиастроение и др.) требовали металла более высокого качества. Кроме того, новые требования на строительные и машиностроительные материалы определили поиски новых материалов с заданными свойствами. Возникают и новые методы обработки металлов. Важнейшим из них стала электросварка. Основоположником сварки в Советском Союзе был выдающийся машиностроитель Е. А. Патон (1870–1953). Одной из первых задач, поставленных и решенных электросварочной лабораторией, созданной им, было определение надежности и прочности сварных соединений железных конструкций.

В середине 50-х гг. ХХ века начинается период современной научно-технической революции. Изменяются интересы исследователей, работавших в разных направлениях механики. Интересы эти были обусловлены практическими задачами, поэтому в аналитической механике большой интерес стали проявлять к динамике переменной массы, неголономной механике, теории гироскопов. Большое распространение получает нелинейная механика; идеи теории колебания пересеклись едва ли не во всех направлениях прикладной механики. Все большее значение получают исследования находящиеся на стыке различных направлений механики, а также на стыке механики и математики, геологии, метеорологии, биологии.

Одной из характерных особенностей научно-технической революции является то, что наука становится непосредственной производительной силой: она вызывает к жизни технические решения, определяет появление новых отраслей техники, новых видов производства. В ее развитии теперь преобладает интегральный путь, когда новое направление возникает на стыке других, зачастую разнородных.

На стыке наук постоянно появляются новые направления: теория атомов, молекулярная теория, теория спектров излучения, аэродинамика газовых потоков, некоторые направления авиационной техники, электродинамика и другие науки небесных туманностей, небесных тел, космических структур; зарождается новое научное направление – космическая аэродинамика. ХХ век расширил диапазон исследований. Но как показывает практика, опыт – не предел, ибо развитие человеческого знания идет по спирали, которая уходит в бесконечность. На этом пути вклад отечественных ученых безмерен, многогранен и актуален.

В жизни человека, наряду с религией, моралью, искусством, правом, большую роль играет наука. Наука - это особая область жизнедеятельности общества, содержанием которой является познание существующего мира.

Исследование истории возникновения, логики и закономерности становления и развития науки дает возможность человеку принимать лучшие решения при выборе правильного пути использования достижении науки в своих целях.

В данной работе рассмотрены исследования отечественных ученых, которые сделали вклад в развитие науки нашей страны. Основными из них были: Бутлеров, Остроградский, Севергин, Сахаров и другие.
Великие русские ученые

Русские учёные отодвинули завесу непознанного, внеся свою лепту в эволюцию научной мысли во всем мире. Многие великие русские учёные трудились за рубежом в научно-исследовательских учреждениях с мировым именем. Наши земляки сотрудничали со многими выдающимися научными умами. Открытия русских учёных стали катализатором развития технологии и знания во всем мире, а многие революционные идеи и открытия в мире создавались на фундаменте научных достижений известных русских учёных .

Мировые открытия русских учёных в области химии прославили наших соотечественников на века. Великий русский учёный Менделеев сделал самое важное открытие для мира химии — он описал периодический закон химических элементов. Периодическая таблица получила со временем признание во всём мире и сейчас ею пользуются во всех уголках нашей планеты.

Великим русским учёным в авиационном деле можно назвать Сикорского. Авиаконструктор Сикорский известен своими разработками по созданию многомоторных самолётов. Именно он создал первый в мире летательный аппарат, обладающий техническими характеристиками для вертикального взлёта и посадки — вертолёт. Не только русские учёные вносили вклад в авиационное дело. К примеру, лётчик Нестеров считается основателем фигур высшего пилотажа, к тому же он впервые предложил использовать освещение взлётной полосы во время ночных полётов.

Известные русские ученые были и в медицине: Пирогов, Боткин, Мечников и другие. Мечников разработал учение о фагоцитозе (защитных факторах организма). Хирург Пирогов впервые применил в полевых условиях наркоз для лечения больного и разработал классические средства оперативного лечения, которыми пользуются и по сей день. А вклад русского ученого Боткина заключался в том, что он впервые в России провёл исследования по экспериментальной терапии и фармакологии.

На примере этих трёх областей науки мы видим, что открытия русских учёных используются во всех сферах жизни. Но это лишь малая доля из всего того, что было открыто русскими учёными . Наши земляки прославили свою выдающуюся родину абсолютно во всех научных дисциплинах, начиная от медицины и биологии, и заканчивая разработками в сфере космических технологий. Русские ученые оставили для нас, своих потомков, огромный клад научных знаний, чтобы обеспечить нас колоссальным материалом для создания новых великих открытий. 1

Александр Михайлович Бутлеров – знаменитый русский ученый.

Ему была присвоена ученая степень. Русский ученый активно занимался изучением истории химической науки. Он продолжал изучать биологию, проводил опыты в оранжереях, занимался проблемами садоводства и цветоводства.

В 1854 году Бутлеров стал доктором химический и биологических наук, и был назначен исполняющим обязанности профессора химии Казанского университета.

В 1863 году Бутлеров, впервые в истории химии, получил третичный бутиловый спирт. Александр Михайлович открыл основные положения теории изомеризации таутомерии. В Петербургском университете организовал лабораторию, и разработал собственную программу обучения студентов. 2

Михаил Васильевич Остроградский – русский ученый , математик, физик. После окончания университета спустя два года Михаил Васильевич получил звание кандидата наук.

Остроградский пишет ряд работ по математической физике, которые затрагивают такие проблемы, как распространения тепла, гидродинамику, и теорию упругости.

М ихаил Васильевич Остроградский – первый русский ученый , который занялся вопросами аналитической механики. Труды Михаила Васильевича в области аналитической механики, стали фундаментом для всей русской школы этой области науки.

Он занимался изучением математического анализа, алгеброй, теорией вероятностей и теорией чисел. Вклад Остроградского в русскую науку невозможно переоценить. 3

Василии Михайлович Севергин - оставил большой след в развитии русской науки, он один из самых выдающихся русских ученых. Его достижения признаны во всем мире. В 1789 году на конференции Академии Наук работа Севергина , посвященная исследованию происхождения базальта, получила высокие оценки и хорошие отзывы в научной среде. Работа Севергина положила конец спорам плутонистов и нептунистов относительно происхождения базальта. Нептунисты считали, что базальт происходит из осадков. Плутонисты утверждали, что базальт имеет вулканическое происхождение. Исследования Севергина показали, что базальт все же относится к вулканическим породам. Как показало время, русский ученый не ошибся. 4

Андрей Дмитриевич Сахаров – один из самых известных советских общественных деятелей, знаменитый физик. С началом пятидесятых годов, Сахаров совместно с Таммом работали над созданием управляемой термоядерной реакции. Сахарову принадлежит идея магнитной кумуляции для получения сверхсильных магнитных полей. Позже Сахаров озвучил идею лазерного обжатия для получения импульсивной управляемой термоядерной реакции.

В конце десятилетия Сахаров начал активно выступать против проведения ядерных испытаний в атмосфере. Так начиналась общественная деятельность. В 1969 году Сахаров , пожертвовал все свои накопления Красному Кресту, на строительство онкологического центра в городе Москве

Летом 1975 года Сахарову была присуждена Нобелевская премия мира. Спустя пять лет, Сахаров был арестован и отправлен в ссылку. Ученый был лишен всех государственных премий и наград. 5

Михаил Тимофеевич Калашников - изобрел автоматическое стрелковое оружие. Сколько лет уже прошло с момента появления автомата Калашникова. А это оружие все еще актуально до сих пор, и стоит на вооружении во многих странах мира.

Калашников был удостоен сталинской премии за создание АК-47. Помимо автомата, Калашников изобрел АКМ, РГС.

Середина двадцатого века была отмечена множеством особых событий, как для СССР, так и для мира в целом. Одним из таких событий стало испытание атомной бомбы, проведённое американцами на территории Японии. Американцы явно имели желание продемонстрировать миру свою мощь.

А что же Советский Союз? Неужели столь могущественная держава промолчит в ответ? Такие или подобные вопросы будоражили общественное мнение в те времена. И лишь немногие люди оставались спокойными и невозмутимыми, т.к. знали, что Советский Союз уже длительное время ведёт работы над созданием атомной бомбы. И руководил атомными разработками выдающийся физик-ядерщик Курчатов Игорь Васильевич . В тот период не только проводимые работы были строго засекречены, но и имя Игоря Курчатова было изъято из любых источников. 6

Игорь Васильевич Курчатов - величайший учёный, открывший колоссальные возможности атома. Кто-то считает его гением. Кто-то злодеем. 7

Николай Иванович Пирогов – русский хирург, который внес вклад в развитие русской и мировой медицины.

Пирогов защищает докторскую диссертацию. Тема диссертации – перевязка брюшной аорты. Именно благодаря исследованиям Николая Пирогова , в медицине впервые появились сведения о точном расположении брюшной аорты, об особенностях кровообращения в ней.

Пирогов был первым врачом, который настаивал на широком использовании антисептиков. Был исследователем свойств эфирного наркоза. Благодаря нему наркоз нашел широкое применение в стационарах и в военно-полевых условиях. Николай Иванович разработал методы ухода за ранеными. Пирогов открыл ряд мероприятий по предотвращению развития гниения тела. Николаем Ивановичем были усовершенствованы гипсовые повязки. Многие открытия и инновации Пирогова актуальны и сегодня. 8

Сергей Петрович Боткин – русский ученый , медик. Был ученым новатором. Сегодня, многие труды русского ученого являются основными в медицине.

Все достижения Боткина невозможно перечислить. Приведу лишь некоторые. Сергей Петрович рассказывал о значение нервной системы в лечение болезней сердца, о роли организма в течение инфекционных болезней, о происхождении желтухи. Боткиным была открыта роль селезенки в системе кровообращения. Боткин предполагал, что в мозге человека существуют несколько центров – потовой, сахарный, тепловой и другие. Сегодня это предположение является аксиомой в медицине. 9

За свои успехи в научной деятельности Глушко был награжден званием Героя Социалистического Труда, орденами Красного Знамени, Ленина, и многими медалями. 10

Николай Иванович Лобачевский – русский ученый , математик. Сделал ряд интересных открытий в области математики. Им был разработан метод приближенного решения уравнений, выведен ряд теорем о тригонометрических рядах, так же Лобачевский дал наиболее полное понятие непрерывной функции. Внес огромный вклад в развитие неевклидовой геометрии.

К сожалению, Николай Лобачевский принадлежал к тому числу гениев, которые не были признаны по жизни. К его открытиям относились весьма скептически. Однако, со временем труды русского ученного были признаны отечественным и мировым научным обществом. 11

Софья Васильевна Ковалевская - внесла огромный вклад в развитие математики не только в России, но и во всем мире. Ковалевская доказала, то что у задачи Коши существует аналитическое решение. Софья решила и задачу по приведению некоторого класса абелевых интегралов третьего ранга к эллиптическим интегралам. Это был серьезный успех. Главным же успехом Софьи Ковалевской в математики, ученые называют исследования, проведенные с задачей по вращению твердого тела, вокруг неподвижной точки. 12

Н. А. Белоголовый / Сергей Боткин. Его жизнь и врачебная деятельность / Жизнь замечательных людей. Биографическая библиотека Ф. Павленкова

С. Б. Кадомцев / Геометрия Лобачевского и физика / Либроком 2009г.

П. Я. Кочинал / Софья Васильевна Ковалевская / Наука 1981г.

Александр Михайлович Бутлеров



Михаил Васильевич Остроградский



Василий Михайлович Севергин



Андрей Дмитриевич Сахаров


Михаил Тимофеевич Калашников



Игорь Васильевич Курчатов


Николай Иванович Пирогов



Сергей Петрович Боткин


Валентин Петрович Глушко



Николай Иванович Лобачевский



Софья Васильевна Ковалевская



3 Михаил Васильевич Остроградский. Педагогическое наследие. Документы о жизни и деятельности / Под ред. И.Б.Погребысского и А.П.Юшкевича. М., 1961

9 Н. А. Белоголовый / Сергей Боткин. Его жизнь и врачебная деятельность / Жизнь замечательных людей. Биографическая библиотека Ф. Павленкова

10 П. И. Качур / А. В. Глушко / Политехника, XX век. Знаменитые конструкторы России / 2008г.

ИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ

Тема I. ЗАРОЖДЕНИЕ И ВЫЗРЕВАНИЕ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ. ЕЕ СУЩНОСТЬ И ФУНКЦИИ

В истории становления и развития производительных сил общества на различных этапах проблема инженерной деятельности занимает особое место. Инженерное дело прошло довольно непростой, исторически длительный путь становления. История материальной культуры человечества знает немало примеров удивительного решения уникальных инженерных задач еще на довольно ранних этапах развития человеческого общества. Если мы обратимся к истории создания знаменитых семи чудес света, то убедимся в наличии оригинального решения конкретных инженерных проблем.

Вместе с тем история материальной культуры иногда отрицает наличие инженера в обществе древности, а в этой связи и наличия и целенаправленной инженерной деятельности так, как мы понимаем эту деятельность сегодня, как она наполнена в век электричества, электронно-вычислительных машин, спутников, межконтинентальных воздушных лайнеров и ракет. Но некоторое отрицание инженера и инженерной деятельности на ранних ступенях развития общества еще не означает отрицания инженерной деятельности вообще при решении конкретных задач. Она в различных формах существовала в человеческой истории и существовала вполне активно.

Целью настоящей лекции является показ процесса зарождения и становления инженерной деятельности, ее эволюции, появления инженера в производительных силах как обязательной профессии на пути преобразования этих сил, а также рассмотрение внешних и внутренних функций инженерной деятельности в современных условиях.

1. Сущность инженерной деятельности и ее зарождение.

2. Факторы вызревания инженерного труда и его функции.

История инженерной деятельности относительно самостоятельна; ее нельзя свести ни к истории техники, ни к истории науки. Корни ее теряются в глубине прошедших тысячелетий. Зачастую мы можем догадываться, какого упорства и таланта требовал каждый новый шаг в освоении и преобразовании мира, какие творческие коллизии, взлеты и крушения скрыты от нашего взгляда дымкой веков. Данные археологических раскопок позволяют лишь очень приблизительно реконструировать уровень знаний и умений, доступных творцам техники далекого прошлого. Судить об особенностях инженерной деятельности давно ушедших поколений приходится по ее результатам, сохранившимся в натуре или хотя бы в описании. И техника может рассказать о своих создателях очень многое.

Реферат - Вклад отечественных ученых в развитие науки

2011г. 18 стр. г.Иркутск
Рассмотрена деятельность и вклад в развитие науки великих русских ученых:
А.М. Бутлеров
М.В. Остроградский
В.М. Севергин
А.Д. Сахаров
М.Т. Калашников
И.В. Курчатов
Н.И. Пирогов
С.П. Боткин
В.П. Глушко
Н.И. Лобачевский
С.В. Ковалевская

Блох А.М. Советский Союз в интерьере Нобелевских премий: Факты. Документы. Размышления. Комментарии

  • формат pdf
  • размер 38.31 МБ
  • добавлен 11 ноября 2010 г.

Под ред. проф. А. И. Мелуа. СПб.: Издательство 'Туманистика", 2001. 608 с. В книге историка науки, известного своими публикациями по нобелистике доктора геолого-минералогических наук Абрама Блоха освещается история отношений между руководителями Советского Союза и Нобелевским фондом. На основе анализа уникальных отечественных и зарубежных архивных документов показано признание советским руководством авторитета Нобелевского движения, но результато.

Быховский М.А. Пионеры информационного века. История развития теории связи

  • формат pdf
  • размер 4.23 МБ
  • добавлен 16 марта 2010 г.

М.: Техносфера, 2006. — 376 с. — (История электросвязи и радиотехники). — ISBN 5-94836-082-2 Книга, состоящая из двух частей, является первой в исторической литературе, которая посвящена развитию теории связи. В ее первой части представлены очерки о крупнейших ученых, заложивших основы теории связи. Изложение строится таким образом, чтобы показать читателю, что жизнь и деятельность этих ученых наполнена глубоким смыслом и утверждает нравственные.

Гракина Э.И. Учёные России в годы Великой Отечественной войны. 1941-1945

  • формат pdf
  • размер 3.03 МБ
  • добавлен 20 апреля 2011 г.

Изд-во: РАН. Ин-т рос. истории в сотруд. с ун-том им. Меллена. - М. , 2000. - 388 с. - Указ. имён: с. 370-387. В монографии показаны основные направления работы учёных и конструкторов России в годы Великой Отечественной войны: организация научной деятельности, вклад в конструирование и создание военной техники и вооружения, в мобилизацию природных и людских ресурсов, в подготовку научных кадров. Автор прослеживает роль фундаментальной науки в у.

Реферат - Развитие науки и техники в России

  • формат doc
  • размер 57.5 КБ
  • добавлен 28 февраля 2009 г.

Реферат - Развитие теории механизмов и машин (вторая половина XIX - первая половина XX вв.)

  • формат doc
  • размер 97.5 КБ
  • добавлен 13 июня 2011 г.

В реферате описаны предпосылки появления теории механизмов и машин, достижения немецкой школы машиноведения ("Принципы механизмов" Р. Виллиса, "Теоретическая кинематика" Ф. Рело), вклад Чебышева в развитие теории механизмов и машин и формирование конструкторско-технологического направления изучения машин.

Реферат - Самсон Семенович Кутателадзе

  • формат rtf
  • размер 10.98 КБ
  • добавлен 17 января 2009 г.

Довольно неплохой реферат: немного биографии, открытия и важнейший вклад в изучении истории науки и техники

Савинкина Б.В. История химии. Элективный курс, 2007

  • формат pdf
  • размер 1.68 МБ
  • добавлен 20 июня 2009 г.

В учебном пособии рассмотрены основные этапы становления химии как науки, начиная с древних времен до современных достижений. Показан вклад многих ученых в развитие науки, в том числе заслуги русских советских ученых. Материал основан на школьных программах и направлен на выполнение стандарта общего образования.

Соловьев Ю.И. История химии: Развитие химии с древнейших времен до конца XIX в., 1983

  • формат djvu
  • размер 8.06 МБ
  • добавлен 20 июня 2009 г.

Пособие для учителей. - 2-е изд., М.: Просвящение, 1983. - 368 с. Главное внимание уделено основным направлениям развития химии. Показан сложный путь становления химии как науки. Большое внимание уделяется возникновению и становлению атомно-молекулярного учения. Отражена роль отечественных ученых в развитии химии. Материал книги поможет формированию диалектико-материалистического мировоззрения учащихся, воспитании их в духе интернационализма и па.

Харламова Т.Е. История науки и техники. Электроэнергетика

  • формат pdf
  • размер 4.2 МБ
  • добавлен 17 августа 2009 г.

Учебное пособие. - СПб.: СЗТУ, 2006. - 126 с. Содержание пособия включает описание: основных этапов развития науки и техники; истоков электростатики и магнетизма; первых законов электротехники и формирования их основ; развитие электротехники и влияние на ее развитие потребностей промышленности; работы ученых и изобретателей, внесших вклад в развитие электротехники и электроэнергетики; начало массового производства, распределения и использования э.

Храмов Ю.А. Физики: Биографический справочник

  • формат djvu
  • размер 8.79 МБ
  • добавлен 13 апреля 2011 г.

М.: Наука, 1983. - 400 с. В справочнике помещены краткие сведения о жизни и научной деятельности около 1200 физиков прошлого и современности, внесших вклад в развитие физической науки. Приводится библиография, включающая монографии, избранные труды физиков, их научные биографии, юбилейные и мемориальные статьи. Справочник содержит около 1000 портретов, многие из которых являются редкими. Книга содержит также хронологию физики, список лауреатов Но.

Читайте также: