Осмос и обратный осмос реферат

Обновлено: 07.07.2024

Обратный осмос разработали как метод очистки воды более чем 40 лет назад. Он впервые был представлен как технология опреснения морской воды. Как только возможности этого метода были оценены, системы обратного осмоса начали производить для очистки воды в домашних условиях. Использование мембран для отделения одних компонентов раствора от других имеет очень давнюю историю, восходящую еще к Аристотелю, впервые обнаружившему, что морская вода опресняется, если ее пропустить через стенки воскового сосуда. Изучение этого явления и других мембранных процессов началось гораздо позже, в начале XVIII века, когда Реомюр использовал для научных целей полупроницаемые мембраны природного происхождения.

Содержание
Вложенные файлы: 1 файл

метод обратного осмоса.docx

Установка обратного осмоса,
6 м 3 /час

Установка обратного осмоса,
450 л/час

Установка обратного осмоса,
48 м 3 /час

При подготовке питьевой, котловой, технологической и другой воды обратный осмос используют в качестве стадии обессоливания. Этот метод обеспечивает высокоэффективное удаление из воды основной массы растворенных солей, органики, микроорганизмов, коллоидных примесей и т.п. Основой для изготовления любой установки обратного осмоса являются мембранные элементы самого разного исполнения и конструкции. Наиболее распространенными являются рулонные мембранные элементы, при производстве которых применяются самые современные технологии, обеспечивающие стабильно высокое качество и характеристики. Широкий модельный ряд и стандартизированные характеристики (размеры, рабочие площади, селективность и т.п.) позволяют быстро и качественно производить сборку установок обратного осмоса различной производительности и назначения. Компания "Гелиос Стар" на своих производственных мощностях осуществляет сборку подобных установок различной производительности. Использование самого современного оборудования и комплектующих, высокий уровень инженерного персонала, хорошо налаженное производство установок с использованием технологии обратный осмос обеспечили достойную репутацию компании среди ее клиентов. На сегодняшний день можно смело утверждать, что обратный осмос является визитной картой компании "Гелиос Стар".

Изометрия установки обратного осмоса

3D модель установки обратного осмоса

Хотя обратный осмос является достаточно сложной технологией, установки производства компании "Гелиос Стар" отличаются простотой и надежностью в эксплуатации. По сравнению с конкурирующими методами, обратный осмос обеспечивает более высокий экономический и экологический эффект. В совокупности все эти факторы выводят мембранные методы очистки воды в лидирующие по сравнению с традиционными технологиями.

Основные требования к качеству исходной воды для работы промышленных систем обратного осмоса

Диапазоны и максимально допустимые концентрации показателей входной воды для стандартных систем обратного осмоса, предназначенных для обработки воды питьевого качества (водопроводная вода)*:

• pH - 4-11;
• мутность - 0,1 мг/л (0,2 NTU);
• индекс плотности осадка ** (SDI) - 3,0;
• общая жесткость *** - 0,2 мг-экв/л;
• железо общее (Fe) - 0,1 мг/л;
• марганец (Mn) - 0,05 мг/л;
• окисляемость - 5 мгO2/л;
• свободный хлор - 0,1 мг/л;
• перманганат калия (KMnO4) - 10 мг/л;
• кремний (SiO2) - 22 мг/л;
• максимальное солесодержание (TDS) - 1000 мг/л;
• температура - 1-35°C.

* Качество воды после обработки системой обратного осмоса для обессоливания зависит от параметров
обрабатываемой воды.
** В этом случае количество химических промывок обратного осмоса минимальное. Производитель мембран вводит
ограничения на этот показатель до 5.
*** При применении антискалантов значение общей жесткости воды может достигать значений 15-20 мг-экв/л.

Основные условия применения промышленных систем обратного осмоса

• рабочее давление - от 3,0 до 6,0 атм.;
• электрические параметры - 380 В, 50 Гц, 1-45 кВт;
• температура воздуха в помещении 5-35°C;
• влажность - не более 70%;
• наличие дренажной системы и накопительной емкости.

5. Предварительные фильтры механических примесей

Сетчатые фильтры YAMIT

Фильтры засыпного типа

Удаление крупных взвешенных частиц производится при так называемом предварительном фильтровании (макрофильтрование или "грубая" очистка). Для этого на магистральную трубу, подающую воду к потребителю, устанавливают фильтры предварительной грубой очистки. Процесс фильтрования может осуществляться либо на поверхности, либо в глубине фильтрующего материала. Исходя из этого, данные фильтры имеют различное конструктивное исполнение. Например, в сетчатых фильтрах в качестве фильтрующего элемента используются металлические сетки с различными размерами ячеек, фильтрование осуществляется на поверхности сетки, а в дисковых или картриджных фильтрах используется принцип глубинного (объемного) фильтрования. В большинстве случаев дисковые фильтры имеют неоспоримое преимущество перед сетчатыми вследствие их более высокой "грязеёмкости" (при этом, размер удаляемых частиц не менее 25 мкм). Основным достоинством дисковых фильтров является сочетание поверхностной и объемной фильтрации, а так же возможность 100% отмывки пакета дисков.

Для грубого предварительного фильтрования применяются так же фильтры засыпного типа. Принцип работы засыпных механических фильтров основан на фильтрации вышеуказанных загрязнений через слои зернистых и пористых фильтрующих материалов различной структуры, плотности. Возможно применение как однослойных, так и многослойных схем фильтрования. Такие фильтры применяют для эффективного удаления загрязнений с рейтингом частиц более 5 мкм. Настройка засыпных фильтров сводится к установке гидравлических режимов, периодичности и длительности взрыхляющей промывки. Регенерация, как правило, не требует применения химреагентов и весьма кратковремена. Частота и время регенерационной промывки фильтра рассчитывается специалистами на основе параметров исходной воды и характеристик применяемой фильтрующей загрузки.

6. Свойства очищенной воды

Вода, полученная из установки очистки методом обратного осмоса, практически полностью лишена минеральных солей.

Если с пищей не поступает их достаточное количество, то воду для питья и приготовления пищи можно дополнительно целенаправленно минерализовать добавляя соли NaF, KI, CaCl и MgCl, а также, если нужно, другие микроэлементы, причём состав и степень минерализации можно подбирать индивидуально по региону проживания, личным анализам и т. д. Корректирующие порошки солей можно заказать в аптеке. Можно также просто пользоваться качественными витаминно-минеральными комплексами

В системах обратного осмоса бытового назначения давление входной воды на мембрану соответствует давлению воды в трубопроводе. В случае, если давление возрастает, поток воды через мембрану также возрастает.

На практике, мембрана не полностью задерживает растворенные в воде вещества. Они проникают через мембрану, но в ничтожно малых количествах. Поэтому очищенная вода все-таки содержит незначительное количество растворенных веществ. Важно, что повышение давления на входе не приводит к росту содержания солей в воде после мембраны. Наоборот, большее давление воды не только увеличивает производительность мембраны, но и улучшает качество очистки. Другими словами, чем выше давление воды на мембране, тем больше чистой воды лучшего качества можно получить.

В процессе очищения воды концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвращения этого вдоль мембраны создается принудительный поток воды, смывающий "рассол" в дренаж.

Эффективность процесса обратного осмоса в отношении различных примесей и растворенных веществ зависит от ряда факторов. Давление, температура, уровень рН, материал, из которого изготовлена мембрана, и химический состав входной воды, влияют на эффективность работы систем обратного осмоса.

Неорганические вещества очень хорошо отделяются обратноосмотической мембраной. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.
Мембрана обратного осмоса также удаляет из воды и органические вещества . Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.

В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса вода получается свежая и вкусная.

Системы обратного осмоса (фильтры обратноосмотической очитски воды) – самые эфектиыне фильтры для бытового использования. Удаляются такие вредные вещества как магний, ртуть, нитраты, нитриты, стронций, мышьяк, цианиты, асбест, фтор, свинец, сульфаты, железо, хлор,…. и т.д…., все бактерии и вирусы.

Сравнительная таблица системы обратного осмоса по сравнению с другими методами очистки воды - здесь

Пермеат - поток обессоленной воды, выходящий из установки системы обратного осмоса или ультрафильтрации

Содержание ионов в воде, очищенной методом обратного осмоса (Пермеат) и потоке воды ,выходящей в дренаж ( Концентрат),( мг/л )

Осмос (греч. osmos толчок, проталкивание, давление) — самопроизвольный переход вещества, обычно растворителя, через полупроницаемую мембрану, отделяющую раствор от чистого растворителя или от раствора меньшей концентрации.


Впервые осмос наблюдал Жан-Антуа Нолле в 1748, однако исследование этого явления было начато спустя столетие.

Осмос обусловлен стремлением системы к термодинамическому равновесию и выравниванию концентраций растворов по обе стороны мембраны путем односторонней диффузии молекул растворителя.

Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Если такая мембрана разделяет раствор и чистый растворитель, то концентрация растворителя в растворе оказывается менее высокой, поскольку там часть его молекул замещена на молекулы растворенного вещества (см. Рис. 1). Вследствие этого, переходы частиц растворителя из отдела, содержащего чистый растворитель, в раствор будут происходить чаще, чем в противоположном направлении. Соответственно, объём раствора будет увеличиваться (а концентрация уменьшаться), тогда как объём растворителя будет соответственно уменьшаться.

Например, к яичной скорлупе с внутренней стороны прилегает полупроницаемая мембрана: она пропускает молекулы воды и задерживает молекулы сахара. Если такой мембраной разделить растворы сахара с концентрацией 5 и 10 % соответственно, то через нее в обоих направлениях будут проходить только молекулы воды. В результате в более разбавленном растворе концентрация сахара повысится, а в более концентрированном, наоборот, понизится. Когда концентрация сахара в обоих растворах станет одинаковой, наступит равновесие. Растворы, достигшие равновесия, называются изотоническими.

Осмос, направленный внутрь ограниченного объёма жидкости, называется эндосмосом, наружу — экзосмосом. Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса — обратной диффузии растворителя.

В случаях, когда мембрана проницаема не только для растворителя, но и для некоторых растворённых веществ, перенос последних из раствора в растворитель позволяет осуществить диализ, применяемый как способ очистки полимеров и коллоидных систем от низкомолекулярных примесей, например электролитов.

Глава 2. Осмотическое давление

Осмотическое давление (обозначается р) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Осмотическое давление может быть весьма значительным. В дереве, например, под действием осмотического давления растительный сок (вода с растворёнными в ней минеральными веществами) поднимается по ксилеме от корней до самой верхушки. Одни только капиллярные явления не способны создать достаточную подъёмную силу — например, секвойям требуется доставлять раствор на высоту даже до 100 метров. При этом в дереве движение концентрированного раствора, каким является растительный сок, ничем не ограничено.

Взаимодействие эритроцитов с растворами в зависимости от их осмотического давления.


Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для введения в кровь, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3-5-10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, — соответственно, деплазмолизом.

Величина осмотического давления, создаваемая раствором, зависит от количества, а не от химической природы растворенных в нём веществ (или ионов, если молекулы вещества диссоциируют), следовательно, осмотическое давление является коллигативным свойством раствора. Чем больше концентрация вещества в растворе, тем больше создаваемое им осмотическое давление. Это правило, носящее название закона осмотического давления, выражается простой формулой, очень похожей на некий закон идеального газа:

где i — изотонический коэффициент раствора; C — молярная концентрация раствора, выраженная через комбинацию основных единиц СИ, то есть, в моль/м3, а не в привычных моль/л; R — универсальная газовая постоянная; T — термодинамическая температура раствора.

Это показывает также схожесть свойств частиц растворённого вещества в вязкой среде растворителя с частицами идеального газа в воздухе. Правомерность этой точки зрения подтверждают опыты Ж. Б. Перрена (1906): распределение частичек эмульсии смолы гуммигута в толще воды в общем подчинялось закону Больцмана.

Осмотическое давление, которое зависит от содержания в растворе белков, называется онкотическим (0,03 — 0,04 атм.). При длительном голодании, болезни почек концентрация белков в крови уменьшается, онкотическое давление в крови снижается и возникают онкотические отёки: вода переходит из сосудов в ткани, где рОНК больше. При гнойных процессах рОНК в очаге воспаления возрастает в 2-3 раза, так как увеличивается число частиц из-за разрушения белков. В организме осмотическое давление должно быть постоянным ( 7,7 атм.). Поэтому пациентам вводят изотонические растворы (растворы, осмотическое давление которых равно р плазмы 7,7 атм. - 0,9 % NaCl — физиологический раствор, 5 % раствор глюкозы). Гипертонические растворы, у которых р больше, чем осмотическое давление плазмы, применяются в медицине для очистки ран от гноя (10 % NaCl), для удаления аллергических отёков (10 % CaCl2, 20 % глюкоза), в качестве слабительных лекарств (Na2SO4•10H2O, MgSO4•7H2O).

Закон осмотического давления можно использовать для расчёта молекулярной массы данного вещества (при известных дополнительных данных).

Осмотическое давление измеряют специальным прибором

Глава 3. Осмометр – прибор для измерения осмотического давления

Осмометр - (осмо- + греч. metreo измерять) прибор для измерения осмотического давления или концентрации осмотически активных веществ; применяется при биофизических и биохимических исследованиях.


Принципиальная схема осмометра: А — камера для раствора; Б — камера для растворителя; М — мембрана. Уровни жидкости в трубках при осмотическом равновесии: а и б — в условиях равенства внешних давлений в камерах А и Б, когда rА = rБ, при этом Н — столб жидкости, уравновешивающий осмотическое давление; б — в условиях неравенства внешних давлений, когда rА — rБ = p.

Осмометры давления пара

Этот тип приборов отличается тем, что для измерения требуется минимальный объем пробы (единицы микролитров), что имеет большое значение, когда из объекта исследования нельзя взять больший объем. Однако по причине малости объема пробы осмометры давления пара имеют большую погрешность по сравнению с другими. Кроме того, результат измерения зависит от изменения атмосферного давления. Основное применение эти приборы нашли в научных исследованиях и педиатрической практике для исследований крови новорожденных, взятой из пальчика или пяточки. Диапазон измеряемых концентраций ограничивается 2000 ммоль/кг Н2О. В российских ЛПУ они не нашли широкого применения. В Европейском союзе осмометры давления пара производит фирма Dr .Knauer, Gonotec (Германия), в США - фирма Wescor .

Мембранные осмометры

На свойстве осмоса строятся осмометры, называемые мембранными. В их конструкции могут использоваться как искусственные мембраны (например, целлофан), так и природные (например, кожа лягушки).

Приборы этого типа используются для измерения так называемого коллоидно-осмотического давления крови (КОД), которое создается высокомолекулярной (более 30000 Д) составляющей общей концентрации осмотически активных частиц, содержащихся в плазме крови. Это давление называется также онкотическим и создается преимущественно белками. КОД составляет менее 3 ммоль/кг Н2О и поэтому незначительно влияет на общее осмотическое давление, но имеет определяющее значение для процессов транскапиллярного обмена. Эта составляющая общего давления имеет важное диагностическое значение. Мембранные осмометры производят фирмы Dr. Knauer , Gonotec , Германия (Osmomat 050), в США - фирма Wescor. Интересно, что фирма доктора Кнауэра предлагает всю линейку осмометров, перекрывая, таким образом, весь диапазон частиц с молекулярной массой, включая миллионные.

Приборы этого типа в России не производятся.

Осмометры по точке замерзания (криоскопические)

Осмометры, принцип действия которых основан на измерении понижения (депрессии) температуры замерзания раствора в сравнении с температурой замерзания растворителя (в нашем случае воды), нашли наибольшее распространение по причине наилучшей пригодности этой методики для лабораторной клинической диагностики нарушений водного и электролитного баланса (молекулярные массы частиц биологических жидкостей не превышают 30000 Д).

Глава 4. Биологическая роль осмоса и осмотического давления

осмос давление раствор

Осмос играет важную роль во многих биологических процессах. Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности; для больших белковых молекул, находящихся в растворенном состоянии внутри клетки, она непроницаема. Поэтому белки, столь важные для биологических процессов, остаются внутри клетки.

Осмос участвует в переносе питательных веществ в стволах высоких деревьев, где капиллярный перенос не способен выполнить эту функцию.

Клетки растений используют осмос также для увеличения объёма вакуоли, чтобы она распирала стенки клетки (тургорное давление). Клетки растений делают это путём запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом. С изменениями тургорного давления связаны многие движения растений (например, движения усов гороха и других лазающих растений). Пресноводные простейшие также имеют вакуоль, но задача вакуолей простейших заключается лишь в откачивании лишней воды из цитоплазмы для поддержания постоянной концентрации растворённых в ней веществ.

Осмос также играет большую роль в экологии водоёмов. Если концентрация соли и других веществ в воде поднимется или упадёт, то обитатели этих вод погибнут из-за пагубного воздействия осмоса.

Глава 5. Осмотическая электростанция


24 ноября 2009 г. государственная энергетическая компания Statkraft (Норвегия) представила первый в мире солевой генератор, который вырабатывает энергию за счет смешивания морской и пресной воды. Прототип осмотической электростанции будет испытываться на старой бумажной фабрике в 60 км к югу от столицы Норвегии Осло. Стоимость проекта составляет 20 млн долл., мощность электростанции – 5 кВт. Предположительно, первая коммерческая осмотическая электростанция появится уже через несколько лет.

Принцип действия соляной электростанции основан на явлении, известном как осмос: молекулы воды переходят из отсека с пресной водой в отсек с с морской водой, стремясь выровнить концентрацию соли по обе стороны полупроницаемой мембраны; при этом увеличивается объем воды в отсеке с морской водой и создается избыточное давление, которое заставляет генератор вырабатывать электричество.

Глава 6. Обратный осмос

Процесс обратного осмоса, как способ очистки воды, используется с начала 60-х годов. Первоначально он применялся для опреснения морской воды. Сегодня по принципу обратного осмоса в мире производятся сотни тысяч тонн питьевой воды в сутки.

Совершенствование технологии сделало возможным применение обратноосмотических систем в домашних условиях. На настоящий момент в мире уже установлены тысячи таких систем. Получаемая обратным осмосом вода имеет уникальную степень очистки. По своим свойствам она близка к талой воде древних ледников, которая признается наиболее экологически чистой и полезной для человека.

В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.


Этот процесс называется "обратным осмосом". По этому принципу и работают все мембраны обратного осмоса.

В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.

В системах обратного осмоса бытового назначения давление входной воды на мембрану соответствует давлению воды в трубопроводе. В случае, если давление возрастает, поток воды через мембрану также возрастает.

На практике, мембрана не полностью задерживает растворенные в воде вещества. Они проникают через мембрану, но в ничтожно малых количествах. Поэтому очищенная вода все-таки содержит незначительное количество растворенных веществ. Важно, что повышение давления на входе не приводит к росту содержания солей в воде после мембраны. Наоборот, большее давление воды не только увеличивает производительность мембраны, но и улучшает качество очистки. Другими словами, чем выше давление воды на мембране, тем больше чистой воды лучшего качества можно получить.

В процессе очищения воды концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвращения этого вдоль мембраны создается принудительный поток воды, смывающий "рассол" в дренаж.

Эффективность процесса обратного осмоса в отношении различных примесей и растворенных веществ зависит от ряда факторов. Давление, температура, уровень рН, материал, из которого изготовлена мембрана, и химический состав входной воды, влияют на эффективность работы систем обратного осмоса.

Неорганические вещества очень хорошо отделяются обратноосмотической мембраной. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.

Мембрана обратного осмоса также удаляет из воды и органические вещества . Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.

В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она, строго говоря, даже не требует кипячения.

Горшков В. И., Кузнецов И. А., Физическая химия, М., 1986; Дуров В. А., Агеев Е.П., Термодинамическая теория растворов неэлектролитов, М., 1987. См. также лит. при ст. Мембранные процессы разделения.

Обратный осмос разработали как метод очистки воды более чем 40 лет назад. Он впервые был представлен как технология опреснения морской воды. Как только возможности этого метода были оценены, системы обратного осмоса начали производить для очистки воды в домашних условиях.

Содержание работы

1. История обратного осмоса……………………………………………………………..3
2. Обратный осмос в природе…………………………………………………………….3
3. Обратный осмос – определение………………………………………………………..3
4. Принцип действия……………………………………………………………………….4
5. Предварительные фильтры механических примесей……………………………… .12
6. Свойства очищенной воды……………………………………………………………..13
7. Применение…………………………………………. 13
8. Крупнейшие производители фильтров и систем очистки воды…………………….17
9. Литература……………………………………………………………………………. 18

Содержимое работы - 1 файл

Обратный осмос.doc

2. Обратный осмос в природе…………………………………………………………… .3

3. Обратный осмос – определение………………………………………………… ……..3

5. Предварительные фильтры механических примесей……………………………… .12

6. Свойства очищенной воды…………………………………………………………….. 13

8. Крупнейшие производители фильтров и систем очистки воды…………………….17


1. История обратного осмоса

Обратный осмос разработали как метод очистки воды более чем 40 лет назад. Он впервые был представлен как технология опреснения морской воды. Как только возможности этого метода были оценены, системы обратного осмоса начали производить для очистки воды в домашних условиях.


2. Обратный осмос в природе

Принцип работы мембранной системы является обратноосмотическим. Явление осмоса лежит в основе обмена веществ всех живых организмов. Например, подкладка скорлупы куриного яйца является естественной мембраной, через нее проходят молекулы кислорода, но задерживаются загрязнители. Стенки клеток растений, животных и человека представляют собой естественную мембрану, которая является частично проницаемой, поскольку она свободно пропускает молекулы воды, но не молекулы других веществ. В то время когда корни растений впитывают воду, стены их клеток формируют натуральную осмотическую мембрану, которая пропускает молекулы воды и отторгает большинство примесей. Цветы и травы стоят вертикально только за счет так называемого осмотического давления. Поэтому при недостатке воды они выглядят пожухлыми и вялыми. Способность мембраны фильтровать, уникальна. Мембрана отделяет вещества от воды на молекулярном уровне и именно это позволяет любому живому организму существовать.

3. Обратный осмос - определение

Процесс обратного осмоса, как способ очистки воды, используется с начала 60-х годов. Первоначально он применялся для опреснения морской воды. Сегодня по принципу обратного осмоса в мире производятся сотни тысяч тонн питьевой воды в сутки.

Совершенствование технологии сделало возможным применение обратноосмотических систем в домашних условиях. На настоящий момент в мире уже установлены тысячи таких систем. Получаемая обратным осмосом вода имеет уникальную степень очистки. По своим свойствам она близка к талой воде древних ледников, которая признается наиболее экологически чистой и полезной для человека.

Обратный осмос — прохождение воды или других растворителей через полупроницаемую мембрану из более концентрированного в менее концентрированный раствор в результате воздействия давления, превышающего разницу осмотических давлений обоих растворов. При этом мембрана пропускает растворитель, но не пропускает некоторые растворённые в нём вещества.

Применение для очистки воды.

При очистке воды многие растворённые в ней вещества задерживаются на мембране фильтра. Для преодоления на мембране осмотического давления воду подают под давлением около 2…17 атм для фильтрации и опреснения питьевой и солоноватой воды, и 24…70 атм для морской воды.

В системах очистки воды обычно используются синтетические полупроницаемые мембраны. Мембрана задерживает высокомолекулярные загрязнители, но пропускает низкомолекулярные вещества, например, такие газы, как кислород, хлор, углекислый газ и пр. Некоторые газы могут определять вкус воды.

В процессе обратного осмоса вода практически не нагревается.

Современная промышленная установка обратноосмотического опреснения включает следующее оборудование: фильтр тонкой очистки воды, система реагентной подготовки, насос высокого давления, блок фильтрующих модулей, блок химической промывки. Основной элемент установки обратного осмоса — полупроницаемая обратноосмотическая мембрана, помещённая в корпус. В неё поступает исходная вода, а отводится два потока — очищенная и обессоленная, которая называется пермеатом, и вода с концентрированными примесями, называемая концентратом, которая сливается. Продавливание воды через мембрану ведётся при высоком давлении, которое создает насос, обычно центробежный многоступенчатый или роторный. Для замедления образования нежелательных отложений на мембранах применяется дозирование ингибитора осадкообразования. Для снятия осадков с поверхности мембран используется система химпромывки. Для контроля качества очистки и рН — проточные измерители солесодержания и рН-метры. Для контроля расхода пермеата и концентрата — проточные расходомеры. Управление системой обратного осмоса можно осуществлять в полуавтоматическом и автоматическом режиме.

4. Принцип действия

Явление осмоса лежит в основе обмена веществ всех живых организмов. Благодаря ему в каждую живую клетку поступают питательные вещества и, наоборот, выводятся шлаки.Явление осмоса наблюдается, когда два соляных раствора с разными концентрациями разделены полупроницаемой мембраной.

Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет.

Если по разные стороны полупроницаемой мембраны находятся солесодержащие растворы с разной концентрацией, молекулы воды будут перемещаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Из-за явления осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением.

Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется "осмотическим давлением".

Мембранные установки обратного осмоса

Наиболее распространены процессы разделения, в которых в качестве движущей силы применяют разность давлений: обратный осмос, нанофильтрация, ультрафильтрация.

Мембранное разделение это процесс продавливания воды через полупроницаемую мембрану под давлением. Мембраны отличаются друг от друга конструкционными материалами, размером пор, при этом, чем меньше размер пор, тем выше степень очистки и тем большее давление надо приложить.

В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.

В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.

Рис.1 Процесс обратного осмоса

Рулонный мембранный элемент для установки обратного осмоса, представленный на Рис.2. состоит из трубки с прорезями для прохода пермеата и герметично присоединенного к ней пакета мембран, расположенного между ними дренажного листа и сетки-сепаратора, образующей межмембранные каналы. В процессе скручивания пакета для герметичного разделения напорной полости и полости сбора пермеата кромки дренажного листа пропитывают специальным клеем.

Рис.2 Рулонный мембранный элемент

Рулонные мембранные элементы для мембранных установок обратного осмоса работают по принципу тангенсальной фильтрации. В процессе обессоливания, она разделяется на два потока: фильтрат (обессоленная вода) и концентрат (раствор с высоким солесодержанием). Разделяемый поток воды движется в осевом направлении по межмембранным каналам рулонного элемента, а фильтрат спиралеобразно по дренажному листу в направлении отвода фильтра. Концентрат выходит с другой стороны мембранного модуля обратного осмоса. Сегодня обратноосмотические мембранные элементы рулонного типа являются наиболее распространенными и наименее дорогостоящими.

Преимущества обратноосмотических аппаратов рулонного типа:

 Высокая плотность упаковки мембран в единице объема (300–800 м2/м3);

 Удобство монтажа и демонтажа мембранного элемента в корпусе мембранной установки обратного осмоса;

 Низкая стоимость и простота конструкции напорного корпуса мембранной установки;

 Относительно низкие потери давления в установке;

 Использование для изготовления разделительных элементов плоской мембраны, качество которой может быть предварительно проконтролировано несложными способами.

Таблица.1 Технические характеристики мембранных элементов для установок обратного осмоса

Осмос (греч. osmos толчок, проталкивание, давление) — самопроизвольный переход вещества, обычно растворителя, через полупроницаемую мембрану, отделяющую раствор от чистого растворителя или от раствора меньшей концентрации.


Впервые осмос наблюдал Жан-Антуа Нолле в 1748, однако исследование этого явления было начато спустя столетие.

Осмос обусловлен стремлением системы к термодинамическому равновесию и выравниванию концентраций растворов по обе стороны мембраны путем односторонней диффузии молекул растворителя.

Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Если такая мембрана разделяет раствор и чистый растворитель, то концентрация растворителя в растворе оказывается менее высокой, поскольку там часть его молекул замещена на молекулы растворенного вещества (см. Рис. 1). Вследствие этого, переходы частиц растворителя из отдела, содержащего чистый растворитель, в раствор будут происходить чаще, чем в противоположном направлении. Соответственно, объём раствора будет увеличиваться (а концентрация уменьшаться), тогда как объём растворителя будет соответственно уменьшаться.

Например, к яичной скорлупе с внутренней стороны прилегает полупроницаемая мембрана: она пропускает молекулы воды и задерживает молекулы сахара. Если такой мембраной разделить растворы сахара с концентрацией 5 и 10 % соответственно, то через нее в обоих направлениях будут проходить только молекулы воды. В результате в более разбавленном растворе концентрация сахара повысится, а в более концентрированном, наоборот, понизится. Когда концентрация сахара в обоих растворах станет одинаковой, наступит равновесие. Растворы, достигшие равновесия, называются изотоническими.

Осмос, направленный внутрь ограниченного объёма жидкости, называется эндосмосом, наружу — экзосмосом. Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса — обратной диффузии растворителя.

В случаях, когда мембрана проницаема не только для растворителя, но и для некоторых растворённых веществ, перенос последних из раствора в растворитель позволяет осуществить диализ, применяемый как способ очистки полимеров и коллоидных систем от низкомолекулярных примесей, например электролитов.

Глава 2. Осмотическое давление

Осмотическое давление (обозначается р) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Осмотическое давление может быть весьма значительным. В дереве, например, под действием осмотического давления растительный сок (вода с растворёнными в ней минеральными веществами) поднимается по ксилеме от корней до самой верхушки. Одни только капиллярные явления не способны создать достаточную подъёмную силу — например, секвойям требуется доставлять раствор на высоту даже до 100 метров. При этом в дереве движение концентрированного раствора, каким является растительный сок, ничем не ограничено.

Взаимодействие эритроцитов с растворами в зависимости от их осмотического давления.


Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для введения в кровь, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3-5-10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, — соответственно, деплазмолизом.

Величина осмотического давления, создаваемая раствором, зависит от количества, а не от химической природы растворенных в нём веществ (или ионов, если молекулы вещества диссоциируют), следовательно, осмотическое давление является коллигативным свойством раствора. Чем больше концентрация вещества в растворе, тем больше создаваемое им осмотическое давление. Это правило, носящее название закона осмотического давления, выражается простой формулой, очень похожей на некий закон идеального газа:

где i — изотонический коэффициент раствора; C — молярная концентрация раствора, выраженная через комбинацию основных единиц СИ, то есть, в моль/м3, а не в привычных моль/л; R — универсальная газовая постоянная; T — термодинамическая температура раствора.

Это показывает также схожесть свойств частиц растворённого вещества в вязкой среде растворителя с частицами идеального газа в воздухе. Правомерность этой точки зрения подтверждают опыты Ж. Б. Перрена (1906): распределение частичек эмульсии смолы гуммигута в толще воды в общем подчинялось закону Больцмана.

Осмотическое давление, которое зависит от содержания в растворе белков, называется онкотическим (0,03 — 0,04 атм.). При длительном голодании, болезни почек концентрация белков в крови уменьшается, онкотическое давление в крови снижается и возникают онкотические отёки: вода переходит из сосудов в ткани, где рОНК больше. При гнойных процессах рОНК в очаге воспаления возрастает в 2-3 раза, так как увеличивается число частиц из-за разрушения белков. В организме осмотическое давление должно быть постоянным ( 7,7 атм.). Поэтому пациентам вводят изотонические растворы (растворы, осмотическое давление которых равно р плазмы 7,7 атм. - 0,9 % NaCl — физиологический раствор, 5 % раствор глюкозы). Гипертонические растворы, у которых р больше, чем осмотическое давление плазмы, применяются в медицине для очистки ран от гноя (10 % NaCl), для удаления аллергических отёков (10 % CaCl2, 20 % глюкоза), в качестве слабительных лекарств (Na2SO4•10H2O, MgSO4•7H2O).

Закон осмотического давления можно использовать для расчёта молекулярной массы данного вещества (при известных дополнительных данных).

Осмотическое давление измеряют специальным прибором

Глава 3. Осмометр – прибор для измерения осмотического давления

Осмометр - (осмо- + греч. metreo измерять) прибор для измерения осмотического давления или концентрации осмотически активных веществ; применяется при биофизических и биохимических исследованиях.


Принципиальная схема осмометра: А — камера для раствора; Б — камера для растворителя; М — мембрана. Уровни жидкости в трубках при осмотическом равновесии: а и б — в условиях равенства внешних давлений в камерах А и Б, когда rА = rБ, при этом Н — столб жидкости, уравновешивающий осмотическое давление; б — в условиях неравенства внешних давлений, когда rА — rБ = p.

Осмометры давления пара

Этот тип приборов отличается тем, что для измерения требуется минимальный объем пробы (единицы микролитров), что имеет большое значение, когда из объекта исследования нельзя взять больший объем. Однако по причине малости объема пробы осмометры давления пара имеют большую погрешность по сравнению с другими. Кроме того, результат измерения зависит от изменения атмосферного давления. Основное применение эти приборы нашли в научных исследованиях и педиатрической практике для исследований крови новорожденных, взятой из пальчика или пяточки. Диапазон измеряемых концентраций ограничивается 2000 ммоль/кг Н2О. В российских ЛПУ они не нашли широкого применения. В Европейском союзе осмометры давления пара производит фирма Dr .Knauer, Gonotec (Германия), в США - фирма Wescor .

Мембранные осмометры

На свойстве осмоса строятся осмометры, называемые мембранными. В их конструкции могут использоваться как искусственные мембраны (например, целлофан), так и природные (например, кожа лягушки).

Приборы этого типа используются для измерения так называемого коллоидно-осмотического давления крови (КОД), которое создается высокомолекулярной (более 30000 Д) составляющей общей концентрации осмотически активных частиц, содержащихся в плазме крови. Это давление называется также онкотическим и создается преимущественно белками. КОД составляет менее 3 ммоль/кг Н2О и поэтому незначительно влияет на общее осмотическое давление, но имеет определяющее значение для процессов транскапиллярного обмена. Эта составляющая общего давления имеет важное диагностическое значение. Мембранные осмометры производят фирмы Dr. Knauer , Gonotec , Германия (Osmomat 050), в США - фирма Wescor. Интересно, что фирма доктора Кнауэра предлагает всю линейку осмометров, перекрывая, таким образом, весь диапазон частиц с молекулярной массой, включая миллионные.

Приборы этого типа в России не производятся.

Осмометры по точке замерзания (криоскопические)

Осмометры, принцип действия которых основан на измерении понижения (депрессии) температуры замерзания раствора в сравнении с температурой замерзания растворителя (в нашем случае воды), нашли наибольшее распространение по причине наилучшей пригодности этой методики для лабораторной клинической диагностики нарушений водного и электролитного баланса (молекулярные массы частиц биологических жидкостей не превышают 30000 Д).

Глава 4. Биологическая роль осмоса и осмотического давления

осмос давление раствор

Осмос играет важную роль во многих биологических процессах. Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, некоторых из растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности; для больших белковых молекул, находящихся в растворенном состоянии внутри клетки, она непроницаема. Поэтому белки, столь важные для биологических процессов, остаются внутри клетки.

Осмос участвует в переносе питательных веществ в стволах высоких деревьев, где капиллярный перенос не способен выполнить эту функцию.

Клетки растений используют осмос также для увеличения объёма вакуоли, чтобы она распирала стенки клетки (тургорное давление). Клетки растений делают это путём запасания сахарозы. Увеличивая или уменьшая концентрацию сахарозы в цитоплазме, клетки могут регулировать осмос. За счёт этого повышается упругость растения в целом. С изменениями тургорного давления связаны многие движения растений (например, движения усов гороха и других лазающих растений). Пресноводные простейшие также имеют вакуоль, но задача вакуолей простейших заключается лишь в откачивании лишней воды из цитоплазмы для поддержания постоянной концентрации растворённых в ней веществ.

Осмос также играет большую роль в экологии водоёмов. Если концентрация соли и других веществ в воде поднимется или упадёт, то обитатели этих вод погибнут из-за пагубного воздействия осмоса.

Глава 5. Осмотическая электростанция


24 ноября 2009 г. государственная энергетическая компания Statkraft (Норвегия) представила первый в мире солевой генератор, который вырабатывает энергию за счет смешивания морской и пресной воды. Прототип осмотической электростанции будет испытываться на старой бумажной фабрике в 60 км к югу от столицы Норвегии Осло. Стоимость проекта составляет 20 млн долл., мощность электростанции – 5 кВт. Предположительно, первая коммерческая осмотическая электростанция появится уже через несколько лет.

Принцип действия соляной электростанции основан на явлении, известном как осмос: молекулы воды переходят из отсека с пресной водой в отсек с с морской водой, стремясь выровнить концентрацию соли по обе стороны полупроницаемой мембраны; при этом увеличивается объем воды в отсеке с морской водой и создается избыточное давление, которое заставляет генератор вырабатывать электричество.

Глава 6. Обратный осмос

Процесс обратного осмоса, как способ очистки воды, используется с начала 60-х годов. Первоначально он применялся для опреснения морской воды. Сегодня по принципу обратного осмоса в мире производятся сотни тысяч тонн питьевой воды в сутки.

Совершенствование технологии сделало возможным применение обратноосмотических систем в домашних условиях. На настоящий момент в мире уже установлены тысячи таких систем. Получаемая обратным осмосом вода имеет уникальную степень очистки. По своим свойствам она близка к талой воде древних ледников, которая признается наиболее экологически чистой и полезной для человека.

В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.


Этот процесс называется "обратным осмосом". По этому принципу и работают все мембраны обратного осмоса.

В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.

В системах обратного осмоса бытового назначения давление входной воды на мембрану соответствует давлению воды в трубопроводе. В случае, если давление возрастает, поток воды через мембрану также возрастает.

На практике, мембрана не полностью задерживает растворенные в воде вещества. Они проникают через мембрану, но в ничтожно малых количествах. Поэтому очищенная вода все-таки содержит незначительное количество растворенных веществ. Важно, что повышение давления на входе не приводит к росту содержания солей в воде после мембраны. Наоборот, большее давление воды не только увеличивает производительность мембраны, но и улучшает качество очистки. Другими словами, чем выше давление воды на мембране, тем больше чистой воды лучшего качества можно получить.

В процессе очищения воды концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвращения этого вдоль мембраны создается принудительный поток воды, смывающий "рассол" в дренаж.

Эффективность процесса обратного осмоса в отношении различных примесей и растворенных веществ зависит от ряда факторов. Давление, температура, уровень рН, материал, из которого изготовлена мембрана, и химический состав входной воды, влияют на эффективность работы систем обратного осмоса.

Неорганические вещества очень хорошо отделяются обратноосмотической мембраной. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.

Мембрана обратного осмоса также удаляет из воды и органические вещества . Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.

В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она, строго говоря, даже не требует кипячения.

Горшков В. И., Кузнецов И. А., Физическая химия, М., 1986; Дуров В. А., Агеев Е.П., Термодинамическая теория растворов неэлектролитов, М., 1987. См. также лит. при ст. Мембранные процессы разделения.

Читайте также: