Виды параметров оптимизации реферат

Обновлено: 30.06.2024

Оптимизация - целенаправленная деятельность, заключающаяся в получении наилучших результатов при соответствующих условиях.

Величины, по которым осуществляется названный отбор, называются критериями оптимизации, устанавливающими ценность объекта.

Если критерий оптимизации учитывает один параметр выделения искомого варианта, то он называется частным критерием. Иногда один частный критерий недостаточен для установления истинной ценности объекта в рассматриваемых условиях. Тогда используются составные критерии(интегральные), каким- либо образом учитывающие все выбранные частные критерии для оценки. Частные критерии могут быть объективными, субъективными, детерминированными и статистическими.

Требования к параметрам оптимизации.

Параметр оптимизации — это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Мы должны уметь его измерять при любой возможной комбинации выбранных уровней факторов. Множество значений, которые может принимать параметр оптимизации, будем называть областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции — это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови — вот примеры параметров с дискретной областью определения, ограниченной снизу.

В зависимости от объекта и цели исследования параметры оптимизации могут быть весьма разнообразными. Реальные ситуации, как правило, сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. В принципе каждый объект может характеризоваться сразу всей совокупностью параметров, приведенных на рисунке 1.2, или любым подмножеством из этой совокупности. Движение к оптимуму возможно, если выбран один единственный параметр оптимизации. Тогда прочие характеристики процесса уже не выступают в качестве параметров оптимизации, а служат ограничениями.


Что необходимо для успешного выполнению работ по управлению производственным процессом по добыче углеводородов.

Для успешного выполнения работ по управлению производственным процессом специалисту, кроме профессиональных качеств специалиста, требуются: интегрированный банк данных технологических и экономических показателей; наличие банка альтернативных математических моделей расчета технологических показателей разработки для прогноза показателей и оценки качества прогноза

11. Технические и технологические способы оптимизации методов разработки месторождений (гидродинамимические, физико-химические, термогазовые, биологические и др.). Рассматривать на примерах конкретных месторождений.

Понятие оптимизации. Критерии (параметры и задачи оптимизации.

Оптимизация - целенаправленная деятельность, заключающаяся в получении наилучших результатов при соответствующих условиях.

Величины, по которым осуществляется названный отбор, называются критериями оптимизации, устанавливающими ценность объекта.

Если критерий оптимизации учитывает один параметр выделения искомого варианта, то он называется частным критерием. Иногда один частный критерий недостаточен для установления истинной ценности объекта в рассматриваемых условиях. Тогда используются составные критерии(интегральные), каким- либо образом учитывающие все выбранные частные критерии для оценки. Частные критерии могут быть объективными, субъективными, детерминированными и статистическими.

Требования к параметрам оптимизации.

Параметр оптимизации — это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Мы должны уметь его измерять при любой возможной комбинации выбранных уровней факторов. Множество значений, которые может принимать параметр оптимизации, будем называть областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции — это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови — вот примеры параметров с дискретной областью определения, ограниченной снизу.

В зависимости от объекта и цели исследования параметры оптимизации могут быть весьма разнообразными. Реальные ситуации, как правило, сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. В принципе каждый объект может характеризоваться сразу всей совокупностью параметров, приведенных на рисунке 1.2, или любым подмножеством из этой совокупности. Движение к оптимуму возможно, если выбран один единственный параметр оптимизации. Тогда прочие характеристики процесса уже не выступают в качестве параметров оптимизации, а служат ограничениями.

Методы оптимизации позволяют выбрать наилучший вариант конструкции из всех возможных вариантов. В последние годы этим методам уделялось большое внимание, и в результате был разработан целый ряд высокоэффективных алгоритмов, позволяющих найти оптимальный вариант конструкции при помощи ЭЦВМ. В данной методической разработке излагаются основы теории оптимизации, рассматриваются принципы, лежащие в основе построения алгоритмов оптимальных решений, описываются наиболее известные алгоритмы, анализируются их достоинства и недостатки.

1. Основы теории оптимизации

Термином "оптимизация" в литераторе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего, или "оптимального", решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Рассматривая некоторую произвольную систему, описываемую т уравнениями с n неизвестными, можно выделить три основных типа задач. Если т= n, задачу называют алгебраической. Такая задача обычно имеет одно решение. Если т> n, то задача переопределена и, как правило, не имеет решения. Наконец, при т min, xÎR n

x 0 -начальное приближение (массив [1: n])

Будем считать, что нам известна функция

minf (j (q)), которая вычисляется qmin : j (qmin ) =minj (q)

r: =f (x 0 ); r1: =r+2*e; x: =x 0 ;

пока abs (r1-r) >= e

Для i от 1 до n

4. Метод исключения областей

Зная из предыдущей главы, насколько эффективно методы одномерного поиска позволяют сокращать интервал неопределенности (одномерный или двумерный), можно попытаться применить ту же методику и к многомерному пространству. Один из наиболее очевидных методов исключения областей называется методом касательной к линии уровня, так как в нем используются касательные к линиям уровня целевой функции. Продемонстрируем этот метод на примере двумерной целевой функции. Пусть произвольно выбранная точка пространства проектирования лежит на линии уровня, проходящей несколько ниже пика, соответствующего оптимальному решению. Проведем через эту точку касательную к линии уровня. Сделать это нетрудно, так как касательная должна лежать в плоскости линии уровня и быть перпендикулярной локальному градиенту поверхности целевой функции. Если целевая функция достаточно гладкая и унимодальная, то касательная к линии уровня разделит пространство проектирования на две части, в одной из которых вероятность нахождения оптимума велика, а в другой мала. Пользуясь этим приемом в нескольких удачно выбранных точках, для которых известны значения целевой функции, можно существенно сузить область поиска. Однако осуществление этого алгоритма связано с некоторыми трудностями. Если линии уровня вогнутые, а не выпуклые, то может оказаться исключенной область, содержащая экстремум. Кроме того, оставшаяся после нескольких исключений область неопределенности может иметь конфигурацию, мало пригодную для применения других алгоритмов.

Одним из методов исключения является метод сеточного поиска, разработанный Мишке и дающий неплохие результаты. В этом случае суженная область неопределенности представляет собой гиперкуб - многомерный аналог квадрата или куба, - размеры которого можно определить заранее. Благодаря этому метод Мишке является одним из немногих методов многомерного поиска, эффективность которого поддается измерению. Чтобы лучше понять сущность этого метода, рассмотрим его для случая пространства проектирования, определяемого двумя переменными. Исходную область неопределенности в зависимости от размерности пространства отобразим на единичный квадрат, куб или гиперкуб. Это позволит вести поиск в нормированной области со стороной, равной единице. В гиперкубе построим сетку, образованную попарно симметричными взаимно ортогональными плоскостями, параллельными координатным направлениям, вдоль которых изменяются проектные параметры. Эти плоскости пересекаются по прямым, которые в свою очередь пересекаются в точках, называемых в дальнейшем узлами. Вычислим значения целевой функции в узлах и в центре куба. В случае М проектных параметров получим 2 значений целевой функции, из которых выберем наибольшее. Примем соответствующий узел за центр гиперкуба меньших размеров и продолжим исследование. Процесс продолжается до тех пор, пока не будет достигнута требуемая степень сужения интервала неопределенности. Если в области допустимых значений обозначить степень сужения вдоль какой-либо оси координат через r, то линейное сужение для b-мерного гиперкуба будет равно f=r, а число вычисленных значений целевой функции N= b (2) +1.

Мишке рекомендует выбирать r в интервале значений 2/3 min, xÎR n

x 0 -начальное приближение (массив [1: n])

Будем считать, что нам известна функция

minf (j (q)), которая вычисляется qmin : j (qmin ) =minj (q)

r: =f (x 0 ); r1: =r+2*e; x: =x 0 ;

пока abs (r1-r) >= e

Для i от 1 до n

6. Градиентные методы

Во многих алгоритмах многомерной оптимизации так или иначе используется информация о градиентах. Проиллюстрируем это положение следующим простым примером.

Представим себе, что альпинисту завязали глаза и сказали, что он должен добраться до вершины "унимодальной" горы. Даже ничего не видя, он может это сделать, если все время будет двигаться вверх. Хотя любая ведущая вверх тропа в конечном счете приведет его к вершине, кратчайшей из них будет самая крутая, если, правда, альпинист не натолкнется на вертикальный обрыв, который придется обходить. (Математическим эквивалентом обрыва на поверхности, образуемой целевой функцией, являются те ее места, где поставлены условные ограничения) Предположим пока, что задача оптимизации не содержит ограничений.

Позднее мы включим их в схему поиска.

Метод оптимизации, в основу которого положена идея движения по самой крутой тропе, называется методом наискорейшего подъема или наискорейшего спуска. Вектор градиента перпендикулярен линии уровня и указывает направление к новой точке в пространстве проектирования.

Отметим, что градиентный метод в отличие от метода касательной к линии уровня можно использовать применительно к любой унимодальной функции, а не только тех, у которых это свойство явно выражено. Чтобы лучше понять идею градиентных методов, подробнее остановимся на свойствах градиентов. Рассмотрим систему независимых единичных векторов e,e,e,…,e, направленных вдоль осей координат x,x,x,…,x, являющихся в то же время проектными параметрами.

Вектор градиента произвольной целевой функции F (x,x,x,…,x) имеет вид:

(¶F/¶x) e+ (¶F/¶x) e+…. + (¶F/ ¶x) e,

где частные производные вычисляются в рассматриваемой точке. Этот вектор направлен вверх, в направлении подъема; обратный ему вектор указывает направление спуска. Единичный вектор градиента часто представляют в виде ve+ve+ve+…+ve, где

v=.

Иногда характер целевой функции бывает достаточно хорошо известен, чтобы можно было вычислить компоненты вектора градиента путем непосредственного дифференцирования. Если таким способом частные производные получить не удается, то можно найти их приближенные значения в непосредственной окрестности рассматриваемой точки:



Здесь D - небольшое смещение в направлении x. Эту формулу часто называют "приближением секущей". Полученную информацию о направлении градиента можно использовать различным образом для построения алгоритма поиска.

Один из возможных примеров алгоритмов.

f (x) - > min, xÎR n

x 0 -начальное приближение (массив [1: n])

Будем считать, что нам известна функция

minf (j (q)), которая вычисляется qmin : j (qmin ) =minj (q)

r: =f (x 0 ); r1: =r+2*e; x: =x 0 ;

Пока abs (r-r1) >= e

Для i от 1 до n

Для i от 1 до n

6.1 Ступенчатый наискорейший подъем

Ряд методов поиска основан на смещении на постоянный шаг в направлении градиента с последующим вычислением целевой функции. Если ее величина оказывается больше предыдущей, вычисляется градиент в новой точке, и вся процедура повторяется, причем часто при этом шаг увеличивают. Если же величина целевой функции не изменяется или убывает, то шаг смещения от предыдущей точки уменьшают и повторяют всю процедуру вычислений. Так поступают до тех пор, пока дальнейшее уменьшение шага уже не приводит к улучшению результата.

Наискорейший подъем с использованием одномерного поиска

В некоторых методах поиска информация о градиенте используется для ведения одномерного поиска в направлении наискорейшего подъема или спуска, причем используется соотношение

x=x+Sv,

где S - новый одномерный параметр, значения которого отсчитываются в направлении градиента. Получив одномерный оптимум в направлении данного градиента, находят новый градиент и повторяют процесс до тех пор, пока последующие вычисления позволяют улучшать полученный результат. Главное достоинство этого метода состоит в том, что параметр S можно использовать в качестве независимой переменной для поиска по методу Фибоначчи, и это обеспечивает высокую эффективность метода. Другое важное преимущество рассматриваемых методов состоит в том, что они позволяют уходить от седловых точек поверхности, описываемой целевой функцией. Отметим, однако, что, как видно из рисунка, для мультимодальных функций градиентные методы позволяют найти лишь локальный оптимум. Поэтому, если характер поверхности недостаточно хорошо известен, следует испробовать несколько исходных точек и убедиться, что во всех случаях получается одно и то же оптимальное решение. Другой причиной, снижающей эффективность градиентных методов, являются изломы линий уровня целевой функции. Так как такие точки соответствуют разрыву в наклоне линий контура, то здесь возможны ошибки в определении направления дальнейшего поиска. Поэтому поиск может замедлиться и идти зигзагами поперек линии излома, а время, необходимое для получения решения, будет столь велико, что счет придется прекратить. В действительности большинство исследуемых поверхностей имеет одну или более линий излома, которые нередко проходят через точку оптимума. Поэтому, наткнувшись на линию излома, следует в дальнейшем двигаться вдоль нее. Для реализации этой идеи разработан ряд остроумных алгоритмов.


Найти прямую наилучшим образом аппроксимирующую совокупность экспериментальных точек. Уравнение прямой y=m*x+b. Суммарная ошибка в случае точек определяется выражением SUM=

Необходимо найти минимум, SUM, оптимальные значения m,b. Экспериментальные точки заданы.

Емкость бака для жидких отходов должна составитьV л. Изготовляется бак из железобетона толщинойt см. Определить геометрические параметры бака, при которых на его изготовление пойдет минимальное количество бетона.

Емкость бака для жидких отходов должна составитьV л. Изготовляется бак из железобетона толщинойt см. Определить геометрические параметры бака, при которых на его изготовление пойдет минимальное количество бетона, учитывая что бак имеет крышку.

Изготовитель контейнеров проектирует открытый контейнер из листового материала. Заготовка вырезается из листа, сгибается по пунктирным линиям и сваривается четырьмя швами. Каковы должны быть размеры контейнера небольшого объема, если площадь его дна не должна превышать 1 м 2 и ни один из линейных размеров a,b,c не должны быть больше другого более чем в 3 раза?


Сравнительно простая с математической точки зрения целевая функция Розенброка y=100 (x2 -x) 2 + (1+x1 ) 2 описывает поверхность с впадиной.

Минимальное значение целевой функции соответствует точке с координатами M (x,y). Если взять начальную точку во втором квадранте, то не всегда удается обеспечить сходимость. Выбрав исходную точку попытаться решить эту задачу оптимизации:

Параметр оптимизации - это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции - это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число кровяных телец в пробе крови - вот примеры параметров с дискретной областью определения, ограниченной снизу.

В зависимости от объекта и цели исследования параметры оптимизации могут быть весьма разнообразными (рис. 1).

Среди технико-экономических параметров наибольшее распространение имеет производительность. Такие параметры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некоторый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной аппаратуры.

Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода готовой продукции.

Показатели качества чрезвычайно разнообразны. В нашей схеме они сгруппированы по видам свойств. Характеристики количества и качества продукта образуют группу технико-технологических параметров.

3.2 Требования к параметру оптимизации

Параметр оптимизации - это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Мы должны уметь его измерять при любой возможной комбинации выбранных уровней факторов. Множество значений, которые может принимать параметр оптимизации, будем называть областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции - это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови - вот примеры параметров с дискретной областью определения, ограниченной снизу.

Уметь измерять параметр оптимизации - это значит располагать подходящим прибором. В ряде случаев такого прибора может не существовать или он слишком дорог. Если нет способа количественного измерения результата, то приходится воспользоваться приемом, называемым ранжированием (ранговым подходом). При этом параметрам оптимизации присваиваются оценки - ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т.д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.

Ранг - это количественная оценка параметра оптимизации, но она носит условный (субъективный) характер. Мы ставим в соответствие качественному признаку некоторое число - ранг. Для каждого физически измеряемого параметра оптимизации можно построить ранговый аналог. Потребность в построении такого аналога возникает, если имеющиеся в распоряжении исследователя численные характеристики неточны или неизвестен способ построения удовлетворительных численных оценок. При прочих равных условиях всегда нужно отдавать предпочтение физическому измерению, так как ранговый подход менее чувствителен и с его помощью трудно изучать тонкие эффекты.

Пример: Технолог разработал новый вид продукта. Вам необходимо оптимизировать этот процесс.

Цель процесса - получение вкусного продукта, но такая формулировка цели еще не дает возможности приступить к оптимизации: необходимо выбрать количественный критерий, характеризующий степень достижения цели. Можно принять следующее решение: очень вкусный продукт получает отметку 5, просто вкусный продукт - отметку 4 и т.д.

Можно ли после такого решения переходить к оптимизации процесса? Нам важно количественно оценить результат оптимизации. Решает ли отметка эту задачу? Конечно, потому что, как мы договорились, отметка 5 соответствует очень вкусному продукту и т.д. Другое дело, что этот подход, называемый ранговым, часто оказывается грубым, нечувствительным. Но возможности такой количественной оценки результатов не должна вызывать сомнений.

Следующее требование: параметр оптимизации должен выражаться одним числом. Например: регистрация показания прибора.

Еще одно требование, связанное с количественной природой параметра оптимизации, - однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации. (Однако обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов.)

Для успешного достижения цели исследования необходимо, чтобы параметр оптимизации действительно оценивал эффективность функционирования системы в заранее выбранном смысле. Это требование является главным, определяющим корректность постановки задачи.

Представление об эффективности не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпана, нас начинают интересовать такие параметры, как себестоимость, чистота продукта и т.д.

Говоря об оценке эффективности функционирования системы, важно помнить, что речь идет о системе в целом. Часто система состоит из ряда подсистем, каждая из которых может оцениваться своим локальным параметром оптимизации.

Следующее требование к параметру оптимизации - требование универсальности или полноты. Под универсальностью параметра оптимизации понимается его способность всесторонне характеризовать объект. В частности, технологические параметры оптимизации недостаточно универсальны: они не учитывают экономику. Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров.

Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

Требование физического смысла связано с последующей интерпретацией результатов эксперимента.

Таким образом, параметр оптимизации должен быть:

- эффективным с точки зрения достижения цели;

- количественным и выражаться одним числом;

- имеющим физический смысл, простым и легко вычисляемым.

В тех случаях, когда возникают трудности с количественной оценкой параметров оптимизации, приходится обращаться к ранговому подходу. В ходе исследования могут меняться априорные представления об объекте исследования, что приводит к последовательному подходу при выборе параметра оптимизации.

Из многих параметров, характеризующих объект исследования, только один, часто обобщенный, может служить параметром оптимизации. Остальные рассматриваются как ограничения.

При планировании экстремального эксперимента очень важно определить параметр, который нужно оптимизиро­вать. Сделать это совсем не так просто, как кажется на первый взгляд. Цель исследования должна быть сформу­лирована очень четко и допускать количественную оценку. Будем называть характеристику цели, заданную коли­чественно, параметром оптимизации. Параметр оптимиза­ции является реакцией (откликом) па воздействие факто­ров, которые определяют поведение выбранной сис­темы. Реакция объекта многогранна, многоаспектна. Вы­бор того аспекта, который представляет наибольший ин­терес, как раз и задается целью исследования.

Прежде чем сформулировать требования к парамет­рам оптимизации и рекомендации по их выбору, познако­мимся с различными видами параметров.

В зависимости от объекта и цели исследования пара­метры оптимизации могут быть весьма разнообразными. Чтобы ориентироваться в этом многообразии, введен некоторую классификацию (рис. 1). Мы не стремимся к созданию полной и детальной классификации. Наша задача – построить такую условную схему, которая включала бы ряд практически важных случаев и помогала экспериментатору ориентироваться в реальных ситуа­циях.


Реальные ситуации, как правило, сложны. Они часто требуют одновременного учета нескольких, иногда очень многих, параметров. В принципе каждый объект может характеризоваться сразу всей совокупностью параметров, приведенных на рис. 1, или любым подмножеством из этой совокупности. Движение к оптимуму возможно, если выбран один единственный параметр оптимизации. Тогда прочие характеристики процесса уже не выступают в качестве параметров оптимизации, а служат ограниче­ниями. Другой путь – построение обобщенного параметра оптимизации как некоторой функции от множества исходных.

Прокомментируем некоторые элементы схемы.

Среди технико-экономических параметров наибольшее распространение имеет производительность. Такие пара­метры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некото­рый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной ап­паратуры.

Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода химической реакции, выход годных изделий. Показатели качества чрезвычайно разнообразны. В па­шей схеме они сгруппированы по видам свойств. Ха­рактеристики количества и качества продукта образуют группу технико-технологических параметров.

Под рубрикой прочие сгруппированы различные па­раметры, которые реже встречаются, но не являются менее важными. Сюда попали статистические параметры, используемые для улучшения характеристик случайных величин или случайных функций. В качестве примеров назовем задачи на минимизацию дисперсии случайной ве­личины, на уменьшение числа выбросов случайного про­цесса за фиксированный уровень и т. д. Последняя зада­ча возникает, в частности, при выборе оптимальных на­строек автоматических регуляторов или при улучшении свойств нитей (проволока, пряжа, искусственное волокно и др.).

При решении задач технической эстетики или сравне­нии произведений искусства возникает потребность в эсте­тических параметрах. Они основаны на ранговом подходе, который будет рассмотрен ниже.

Читайте также: