Утилизация избыточной теплоты способы охлаждения сбросовой воды реферат

Обновлено: 05.07.2024

Отходящее тепло обычно характеризуется энтальпией, которую оно приобретает в процессах горения, или поглощением тепла, высвобождаемого материалами в ходе процесса. Отходящее тепло выделяется в окружающую среду и очень быстро теряет свою ценность.

По ценности отходящая энергия может классифицироваться применительно к трем диапазонам:

· высокотемпературный – выше 650 ºС;

· среднетемпературный – 230–650 ºС;

· низкотемпературный – менее 230 ºС.

Высокотемпературное и среднетемпературное отходящее тепло используется для производства технологического пара, выработки электроэнергии, сушки, подогрева воздуха, подаваемого в горелки или для ответственных технологических нужд. Низкотемпературное тепло может быть использовано для отопления зданий, подогрева воды и воздуха.

Различают шесть основных методов утилизации отходящего тепла.

1. Непосредственная утилизация, например, для сушки или подогрева материалов при отсутствии каких-либо внутренних теплообменников.

2. Рекуперация, при которой отходящие газы и воздух, подвергаемый нагреву, разделяются металлической или, при очень высоких температурах, огнеупорной теплообменными поверхностями. Передача энергии от одного потока к другому происходит непрерывно.

3. Регенерация, в ходе которой тепло, содержащееся в отходящих газах, передается теплообменному устройству, аккумулируется в нем в огнеупорных или металлических материалах и впоследствии служит для нагрева воздуха, используемого в качестве дутья. Газовый поток поочередно отдает свое тепло тем же поверхностям и переключается или при помощи перекидного клапана, или путем вращения теплоаккумулирующей насадки.

4. Утилизация с помощью котла-утилизатора, которая представляет собой одну из форм рекуперации с выработкой за счет тепла горячих отходящих газов технологического пара или горячей воды.

5. Совместное генерирование, при осуществлении которого совместно вырабатываются электрическая энергия и технологический пар.

6. Ступенчатое использование энергии, при котором вначале применяют энергию с наивысшими характеристиками, а затем все с более низкими параметрами для других связанных с этим процессов вплоть до того момента, когда эта энергия не будет иметь очень низкие параметры.

Рассмотрим упрощенный вариант использования вторичной тепловой энергии.

На рисунке 9.1 приводится упрощенная схема использования вторичной тепловой энергии.


Рисунок 9.1 - Упрощенная схема использования ВЭР

Пусть есть некий технологический процесс, в котором сырье нагревается до определенной температуры и из сырья получается изделие. Для нагрева сырья необходимо некое количество энергии Х. Поскольку КПД технологического процесса не может быть равен 100%, то в этом случае часть тепловой энергии расходуется на нагрев сырья, а часть энергии уходит в атмосферу ΔХатм. Полное количество энергии необходимое на технологический процесс можно записать:


Для того, что бы повысить КПД технологического процесса можно использовать часть тепловой энергии выбрасываемой в атмосферу (ΔХатм=ΔХ'атм+ΔХисп.), как показано на рисунке 9.1, т.е. мы направляем тепловую энергию от технологического процесса на предварительный нагрев сырья, а дальше подогретое сырье направляем на технологический процесс. В этом случае полное количество энергии можно записать в виде:


Исходя из приведенного выражения, можно понять, что часть тепловой энергии выбрасываемой в атмосферу мы уменьшили на величину ΔХисп., соответственно на эту мы можем снизить и величину энергии Х. В приведенном примере величина ΔХисп. будет являться вторичной тепловой энергией, а источником ВЭР будет сам технологический процесс.

Система утилизации теплоты

Утилизация теплоты уже много лет широко применяется в тепло­энергетике — подогреватели питательной воды, экономайзеры, воздухо­подогреватели, газотурбинные регенераторы и т. д., но в холодильной технике ей уделяется еще недостаточное внимание. Это можно объяс­нить тем, что обычно сбрасывается теплота низкого потенциала (при тем­пературе ниже 100°С), поэтому для ее использования необходимо вво­дить в холодильную систему дополнительные теплообменники и прибо­ры автоматики, что усложняет ее. При этом холодильная система стано­вится более чувствительной к изменению внешних параметров.

В связи с энергетической проблемой, в настоящее время проекти­ровщики, в том числе и холодильного оборудования, вынуждены более внимательно анализировать традиционные системы в поисках новых схем с регенерацией теплоты конденсации.

Если холодильная установка имеет воздушный конденсатор, можно использовать нагретый воздух непо­средственно после конденсатора для обогрева помещений. Можно полез­но использовать и теплоту перегретых паров хладагента после компрес­сора, имеющих более высокий температурный потенциал.

Впервые схемы утилизации теплоты были разработаны европей­скими фирмами, так как в Европе сложились более высокие цены на электроэнергию в сравнении с ценами в США.

Комплектное холодильное оборудование фирмы ’’Костан” (Ита­лия), разработанное в последние годы, с системой утилизации теплоты воздушных конденсаторов применяется для отопления торгового зала магазинов типа ’’Универсам”. Такие системы позволяют сократить общее энергопотребление в магазине на 20—30%.

Основная цель — использование максимально возможного количе­ства теплоты, выделяемой холодильной машиной в окружающую среду. Теплота передается либо непосредственно потоком теплого воздуха пос­ле конденсатора в торговый зал магазина во время отопительного сезо­на, либо в дополнительный теплообменник-аккумулятор (теплота пере­гретых паров хладагента) для получения теплой воды, которая исполь­зуется для технологических нужд в течение всего года.

Опыт эксплуатации систем по первому способу показал, что они просты в обслуживании, но сравнительно громоздки, исполь­зование их связано с необходимостью установки дополнительных вен­тиляторов для перемещения большого количества воздуха и воздуш­ных фильтров, что в конечном итоге приводит к росту приведенных затрат. Учитывая это, предпочтение отдают более сложным схемам, несмотря на то, что их реализация усложняет эксплуатацию.

Наиболее простой схемой с теплообменником-аккумулятором — является схема с поcледовательным соединением конденсатора и акку­мулятора. Эта схема работает следующим образом. При тем­пературах воды на входе в теплообменник-аккумулятор и температура окру­жающего воздуха, равных 10°С, температура конденсации tK сос­тавляет 20 С. В течение короткого времени (например, в течение ночи) вода в аккумуляторе нагревается до 50°С, a t повышается до 30°С. Объясняется это тем, что общая производительность конденсатора и аккумулятора понижается, так как при нагреве воды уменьшается первоначальный температурный напор в аккумуляторе.

Повышение на 10°С вполне допустимо, однако при неблагоприятных сочетаниях высокой температуры и малого потребления воды может наблюдаться и более значительное повышение температуры кон­денсации. Эта схема имеет следующие недостатки при эксплуатации: колебания давления конденсации; периодическое значительное пони­жение давления в ресивере, которое приводит к нарушению питания испарителя жидкостью; возможное обратное перетекание жидкости в воздушный конденсатор во время остановки компрессора, когда t значительно ниже температуры в ресивере.

Установка регулятора давления конденсации позво­ляет предотвращать обратное перетекание конденсата из ресивера в воз­душный конденсатор, а также поддерживать необходимое давление конденсации, например, соответствующее 25 °С.

При повышении tw до 50°С и tок до 25 °С регулятор давленияполностью открывается, при этом падение давления в нем не превышает 0,001 МПа.

Если и t снижаются до 10°С, то регулятор давления закрыва­ется и внутренняя полость воздушного конденсатора, а также часть зме­евика теплообменника-аккумулятора заполняются жидкостью. При по­вышении t до 25°С регулятор давления вновь открывается и жидкость из воздушного конденсатора выходит переохлажденной. Давление над поверхностью жидкости в ресивере будет равно давлению конденсации минус падение давления в регуляторе , причем давление в ресивере мо­жет стать настолько низким (например, соответствовать tK

Способ утилизации теплоты неочищенных сточных вод и получения горячего теплоносителя

Изобретение относится к области энергетики. В способе утилизации теплоты неочищенных сточных вод и получения горячего теплоносителя путем охлаждения сточной воды, нагрева промежуточного теплоносителя в погруженном теплообменнике и последующего нагрева сетевой воды в конденсаторе теплового насоса до необходимой температуры, исходят из отопительного графика, при этом из коллектора сточной воды через заборное устройство подают сточную воду в проточную буферную емкость, где ее охлаждают на 2-3°С, а промежуточный теплоноситель нагревают на 5-8°С, который затем поступает в испаритель теплового насоса. Изобретение позволяет обеспечить повышение экономичности теплоснабжения за счет вовлечения с помощью тепловых насосов низкопотенциальной теплоты сточных вод системы водоканала и выбора оптимальных температурных параметров теплоносителей теплонасосной установки при работе в автономном и комбинированном режимах теплоснабжения. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. Изобретение может быть использовано в системах теплоснабжения жилищно-коммунального и городского энергохозяйства, в частности, утилизации теплоты неочищенных сточных вод и получения горячего теплоносителя, может использоваться с помощью теплонасосных установок, работающих на низкопотенциальной теплоте (НПТ) сточных вод в системах теплоснабжения с полным или частичным замещением генерируемой теплоты ТЭЦ и районных теплоснабжающих станциях (РТС).

Известен способ утилизации теплоты отработавшего пара для теплоснабжения от тепловых электростанций (ТЭС), см. Козин В.Е. и др. Теплоснабжение: Учебное пособие для студентов вузов, М. Высшая школа, 1980.

В известном способе теплота отработавшего пара утилизируется во встроенных теплообменных пучках основного конденсатора паровой турбины, по которому поступающую от потребителей сетевую воду последовательно нагревают во встроенных дополнительных пучках и в сетевых подогревателях и далее в водогрейных котлах в соответствии с температурным графиком отопительной нагрузки.

Недостатком известного способа является тот факт, что реализация встроенных пучков в конденсаторы паровых турбин, во-первых, возможна не на всех турбинах, а во-вторых, из-за сезонных изменений тепловых нагрузок количество сбросной низкопотенциальной теплоты меняется, а в зимнее время года оно минимально и, по этой причине, встроенные пучки не выполняют своей роли в полной мере или их роль в утилизации теплоты отработавшего пара сводится к минимуму, главным образом, в объеме частичного снижения потребления теплоты на собственные нужды электростанции.

Известен способ утилизации теплоты сточных вод и получения горячего теплоносителя (см. SU 482845, кл. F24H 1/10, 03.12.1975) с помощью теплового насоса, испаритель которого размещен в вакуумной выпарной камере.

Недостатком этого способа является сложность и большие затраты на поддержание вакуума в выпарной камере. Кроме того, в этом изобретении речь идет об утилизации горячей теплоты, прежде всего, агрессивных сред, что, в свою очередь, предопределяет существенное усложнение технологического процесса утилизации сбросной теплоты и по этой причине для ограниченного круга горячих тепловых отходов, при охлаждении которых дополнительно могут образовываться неконденсируемые газы и тем самым необходимости организации их сброса, если эти газы неагрессивные.

Наиболее близким к данному техническому решению является способ утилизации теплоты неочищенных сточных вод и получения горячего теплоносителя путем охлаждения сточной воды, что происходит в результате нагрева промежуточного рабочего теплоносителя (см. RU 2249125, кл. F03D 9/00, 27.03.2005). В данном изобретении в качестве промежуточного теплоносителя используется вода с теплообменником, погруженным в приемный колодец сточных вод сети канализации, при этом нагретая вода промежуточного контура поступает в испаритель теплового насоса, где происходит отбор теплоты от воды промежуточного контура к низкокипящему рабочему телу (НКРТ) теплонасоса, пары НКРТ разогреваются в компрессоре и поступают далее в конденсатор, в котором происходит, с одной стороны, конденсация паров НКРТ, с другой стороны, нагрев сетевой воды в соответствии с температурным графиком отопления и горячего водоснабжения, реализуемой с использованием распределительной и сборной гребенок, последние являются аналогами соответствующих коллекторов.

Недостатками указанного способа являются рассогласованность температурных параметров, которые различны для горячего водоснабжения (на уровне 50°С) и отопления (на уровне 70-95°С), что неизбежно приводит к завышенной затрате энергии на привод компрессора из-за неоправданного увеличенного нагрева доли сетевой воды, расходуемой на нужды горячего водоснабжения.

Как следует из практики, устройства, подобные механическому вибратору, предназначаемые для предотвращения оседания загрязнений, не позволяют избавиться от отложений без осуществления принудительной механической очистки поверхностей теплообмена. Более того, происходит зарастание поверхностей со стороны сточных вод из-за биологических процессов, происходящих на поверхностях теплообменника, что, в конечном итоге, приводит не только к снижению теплопередачи, но и к его преждевременному выходу из строя и неизбежности преждевременной замены. Результатом всего этого является не только снижение теплопроизводительности теплонасосной установки, но и увеличение расходов на ее эксплуатацию в целом

В указанном изобретении отмечается, что сетевая вода нагревается до 55-70°С, а температура сточных вод в приемном колодце составляет 15-20°С. Отмечается также, что при этих параметрах рабочих сред коэффициент преобразования (КОП) составляет 5-6 (т.е. на 1 кВт-ч энергии, затрачиваемой на привод компрессора теплонасоса, извлекают 4-5 кВт-ч утилизируемой теплоты). Такие значения КОП в принципе недостижимы для приведенных соотношений температур сточной воды на входе в испаритель и сетевой воды на выходе конденсатора теплонасоса. В лучшем случае, КОП составит на уровне 2.7-3.5, но тогда количество извлекаемой утилизируемой низкопотенциальной теплоты составит только на уровне 1.7-2.5 кВт-ч (т). Факт низких значений КОП при указанных параметрах сетевой воды - это неизбежность для этих условий. Однако факт завышенного КОП в этом изобретении по сути не отражает реальной эффективности теплонасоса компрессионного типа в указанном интервале температур.

Вышеотмеченные недостатки неизбежны при утилизации теплоты загрязненных сточных вод с помощью тепловых насосов. Поэтому ниже предлагаемое изобретение не столько призвано устранить недостатки относительно низкой термодинамической эффективности теплонасосной установки для такого рода источников низкопотенциальной теплоты, сколько направлено на разработку технических решений, позволяющих повысить надежность работы устройств и эффективность работы теплонасосной установки по извлечению теплоты из канализационных сточных вод в системе городского водоканала.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении экономичности теплоснабжения за счет обеспечения оптимального выбора параметров по трактам сточной воды, промежуточного контура и контура сетевой воды по тракту теплового потребителя, позволяющих с большей эффективностью вовлекать низкопотенциальную теплоту сточных вод для нужд жилищно-коммунального хозяйства с использованием тепловых насосов. Само собой при этом достигается сопутствующий эффект в виде снижения вредного экологического воздействия на окружающую среду за счет сокращения выбросов и уменьшения количества сжигаемого топлива на ТЭС.

Указанный технический результат в способе утилизации теплоты канализационных сточных вод достигается за счет извлечения низкопотенциальной теплоты из сточных вод путем их охлаждения на 2-3°С при одновременном нагреве промежуточного теплоносителя не более, чем на 5-8°С в теплообменнике, погруженном в проточную буферную емкость. В свою очередь, нагретый промежуточный теплоноситель охлаждается на те же 5-8°С в испарителе теплонасоса и возвращается на повторный нагрев. При этом сетевая вода нагревается в конденсаторе теплонасоса до температуры порядка 50-55°С и далее при необходимости она может дополнительно нагреваться в традиционных сетевых подогревателях до требуемых (расчетных) температур в соответствии с отопительным графиком.

Указанный технический результат достигается также тем, что погруженный теплообменник представляет собой пучок тонкостенных гибких фторопластовых трубок.

Указанный технический результат достигается также тем, что заборное устройство включает в себя механическую решетку для улавливания грубых фракций и размельчитель твердых фракций до размеров, допустимых условиями работы промежуточного теплообменника и насоса промежуточного контура.

При малом интервале температур охлаждения сточных вод требуется их увеличенный расход через буферную емкость, что позволяет организовать относительно высокий скоростной режим и тем самым обеспечить повышенный коэффициент теплоотдачи со стороны сточных вод. То же имеет место и по тракту промежуточного теплоносителя при его нагреве и охлаждении на 5-8°С.

При этом проточная буферная емкость устанавливается в наземном расположении, что обеспечивает легкий доступ для технического обслуживания теплообменника и другого сопутствующего вспомогательного оборудования. Отметим, что исходная сточная вода предварительно проходит механическую обработку (размельчение грубых твердых фракций или улавливание их на механических решетках) и подается в буферную емкость, где она охлаждается на 2-3°С, а промежуточный теплоноситель при этом нагревается на 5-8°С и затем поступает в испаритель теплонасоса. Как показывают расчеты, в указанном интервале температур утилизация теплоты канализационных сточных вод с использованием теплонасосной установки обеспечивается с наибольшей эффективностью.

На чертеже представлена структурная схема установки для реализации способа утилизации теплоты неочищенных сточных вод и получения горячего теплоносителя с использованием наземного расположения проточной буферной емкости.

Установка для реализации способа утилизации теплоты неочищенных сточных вод и получения горячего теплоносителя с использованием наземного расположения проточной буферной емкости содержит (см. чертеж) заборное устройство - 1 для забора воды из коллектора сточных вод (источника НПТ), проточный контур сточных вод - 2; насос - 3 для прокачки сточных вод через буферную емкость с погруженным теплообменником - 4; насос - 5 промежуточного контура - 8; теплового насоса - 6, включающего испаритель - И и конденсатор - К; контур циркуляции сетевой воды теплового потребителя - 7; насос сетевой воды - 9 контура теплового потребителя - 11 и устройство сброса (возврата) сточной воды - 10.

Способ утилизации теплоты неочищенных сточных вод и получения горячего теплоносителя осуществляется следующим образом.

В системе городского энергохозяйства и на канализационно-насосных станциях (КНС) и станциях аэрации водоканала, с одной стороны, сосредоточены большие запасы низкопотенциальной теплоты а, с другой стороны, рассредоточены по всему городскому мегаполису значительные резервы низкопотенциальной теплоты (НПТ). Эти источники НПТ могут быть вовлечены в систему теплоснабжения жилищно-коммунального хозяйства (ЖКХ) городов с помощью тепловых насосов, размещаемых либо на станциях аэрации или КНС, либо в привязке к сбросным коллекторам сточных вод в местах, доступных для подключения тепловых потребителей к этим источникам низкопотенциальной теплоты.

Сточная вода (из системы водоканала) забирается через заборное устройство - 1, которое может включать в себя механическую решетку для улавливания грубых фракций и размельчитель твердых фракций до размеров, допустимых условиями работы промежуточного теплообменника и насоса промежуточного контура. Забранная вода подается насосом - 3 в проточную буферную емкость с погруженным в нее теплообменником - 4. В теплообменнике - 4 происходит отвод теплоты от первичной сточной воды и ее подвод к промежуточному теплоносителю (например, воде), и только уже затем охлажденная первичная сточная вода сбрасывается через устройство - 10 в основной коллектор сточной воды. В свою очередь, нагретый промежуточный теплоноситель в теплообменнике - 4 подается насосом - 5 в испаритель (И) теплового насоса - 6, где происходит подвод теплоты к низкокипящему рабочему теплоносителю (НКРТ) в результате отбора теплоты от промежуточного теплоносителя. Охлажденный промежуточный теплоноситель после испарителя - И теплового насоса - 6 возвращается обратно в теплообменник - 4 для повторного нагрева. Таким образом, осуществляется циркуляция промежуточного теплоносителя по контуру - 8 через испаритель - И и теплообменник - 4.

В испарителе - И теплового насоса - 6 образовавшийся пар НКРТ поступает на вход компрессора, где в результате сжатия паров НКРТ происходит их разогрев до температуры порядка 80-110°С (в зависимости от теплофизических свойств НКРТ). Разогретый пар НКРТ поступает в конденсатор - К теплового насоса - 6, где в результате конденсации паров НКРТ осуществляется подвод теплоты к сетевой воде (теплоносителю) контура теплового потребителя, сам же конденсат НКРТ через дроссель возвращается для повторного нагрева в испарителе - И теплового насоса - 6. Тепловой потребитель - 11 по тракту рабочего теплоносителя (сетевой воды) - 7 подключен к выходу конденсатора - К теплового насоса - 6, а вход конденсатора - К - к выходу потребителя - 11. Таким образом, осуществляется циркуляция сетевой воды по тракту рабочего теплоносителя теплового потребителя -11.

Сетевая вода, нагретая в конденсаторе ТНУ до 50°С, пригодна для нужд горячего водоснабжения. Для отопления сетевая вода после ТНУ должна подвергнуться дополнительному нагреву в традиционных сетевых бойлерах и только затем поступать в теплосеть теплового потребителя - 11, после которого она возвращается насосом - 9 для повторного нагрева в конденсатор ТНУ-6. Вышеописанная схема при температуре сетевой воды на уровне 50-55°С позволит в реальности достигнуть КОП на уровне 4-4.5, тем самым утилизация теплоты сточных вод будет происходить с наибольшей термодинамической эффективностью. В принципе, можно получать сетевую воду и с температурой на уровне 80-90°С, но в этом случае КОП не превысит значений 2.5-3.0, т.е. он будет работать с меньшей термодинамической эффективностью и тем самым с большей затратой энергией на привод компрессора теплонасоса. Отметим, что при КОП на уровне 2.5-3.0, экономии топлива не будет наблюдаться от использования теплонасоса по отношению к традиционной котельной. По этой причине предлагаемый способ, прежде всего, предназначен для получения горячей воды для нужд горячего водоснабжения в автономном режиме работы, а для нужд отопления рекомендуется комбинированный режим, а именно, в сочетании с традиционным источником теплоснабжения.

Вышеописанная схема утилизации низкопотенциальной теплоты сточных вод рекомендуется для всех случаев, где крайне затруднено или невозможно осуществить размещение теплообменника в основном потоке сточной воды.

Теплообменник - 4 может быть погружен в резервуар, представляющий собой буферную емкость атмосферного давления, заполненную либо проточной сточной водой с предварительной очисткой от грубых примесей в устройстве, либо проточной сточной водой с предварительным измельчением грубой фракции до размеров, допустимых техническими условиями эксплуатации теплообменника - 4.

Конструктивно погруженный теплообменник - 4 представляет собой устройство, состоящее из одного или более модулей - змеевиков, погруженных в проточную буферную емкость атмосферного давления или в коллектор сточной воды, в которые непрерывно поступает сточная вода с температурой в интервале 15-20°С, и покидает ее охлажденной примерно на 2-3°С (ниже исходной температуры сточной воды, поступающей в буферную емкость).

Рекомендуемые параметры теплообменника:

- число трубок - до 200 шт.

- длина трубок - до 5500 мм.

- межтрубный шаг выбирается из условия размеров измельченной фракции, содержащейся в сточной неочищенной воде.

- внутренний диаметр трубок - 3 мм с толщиной стенки - 0.6 мм.

- поверхность теплообмена - до 10 м 2 .

- коэффициент теплопередачи на уровне 250 Вт/м 2 × °С и выше.

Одним из возможных конструктивных решений погруженного теплообменника могут быть фторопластовые трубчатые теплообменные элементы. Фторопластовые трубчатые теплообменные элементы являются основной рабочей частью теплообменной аппаратуры и представляют собой пучок тонкостенных гибких фторопластовых трубок, концы которых оформлены в трубную решетку (коллектор) методом обварки. Антиадгезионные свойства фторопласта исключают зарастание рабочих поверхностей теплообменника, что позволяет вести процесс теплообмена с постоянным коэффициентом теплопередачи. Допустимое давление рабочей среды зависит от ее температуры, но для нижеописанных условий допускается давление не выше 1.2 МПа.

По конструкции фторопластовые теплообменники могут быть как кожухотрубчатые, так и пластинчатого типа. Трубчатые фторопластовые теплообменники можно применять в качестве охладителей, подогревателей, конденсаторов и т.п. Резервуар-охладитель может быть выполнен по подобию охладителей, применяемых для охлаждения молока.

1. Способ утилизации теплоты неочищенных сточных вод путем охлаждения сточной воды и нагрева промежуточного теплоносителя в погруженном теплообменнике для получения горячего теплоносителя с помощью теплового насоса, отличающийся тем, что сточную воду через заборное устройство из коллектора сточной воды подают для охлаждения в проточную буферную емкость, где ее охлаждают на 2-3°С, а промежуточный теплоноситель нагревают на 5-8°С и подают на вход испарителя теплового насоса, в котором промежуточный теплоноситель охлаждается на те же 5-8°С, а сетевая вода при этом нагревается в конденсаторе теплового насоса до 50-55°С, что обеспечивает коэффициент преобразования на уровне 4-4,5.

2. Способ утилизации теплоты неочищенных сточных вод по п.1, отличающийся тем, что погруженный теплообменник представляет собой пучок тонкостенных гибких фторопластовых трубок.

3. Способ утилизации теплоты неочищенных сточных вод по п.1, отличающийся тем, что заборное устройство включает в себя механическую решетку для улавливания грубых фракций и размельчитель твердых фракций до размеров, допустимых условиями работы промежуточного теплообменника и насоса промежуточного контура.


Одной из важнейших проблем, стоящих сейчас перед энергетикой нашей страны, является истощение топливно-энергетических ресурсов, таких как нефть, природный газ, каменный уголь, на фоне все более интенсивного роста энергопотребления. Основными направлениями экономического развития России предусмотрена программа развития топливно-энергетического комплекса и экономии энергоресурсов. В частности, планируется переход на энергосберегающие технологии производств, сокращение всех видов энергетических потерь и повышение уровня использования вторичных энергоресурсов (ВЭР).

Значительная экономия топливно-энергетических ресурсов может быть достигнута при более широком вовлечении в топливно-энергетический баланс страны вторичных энергоресурсов, имеющихся практически во всех отраслях промышленности, где применяются теплотехнические процессы, в первую очередь высокотемпературные. Коэффициент полезного теплоиспользования для многих процессов не превышает 15-35%.

ВЭР можно использовать в качестве топлива либо непосредственно (без изменения вида энергоносителя), либо за счет выработки теплоты, электрической энергии, холода, механической работы в утилизационных установках. Использованию ВЭР в последние годы уделяется значительное внимание. Вместе с тем вопросы рационального использования ВЭР освещены недостаточно.

Одним из рациональных направлений использования ВЭР является применение систем утилизации теплоты, в которые входят котлы-утилизаторы (КУ).

Котёл-утилизатор— устройство, передающее теплоту отходящих газов дизелей или газотурбинных установок, сушильных барабанов, вращающихся и туннельных печей другому теплоносителю, общий вид представлен на рис.1.

Рис. 1. Котёл-утилизатор

Применение котлов утилизаторов существенно повышает эффективность работы оборудования.

Котлы утилизаторы позволяют получать:

 горячую воду - применяются на объектах, испытывающих потребность в горячей воде и позволяют оптимизировать затраты на тепло, используя на полезные нужды тепло уходящих выхлопных газов котельных или газопоршневых электростанций;

 пар - применяются на объектах, использующих большое количество пара для технологических нужд.

К преимуществам паровых котлов-утилизаторов относится уменьшение отвода тепла в атмосферу и более эффективное использование топлива.

В зависимости от типа, котлы-утилизаторы могут быть: паровые и водогрейные; оснащенные дожигающим устройством или без него; одного, двух или трех уровней давлений; вертикального и горизонтального профиля; подвесные и самоопорные.

kotlilamont.jpg

Рис. 2. Принцип работы парового КУ

При работе котла в качестве парового, (рис.2) — барабан заполняется водойтолько до середины. В последнем случае пар, выделяющийся из воды, поступает в паровое пространство, откуда через патрубок, находящийся в верхней части барабана, или из сухопарника отводится к потребителю. Пополнение испарившейся воды производится по специальной трубе.

Водогрейный КУ (рис. 3.) служит для получения горячей воды для использования в системах отопления, вентиляции и горячего водоснабжения. Водогрейные котлы-утилизаторы обычно называются утилизационными экономайзерами, или подогревателями.


Рис. 3. Схема работы водогрейного КУ

Применение паровых котлов утилизаторов в промышленности, строительстве и сельском хозяйстве позволяет реализовывать энергосберегающие технологии.

Крупные котлы-утилизаторы не имеют всех элементов котлоагрегата. Отходящие вторичные газы попадают сразу на поверхности нагрева (экономайзер, испаритель, пароперегреватель). Воздухоподогреватель и топка в котлах-утилизаторах отсутствуют, так как газы, используемые в котле, образуются в технологическом процессе основного производства. Температура газов, поступающих в энергетический котел-утилизатор, приблизительно составляет 350—700 °C.

Большое разнообразие конструкций котлов-утилизаторов и энерготехнологических агрегатов объясняется, прежде всего различными местными условиями их применения. Так, например, на химических производствах есть установки, в которых энергетический агрегат работает при давлении охлаждаемых газов до 0.7 МПа (7 кгс / см2); давление же газов в 0.1 – 0.15 МПа ( 1 – 1,5 кгс / см2) встречается весьма часто.

В некоторых конструкциях котлов-утилизаторов типа ГТКУ имеются два отсека, в которых расположены газотрубные секции. Для регулирования расхода отходящих газов внутри котла установлен перепускной (байпасный) газоход с шибером. Все газовые трубы защищены от износа предохранительными гильзами из стали марки X17.

Конструкция котла обеспечивает хорошую герметизацию агрегата. Испарительные элементы, расположенные в печи и газоходах котла, объединены в общий циркуляционный контур.

Отходящие газы после сушки или обжига материалов содержат много пыли и других химических веществ, что вызывает необходимость очистки газов до котла-утилизатора.

Наиболее часто для очистки используют циклоны и электрофильтры. Этой очистки все равно не хватает для полного очищения газов. Пыль оседает на поверхности нагрева и малейшая протечка увлажняет пыль и значительно уменьшает теплоотдачу, что вызывает неравномерный нагрев и влечёт перекос змеевиков.

Присутствие в газах соединений кальция, натрия, серы приводят к образованию на змеевиках сцементировавшихся отложений, вызывающих химическую коррозию поверхностей нагрева и снижающих живое сечение для прохода газов. В настоящее время стали появляться котлы-утилизаторы, которые содержат камеру дожигания отходящих газов.

Чтобы устранить оседание частиц сажи на рабочих поверхностях котла, следует предусмотреть высокие скорости газа. Опыты показывают, что котел-утилизатор работает удовлетворительно при скорости газа в трубах не менее 25 - 30 м/сек. При этих скоростях газовый поток находится в режиме так называемого самообдува теплообменных поверхностей, так что сажа не оседает на них. Использование обычно применяемых в промышленности паровых котлов, без учета указанных особенностей теплоносителя, не дает желаемых результатов.


Рис. 4. КУ с принудительной циркуляцией

Схема котла-утилизатора с принудительной циркуляцией (рис.4.): 1 —барабан; 2 — испарительная часть; 3 — пароперегреватель; 4 — водяной экономайзер.

Для малых производительностей и низких давлений применяются котлы-утилизаторы газотрубные либо с многократной принудительной циркуляцией, реже — прямоточные сепараторные и барабанные котлы-утилизаторы с естественной циркуляцией.

Таким образом, применение котлов-утилизаторов в системах утилизации теплоты позволяет более полно использовать энергию топлива в энергетических установках, что существенно повышает их эффективность. Также следует продолжитьи исследования в области повышения эффективности котлов –утилизаторов.

  1. Агафонов А.Н., Сайданов В.О., Гудзь В.Н. Комбинированные энергоустановки объектов малой энергетики. – СПб.: Изд-во Политехн. ун-та, 2005. – 262 с.
  2. Андрющенко А.И. Основы термодинамики циклов теплоэнергетических установок. – М.: высшая школа, 1985. – 319 с.
  3. Разуваев А.В. Поршневые двигатели внутреннего сгорания с высокотемпературным охлаждением. – Саратов: Сарат. гос. техн. ун-т, 2001. – 128 с.
  4. Агафонов А.Н., Разуваев А.В. Совершенствование характеристик энергетических установок на базе двигателей ЧН 21/21 объектов малой энергетики - Саратов: Сарат. гос. техн. ун-т, 2006. – 148 с.
  5. Петриченко Р.М., Аверьянов В.К. Системы жидкостного охлаждения быстроходных ДВС. – Л.: Машиностроение, 1975. – 287 с.
  6. Селиверстов В.И. Утилизация тепла в судовых дизельных установках. – Л.: Судостроение, 1973. – 218 с.
  7. Кривов В.Г., Агафонов А.Н. Предложения по созданию комбинированных малых теплоэлектроцентралей на базе поршневых и газотурбинных двигателей с утилизацией теплоты // Двигателестроение. – 1998. – № 2. – С. 3-5.

Основные термины (генерируются автоматически): газ, горячая вода, котел, поверхность нагрева, принудительная циркуляция, система утилизации теплоты.

Читайте также: