Твердые тела и жидкости реферат

Обновлено: 05.07.2024

Долгое время казалось, что самое интересное в Физике - это исследования микромира и микрокосмоса. Именно там пытались найти ответы на наиболее важные, фундаментальные вопросы, объясняющие устройство окружающего мира. А сейчас образовался третий фронт исследований - изучение твёрдых тел.

Почему же так важно исследовать твёрдые тела?

Огромную роль, конечно, играет здесь практическая деятельность человека. Твёрдые тела - это металлы и диэлектрики, без которых немыслима электротехника, это - полупроводники, лежащие в основе современной электроники, магниты, сверхпроводники, конструкционные материалы. Словом, можно утверждать, что научно-технический прогресс в значительной мере основан на использовании твёрдых тел.

Но не только практическая сторона дела важна при их изучении. Сама внутренняя логика развития науки - физики твёрдого тела - привела к пониманию важности коллективных свойств больших систем.

Твёрдое тело состоит из миллиарда частиц, которые взаимодействуют между собой. Это обусловливает появление определённого порядка в системе и особых свойств всего количества микрочастиц. Так, коллективные свойства электронов определяют электропроводность твёрдых тел, а способность тела поглощать тепло - теплоёмкость - зависит от характера коллективных колебаний атомов при тепловом движении. Коллективные свойства объясняют все основные закономерности поведения твёрдых тел.

Структура твёрдых тел многообразна. Тем не менее, их можно разделить на два больших класса: кристаллы и аморфные тела.













Рис. 1

Кристаллы - это твёрдые тела, атомы или молекулы которых занимают определённые, упорядоченные положения в пространстве . Поэтому кристаллы имеют плоские грани. Например, крупинка обычной поваренной соли имеет плоские грани, составляющие друг с другом прямые углы (рис. 1). Это можно заметить, рассматривая соль с помощью лупы. Строгая периодичность в расположении атомов приводит к сохранению порядка на больших расстояниях (в таком случае говорят, что имеется дальний порядок). А как геометрически правильна форма снежинки! В ней также отражена геометрическая правильность внутреннего строения кристаллического твёрдого тела - льда.

Однако, правильная внешняя форма не единственное и даже не самое главное следствие упорядоченного строения кристалла. Главное - это зависимость физических свойств от выбранного в кристалле направления . Прежде всего, бросается в глаза различная механическая прочность кристаллов по разным направлениям. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Так же легко расслаивается в одном направлении кристалл графита. Когда вы пишете карандашом, такое расслоение происходит непрерывно и тонкие слои графита остаются на бумаге. Это происходит потому, что кристаллическая решётка графита имеет слоистую структуру. Слои образованы рядом параллельных сеток, состоящих из атомов углерода. Атомы располагаются в вершинах правильных шестиугольников. Расстояние между слоями сравнительно велико - примерное в два раза больше, чем длина стороны шестиугольника, поэтому связи между слоями менее прочны, чем связи внутри них. Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Так, кристалл кварца по-разному преломляет свет в зависимости от направления падающих на него лучей.

Зависимость физических свойств от направления внутри кристалла называют анизотропией . Все кристаллические тела анизотропные.

Кристаллическую структуру имеют металлы. Именно металлы преимущественно используются в настоящее время для изготовления орудий труда, различных машин и механизмов.

Если взять сравнительно большой кусок металла, то на первый взгляд его кристаллическая структура никак не проявляется ни во внешнем виде куска ни в его физических свойствах. Металлы в обычном состоянии не обнаруживают анизотропии.

Дело здесь в том, что металл обычно состоит из огромного количества сросшихся друг с другом кристалликов. Под микроскопом или даже с помощью лупы их нетрудно рассмотреть, особенно на свежем изломе металла. Свойства каждого кристаллика зависят от направления, но кристаллики ориентированны по отношению друг к другу беспорядочно. В результате в объёме, значительно превышающем объём отдельных кристалликов все направления внутри металлов равноправны и свойства металлов одинаковы по всем направлениям.

Твёрдое тело, состоящее из большого числа маленьких кристалликов, называют монокристаллами.

Соблюдая большие предосторожности, можно вырастить металлический кристалл больших размеров - монокристалл. В обычных условиях поликристаллическое тело образуется в результате того, что начавшийся рост многих кристаллов продолжается до тех пор, пока они не приходят в соприкосновение друг с другом, образуя единое тело.

К поликристаллам относятся не только металлы. Кусок сахара, например, также имеет поликристаллическую структуру.

Большинство кристаллических тел - поликристаллы, так как они состоят из множества сросшихся кристаллов. Одиночные кристаллы - монокристаллы имеют правильную геометрическую форму, и их свойства различны по разным направлениям (анизотропия).

Не все твёрдые тела - кристаллы. Существует множество аморфных тел. Чем они отличаются от кристаллов?

У аморфных тел нет строгого порядка в расположении атомов. Только ближайшие атомы - соседи располагаются в некотором порядке. Но строгой направляемости по всем направлениям одного и того же элемента структуры, которая характерна для кристаллов в аморфных телах, нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц SiO2 , может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решётки из правильных шестиугольников. Аморфная структура кварца также имеет вид решётки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти и семиугольники.

В 1959 г. английский физик Д. Бернал провёл интересные опыты: он взял много маленьких пластилиновых шариков одинакового размера, обвалял их в меловой пудре и спрессовал в большой ком. В результате шарики деформировались в многогранники. Оказалось, что при этом образовывались преимущественно пятиугольные грани, а многогранники в среднем имели 13,3 грани. Так что какой-то порядок в аморфных веществах определённо есть.

Свойства Аморфных тел . Все аморфные тела изотропные, т.е. их физические свойства одинаковы по всем направлениям. К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и текучесть, подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые тела и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Проследим за куском смолы, который лежит на гладкой поверхности. Постепенно смола по ней растекается, и, чем выше температура смолы, тем быстрее это происходит.

Атомы или молекулы аморфных тел, подобно молекулам жидкости, имеют определённое время “осёдлой жизни” - время колебаний около положения равновесия. Но в отличие от жидкостей это время у них весьма велико. Так, для вара при t = 20 o C время “осёдлой жизни” 0,1 с. В этом отношении аморфные тела близки к кристаллическим, так как перескоки атомов из одного положения равновесия в другое происходят редко.

Аморфные тела при низких температурах по своим свойствам напоминают твёрдые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства всё более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения в другое. Определённой температуры тел у аморфных тел, в отличие от кристаллических, нет.

Физика твёрдого тела . Чёловечество всегда использовало, и будет использовать твёрдые тела. Но если раньше физика твёрдого тела отставала от развития технологии, основанной на непосредственном опыте, то теперь положение переменилось. Теоретические исследования приводят к созданию твёрдых тел, свойства которых совершенно необычны. Получить такие тела методом проб и ошибок было бы невозможно. Создание транзисторов, о которых пойдёт речь в дальнейшем, - яркий пример того, как понимание структуры твёрдых тел привело к революции во всей радиотехнике.

Получение материалов с заданными механическими, магнитными, электрическими и другими свойствами - одно из основных направлений современной физики твёрдого тела.

Аморфные тела занимают промежуточное положение между кристаллическими твёрдыми телами и жидкостями. Их атомы или молекулы располагаются в относительном порядке. Понимание структуры твёрдых тел (кристаллических и аморфных) позволяет создавать материалы с заданными свойствами.

Деформация твёрдого тела - изменение его формы или объёма. Растяните резиновый шнур за концы. Очевидно, участки шнура сместятся друг относительно друга; шнур окажется деформированным - станет длиннее и тоньше. Деформация возникает всегда, когда различные части тела под действием сил перемещаются неодинаково.

Шнур, после прекращения действия на него сил, возвращается в исходное состояние. Деформации, которые полностью исчезают после прекращения действия внешних сил, называются упругими . Кроме резинового шнура, упругие деформации испытывают пружина, стальные шарики при столкновении и т.д.

Твердые тела и материалы, которыми располагает общество, во многом определяют уровень его технического развития. Физика твердого тела служит основой современного материаловедения, она указывает пути создания технически важных твердых тел и материалов с требуемыми свойствами.

Так как применение большинства твердых материалов определяется в первую очередь их механическими свойствами, то из всего разнообразия физических свойств механические свойства твердых тел являются наиболее важными в изучении.

Современная техника нуждается в прочных и долговечных материалах с разнообразными механическими и другими свойствами. Чтобы создавать такие материалы, чтобы изменять их свойства в нужном направлении, важно знать, что происходит в реальных твердых телах под действием внешней механической нагрузки, то есть необходимо знать механизм деформации и разрушения.

Создание материалов с заданными механическими, магнитными, электрическими и другими свойствами – одно из основных направлений современной физики твердого тела. Приблизительно половина физиков мира работает сейчас в области физики твердого тела.

1.1 Кристаллические тела

Твердые тела сохраняют не только свой объем, как жидкости, но и форму. Твердые тела находятся преимущественно в кристаллическом состоянии.

Кристаллы – это твердые тела, атомы и молекулы которых занимают определенные упорядоченные положения в пространстве. Следствие этого – правильная внешняя форма кристалла.

Анизотропия кристаллов

Правильная внешняя форма – не единственное, и даже не самое главное следствие упорядоченного строения кристалла. Главное – это зависимость физических свойств от выбранного в кристалле направления. Прежде всего бросается в глаза различная механическая прочность кристалла по разным направлениям. Например, легко расслаиваются по одному направлению кристаллы графита. Когда мы пишем карандашом, такое расслоение происходит непрерывно, и тонкие слои графита остаются на бумаге. Это происходит потому, что кристаллическая решетка графита имеет слоистую структуру. Слои образованы рядом параллельных плоских сеток, состоящих из атомов углерода. Атомы располагаются в вершинах правильных шестиугольников. Расстояние же между слоями сравнительно велико, поэтому связи между слоями менее прочны, чем связи внутри них.

Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. Зависят от направления и оптические свойства кристаллов.

Зависимость физических свойств от направления внутри кристалла называют анизотропией. Все кристаллические тела анизотропны.

Поликристаллы и монокристаллы

Твердое тело, состоящее из большого числа маленьких кристалликов, называют поликристаллическим. Типичные представители поликристаллов – металлы. На первый взгляд их кристаллическое строение никак не проявляется. Большой кусок металла анизотропен. Дело в том, что кристаллики ориентированы друг по отношению к другу хаотически. В результате в объеме, значительно превышающем объем отдельных кристалликов, все направления внутри металлов равноправны и их свойства одинаковы по всем направлениям. Каждый же кристаллик анизотропен.

Одиночные кристаллы называют монокристаллами.

1.2 Аморфные тела

Аморфными называют вещества, не обладающие в конденсированном состоянии кристаллическим строением, но обладающие, в отличие от жидкостей, упругостью формы (модуль сдвига не равен нулю).

В аморфном состоянии могут находиться, например обычные (неорганические) стекла, сера, селен, глицерин и большинство высокомолекулярных соединений.

У аморфных тел, в отличие от кристаллических, нет строгого порядка в расположении атомов. Только ближайшие атомы располагаются в некотором порядке. Но строгой повторяемости во всех направлениях одного и того же элемента структуры, которая характерна для кристаллов, в аморфных телах нет.

Все аморфные тела изотропны – их физические свойства одинаковы по всем направлениям.

Аморфные вещества при определенных условиях стеклуются, т. е. переходят от свойств и закономерностей жидкого состояния к свойствам и закономерностям твердого состояния. Переход аморфного вещества из жидкого состояния в твердое при изменении температуры или давления называется структурным стеклованием. При таком переходе меняются объем, теплосодержание, а также механические, электрические и другие свойства вещества.

Стеклование и размягчение совершаются в довольно широкой температурной области – до нескольких десятков градусов. Поэтому в отличие от кристаллических тел, аморфные тела не обладают какой-то определенной температурой плавления.

Деформация и разрушение твердых тел под действием приложенных сил – это основные явления, определяющие механические свойства материалов.

Деформацией называется изменение формы или объема тела.

Жидкости сопротивляются изменению их объема, но не сопротивляются изменению формы. Твердые же тела сопротивляются как изменению формы, так и изменению объема. Они сопротивляются, как говорят, любому деформированию.

Давления, возникающие в твердом теле при его деформировании, называются упругими напряжениями. Напряжение – это сила, отнесенная к единице площади:

Деформации, которые полностью исчезают при прекращении действия внешних сил, называются упругими.

Деформации, которые не исчезают после прекращения действия внешних сил, называются пластическими.

Существует определенная (для каждого тела) пороговая величина напряжения, начиная с которой в теле появляется пластическая деформация. Эта величина называется пределом упругости. При меньших напряжениях снятие нагрузки возвращает тело в исходное состояние; при больших напряжениях после снятия нагрузки в теле остаются остаточные, пластические, деформации.

Любые деформации твердых тел можно свести к двум видам – растяжению (или сжатию) и сдвигу.

2.1 Растяжение (сжатие)

Если к однородному стержню, закрепленному на одном конце, приложить силу F вдоль оси стержня в направлении от него, то стержень подвергнется деформации растяжения.

Деформацию растяжения характеризуют абсолютным удлинением:

где l0 и l – начальная и конечная длина стержня.

Благодаря большой сопротивляемости твердых тел, испытываемые ими под влиянием внешних сил деформации обычно невелики. При малом относительном удлинении деформации большинства тел упругие.

При малых деформациях напряжение прямо пропорционально относительному удлинению. Эта зависимость носит название закона Гука:

где коэффициент Е характеризует материал тела и называется модулем Юнга. Так как относительное удлинение – величина безразмерная, то размерность модуля Юнга совпадает с размерностью напряжения, то есть модуль Юнга имеет размерность давления.

Растяжение относится к однородным деформациям, то есть к таким, при которых все элементы объема тела деформируются одинаковым образом.

Тесно связанной с простым растяжением, но неоднородной деформацией является изгиб тонкого стержня. При изгибе одна сторона – выпуклая – подвергается растяжению, а другая – вогнутая – сжатию. Внутри изгибаемого тела расположен слой, не испытывающий ни растяжения, ни сжатия, называемый нейтральным.

Вблизи нейтрального слоя тело почти не испытывает деформаций. В этом слое малы и возникающие при деформации силы. Следовательно, площадь поперечного сечения изгибаемой детали в окрестности нейтрального слоя можно значительно уменьшить. В современной технике и строительстве вместо стержней и простых брусьев повсеместно применяют трубы, двутавровые балки, рельсы, швеллеры, чем добиваются облегчения конструкций и экономии материала.

2.2 Сдвиг

Сдвигом называется деформация, при которой все плоские слои твердого тела параллельны некоторой плоскости (плоскости сдвига), не искривляясь и не изменяясь в размерах, смещаются параллельно друг другу .

Сдвиг происходит под действием силы F, приложенной касательно к грани ВС, параллельной плоскости сдвига. Грань AD закреплена неподвижно. Мерой деформации является угол сдвига (относительный сдвиг), выраженный в радианах.

Для малых деформаций (при упругих деформациях) по закону Гука относительный сдвиг пропорционален касательному (скалывающему) напряжению:

где G – модуль сдвига, численно равный касательному напряжению, вызывающему относительный сдвиг, равный единице.

Рассмотренный нами сдвиг прямоугольного бруска представляет собой однородную деформацию.

Деформацией чистого сдвига, но неоднородной, является кручение стержня. Она возникает, если, закрепив один конец стержня, закрутить его второй конец. При этом различные сечения стержня будут поворачиваться на различные углы относительно закрепленного основания.

2.3 Диаграммы деформации

Большое количество твердых материалов служит для изготовления конструкций (сооружений, машин, механизмов), основное назначение которых – сопротивление деформации. Конструктор должен заранее знать поведение материалов при значительных деформациях, условия, при которых материалы начнут разрушаться.

Сведения о механических свойствах различных материалов получают экспериментально. Сопротивление деформации, как правило, определяют по диаграммам деформации в координатах . Эти диаграммы аттестуют материал, определяя его механические свойства (предел текучести, деформирующее напряжение, интенсивность деформационного упрочнения, предел прочности и др.).

Рассмотрим механические свойства твердого тела на примере исследования деформации растяжения. Для проведения этого исследования стержень из исследуемого материала при помощи специальных устройств подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения от относительного удлинения – диаграмму растяжения.

  1. При небольших деформациях (при малых напряжениях) выполняется закон Гука (участок ОА).
  2. Максимальное напряжение sп, при котором еще выполняется закон Гука, называют пределом пропорциональности.
  3. Если увеличить нагрузку, то деформация становится нелинейной. Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ).
  4. Максимальное напряжение, при котором еще не возникают заметные остаточные деформации (относительная остаточная деформация не превышает 0,1 %), называют пределом упругости sуп. Предел упругости превышает предел пропорциональности лишь на сотые доли процента. Значения предела упругости зависят не только от вещества тела. Оно сильно меняется в зависимости от способа приготовления образца, его предварительной обработки, наличия в нем примесей и т.д. Так, предел упругости монокристаллов алюминия составляет всего 4 кгс/см 2 , а технического алюминия – 1000 кгс/см 2 (примерно 10 8 Па).
  5. При напряжении, превышающем предел упругости образец остается деформированным после снятия напряжения. По мере увеличения нагрузки деформация нарастает все быстрее и быстрее (участок ВС).
  6. При некотором значении напряжения, соответствующем на диаграмме точке С, удлинение нарастает практически без увеличения нагрузки. Это явление называют текучестью материала (участок СD).
  7. Далее с увеличением деформации кривая напряжений начинает немного возрастать и достигает максимума в точке Е. Затем напряжение быстро спадает и образец разрушается (точка К). Разрыв происходит после того, как напряжение достигает максимального значения sпч, называемого пределом прочности – образец растягивается без увеличения внешней нагрузки вплоть до разрушения. Эта величина зависит от материала образца и его обработки.

Повышение пределов прочности таких широко используемых в технике материалов, как сталь, чугун, алюминий, медь и многих других является задачей исключительной важности.

Сравнение реальной прочности кристаллов со значениями, полученными на основании теоретических расчетов, обнаруживает весьма существенные расхождения: теоретический предел прочности в десятки и даже сотни раз превосходит значения, получаемые при испытании реальных образцов! Это означает, что на изготовление станков и машин, железных дорог и трубопроводов расходуется в десятки и сотни раз больше материалов, чем это было бы необходимо при получении материалов, обладающих такой прочностью, какая предсказана теорией. Поэтому физикам и инженерам очень важно было узнать, по какой причине реальная прочность твердых тел оказывается значительно меньше величин, рассчитанных для идеальной модели.

Оказалось, что причина расхождения теории и эксперимента – в наличии внутренних и поверхностных дефектов, существование которых не учитывалось в расчетах.

3.1 Дефекты в кристаллах

Уже сам факт сильной зависимости пластических свойств тела от его обработки, наличия примесей и т.п. указывает на тесную связь этих свойств с особенностями кристаллического строения реальных тел – особенностями, отличающими реальные кристаллы от идеальных.

О нарушениях идеальной кристаллической структуры говорят как о дефектах кристаллов. Наиболее простой тип дефектов (которые можно назвать точечными) состоит в отсутствии атома в узле решетки (свободная вакансия) или в замене «правильного атома в узле чужеродным (атомом примеси), во внедрении лишнего атома в межузельное пространство и т.п. Нарушение правильности структуры решетки распространяется на небольшое (порядка величины нескольких периодов) расстояние вокруг такой точки.

Наиболее важную роль в механических свойствах твердых тел играют, однако, дефекты другого рода, которые можно назвать линейными, поскольку нарушение правильности структуры кристаллической решетки сосредоточено вблизи нескольких линий. Эти дефекты называют дислокациями.

В краевой дислокации направление сдвига перпендикулярно, а в винтовой – параллельно линии дислокации. Между этими двумя предельными случаями возможны любые промежуточные. Линии дислокации не обязательно прямые: они могут быть и кривыми, в том числе образовывать замкнутые петли.

3. 2 Способы повышения прочности твердых тел

Для получения материалов с высокой прочностью на разрыв и сдвиг, т.е. с большим сопротивлением пластической деформации, необходимо:

а) либо уменьшить в них число дислокаций,

б) либо создать условия, затрудняющие перемещения дислокаций.

Препятствием перемещению дислокации может служить другая дислокация, встретившаяся на ее пути. Поэтому при увеличении числа дислокаций в единице объема прочность кристалла сначала уменьшается, а затем начинает возрастать. Это обстоятельство иллюстрируется на графике зависимости предела прочности от числа дефектов в единице объема кристалла.

Способ повышения прочности твердых тел путем получения кристаллов с очень малым количеством дислокаций пока еще не используется в промышленности. Большинство современных методов упрочнения материалов основано на противоположном способе, состоящем в искажении кристаллической структуры путем создания в ней различного рода дефектов – введением примесей, созданием дислокаций. Например, при легировании стали – введении в расплав небольших добавок хрома, вольфрама и других элементов – ее прочность увеличивается примерно втрое. При протяжке, дробеструйной обработке металлов и т.п. происходит так называемый наклеп, приводящий к увеличению плотности дислокаций и повышению прочности. Например, после протяжки бруска углеродистой стали предел прочности возрастает втрое.

Обработка металлов давлением приводит к уменьшению размеров кристаллов и увеличению дефектов структуры внутри самих зерен. И то и другое мешает передвижению дислокаций и приводит к значительному повышению прочности.

Использование научных достижений в металлургии позволило получать алюминиевые сплавы, не уступающие по прочности легированным сталям. Лучшие марки стали 30-х годов обладали прочность на разрыв 10 9 Па, а современные – 2,3х10 9 Па.

Приблизить практическую прочность металлов к теоретической можно и другим способом – высокоскоростной кристаллизацией. На основе высокоскоростной кристаллизации и последующего горячего прессования разработана технология производства, например, дисков из никелевых сплавов для газотурбинных двигателей. Таким способом жаропрочность дисков была повышена более чем в полтора раза. Это дало возможность уменьшить массу агрегатов, повысить рабочие температуры, увеличить срок службы двигателей.

  1. Кабардин О. Ф., Кабардин С. И., Шефер Н. И. Факультативный курс физики. Учеб. пособие для учащихся. – М.: Просвещение, 1986. – С. 50-61.
  2. Конева Н. А. Природа стадий пластических деформаций. Соросовский образовательный журнал, № 10, 1998. – С. 99-105.
  3. Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М. Курс общей физики. Механика и молекулярная физика, М.: Наука, 1969. С. 316-335.
  4. Яворский Б. М., Детлаф А. А. Справочник по физике для инженеров и студентов вузов.– М.: Наука, 1978. С. 281-291.

Правильная внешняя форма не единственное и даже не самое главное следствие упорядоченного строения кристалла. Главноеэто зависимость физических свойств от выбранного в кристалле направления. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Многие кристаллы по-разному проводят теплоту… Читать ещё >

  • свойства газа
  • жидких и твердых тел с точки зрения молекулярно-кинетической теории

Строение газообразных, жидких и твердых тел ( реферат , курсовая , диплом , контрольная )

Строение газообразных, жидких и твердых тел.

Строение газообразных, жидких и твердых тел.

Строение газообразных, жидких и твердых тел.

Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул.

Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но молекулы не сдавливают друг друга.

Молекулы с огромными скоростями — сотни метров в секундудвижутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа.

Если соединить центр равновесия атомов или ионов твёрдого тела, то получится правильная пространственная решётка, называемая кристалической.

Строение газообразных, жидких и твердых тел.

Строение газообразных, жидких и твердых тел.

Строение газообразных, жидких и твердых тел.

Строение газообразных, жидких и твердых тел.

Кристаллы — это твёрдые тела, атомы или молекулы которых занимают определённое, порядочное положение в пространстве. Поэтому кристаллы имеют плоские грани. Например крупинка обычной поваренной соли имеет плоские грани, составляющие друг с другом прямые углы.

Правильная внешняя форма не единственное и даже не самое главное следствие упорядоченного строения кристалла. Главноеэто зависимость физических свойств от выбранного в кристалле направления. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Так, кристалл кварца по-разному преломляет свет в зависимости от направления падающих на него лучей. Зависимость физических свойств от направления внутри кристалла называют анизотропией. Все кристаллические тела анизотропны.

Монокристаллы и поликристаллы.

Строение газообразных, жидких и твердых тел.

Строение газообразных, жидких и твердых тел.

Кристаллическую структуру имеют металлы. Если взять большой кусок металла, то на первый взгляд его кристаллическое строении никак не проявляется ни во внешнем виде куска, ни в его физических свойствах Обычно металл состоит из огромного количества сросшихся друг с другом маленьких кристалликов. Свойства каждого кристаллика зависят от направления, но кристаллики ориентированы по отношению к друг другу беспорядочно. В результате в объеме, значительно превышающем объем отдельных кристалликов, все направления внутри металлов равноправны и свойства металлов одинаковы по всем направлениям.

Твердое тело, состоящее из большого числа маленьких кристалликов, называют поликристаллическим. Одиночные кристаллы называют монокристаллами.

Изучение механики материальной точки, твердого тела и сплошных сред. Характеристика плотности, давления, вязкости и скорости движения элементов жидкости. Закон Архимеда. Определение скорости истечения жидкости из отверстия. Деформация твердого тела.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 21.03.2014
Размер файла 644,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1. Давление в жидкости

2. Течение жидкости

4. Деформация твердого тела

Список использованной литературы и источников

Кроме механики материальной точки и механики твердого тела, которые мы рассматривали, существует механика сплошных сред (МСС). Познакомимся с простейшими понятиями МСС. Под сплошной средой можно понимать газ, жидкость, твердое тело, способное деформироваться под действием внешних или внутренних сил. При этом предполагается, что вещество непрерывно распределено в занятой им части пространства. Для простоты будем рассматривать жидкость, хотя большинство понятий, которые будем использовать, справедливы и для других сред.

1. Давление в жидкости

Важными характеристиками жидкости являются плотность, температура, давление, вязкость, скорость движения различных ее элементов.

Плотностью вещества является масса единицы объема этого вещества

Изменением плотности жидкости при изменении внешних условий во многих случаях можно пренебречь. Такие жидкости называют несжимаемыми.

Если внутри жидкости поместить пластинку, то на пластинку будет действовать сила, которая не зависит от ориентации пластинки.

Давлением называется сила, действующая на единицу площади

Единица давления - паскаль. 1 Па равен давлению, создаваемому силой в 1 Н, действующей на поверхность площадью в 1 м 2 . Это достаточно малая величина, отметим, что атмосферное давление составляет Па. Отметим, что в покоящейся жидкости давление одинаково по всем направлениям в данной точке, т.е., если мы расположим тонкую пластинку горизонтально, то на нее действуют одинаковые силы как сверху вниз, так и снизу вверх. Это положение известно, как закон Паскаля. Рассмотрим столб жидкости высотой h, имеющего площадь поперечного сечения S. Его вес будет равен , а давление на нижнее основание

Это давление называют гидростатическим.

Закон Архимеда. На тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной телом жидкости

Для доказательства этого утверждения мысленно удалим из жидкости элемент объемом V, который имеет вес . Поскольку, этот элемент в жидкости неподвижен, то он должен быть уравновешен такой же по величине выталкивающей силой. Это и есть сила Архимеда. Давление может создаваться не только столбом жидкости, но и внешними силами, приложенными к поверхности жидкости, а также силами инерции.

2. Течение жидкости

Движение жидкости называют течением. Графически движение жидкости изображают с помощью линий тока, которые проводятся так, что касательные к ним совпадают по направлению с вектором скорости жидкости в соответствующей точке.

Рассмотрим в пространстве замкнутую кривую и проведем через все ее точки линии тока. Полученная фигура называется трубкой тока.

Рассмотрим два поперечных сечения трубки тока. Если S1 и S2 - площади поперечных сечений, а v1 и v2 - скорости движения среды в этих сечениях, то для несжимаемой среды выполняется условие

Это уравнение называется уравнением неразрывности для несжимаемой жидкости. Разумеется, при выводе уравнения предполагалось, что внутри жидкости отсутствуют источники жидкости. Из этой формулы следует, что при переменном сечении трубки тока частицы несжимаемой жидкости движутся с ускорением. В горизонтальной трубке тока это ускорение может быть обусловлено только непостоянством давления вдоль оси трубки - в местах, где скорость меньше, давление должно быть больше, и наоборот. Пример: река шире - скорость течения меньше.

Выделяют два режима течения жидкостей: ламинарное и турбулентное. Существуют и другие формы движения жидкости, которые не являются течением: разбрызгивание (фонтаны), движение с парообразованием и конденсацией и др.

Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними.

Течение называется турбулентным, если вдоль потока происходит интенсивное перемешивание и вихреобразование слоев. Понятие трубки тока, так же, как и линии тока, здесь уже теряет смысл.

Жидкость называется идеальной, если в ней отсутствуют силы внутреннего трения. В реальных жидкостях трение существует и слои движущейся жидкости взаимодействуют друг с другом.

Рассмотрим установившееся ламинарное течение идеальной жидкости. Выделим в стационарно текущей идеальной жидкости трубку тока малого сечения.

Рассмотрим объем жидкости, ограниченный стенками трубки тока и перпендикулярными к линиям тока сечениями и . За время этот объем переместится вдоль трубки тока, причем сечение переместится в положение , пройдя путь , сечение переместится в положение , пройдя путь . В силу неразрывности струи, заштрихованные объемы будут иметь одинаковую величину

Энергия каждой частицы жидкости слагается из ее кинетической энергии и потенциальной энергии в поле сил земного тяготения. Вследствие стационарности течения частица, находящаяся спустя время в любой из точек незаштрихованной части рассматриваемого объема (например, точка О на рисунке), имеет такую же скорость (а следовательно, и кинетическую энергию), какую имела частица, находившаяся в той же точке в начальный момент времени. Поэтому приращение энергии всего рассматриваемого объема можно вычислить кaк разность энергий заштрихованных объемов.

Возьмем сечение трубки тока S и отрезки настолько малыми, чтобы всем точкам каждого из заштрихованных объемов можно было приписать одно и то же значение скорости , давления p и высоты h. Тогда приращение энергии запишется следующим образом:

Это приращение энергии равно работе сил давления

Это уравнение называют уравнением Бернулли. Используем это уравнение для описания истечения жидкости из отверстия.

Пример 1. В сосуде, заполненном жидкостью, имеется отверстие на глубине h. Определить скорость истечения жидкости из отверстия.

Решение. Сделаем рисунок.

Запишем уравнение Бернулли

механика жидкость деформация тело

и положим . Получим

Эта формула называется формулой Торричелли. Отметим, что такую же скорость приобретает тело, падающее с высоты h.

Если жидкость не является идеальной, то между слоями движущейся жидкости существует взаимодействие, которое приводит к появлению силы внутреннего трения. Вязкостью (внутренним трением) называют свойство жидкости оказывать сопротивление перемещению одной части жидкости относительно другой. Рассмотрим простейший случай, когда одна из параллельных плоскостей движется относительно другой. При этом пространство между плоскостями заполнено жидкостью, которая также участвует в движении.

Опыт показывает, что для движения верхней пластинки с постоянной скоростью требуется прикладывать некоторую силу F. Т.к. ускорения нет, то сила F уравновешивается другой силой , создаваемой жидкостью.

Из опыта следует, что для силы трения справедлива формула

где - коэффициент внутреннего трения (вязкость), - скорость верхней пластины, S - площадь пластины, d - расстояние между пластинами.

Распределение величины скорости по высоте (градиент скорости) описывается формулой

получим формулу для силы трения

Эта формула является обобщением исходной формулы для силы трения. Величину называют градиентом скорости.

Эту единицу называют паскаль-секундой. Паскаль-секундой называют такую вязкость, при которой градиент скорости с модулем равным 1 на 1 м, приводит к возникновению силы внутреннего трения в 1 Н на 1 м 2 поверхности касания слоев.

4. Деформация твердого тела

Мы рассматривали движение абсолютно твердых тел. Реальные твердые тела могут испытывать деформацию. Деформацией называют явление изменения формы и размеров тела под действием внешних сил. Обычно деформацию разделяют на упругую и пластическую.

Деформация называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму.

Деформация называется пластической, если после прекращения действия внешних сил деформация сохраняется.

Обычно деформация содержит как упругую, так и пластическую составляющие. Часто одной из них пренебрегают и рассматривают второй тип деформации. По виду деформированного состояния выделяют деформации растяжения, сжатия, сдвига, изгиба, кручения и др. Для изучения деформаций, связанных с ними сил и напряжений существуют специальные науки: теория упругости, теория пластичности. Для изучения вопросов прочности, разрушения существуют также соответствующие научные направления. Здесь мы рассмотрим простейшие понятия деформации с точки зрения физики.

Рассмотрим однородный стержень длиной l и площадью поперечного сечения S, к концам которого приложены силы и такие, что

Под действием этих сил стержень испытывает растяжение на величину .

Основной силовой характеристикой упругого деформированного состояния является напряжение. Проведем мысленно в твердом теле сечение площадью S и удалим вещество по одну сторону сечения. Чтобы оставшаяся часть среды осталась в равновесии к ней необходимо приложить поверхностные силы, уравновешивающие напряженное состояние. Напряжением называется сила, действующая на единицу площади.

Силу, действующую на площадку, можно разложить на нормальную и тангенциальную (касательную) составляющие

Соответственно, напряжения также разлагаются на нормальные и тангенциальные.

Относительным удлинением стержня называют величину

Относительным сжатием называют величину

Отметим, что . Из опыта вытекает зависимость между удлинением и сжатием

где - коэффициент Пуассона. Экспериментально установлена связь между напряжением и деформацией (закон Гука)

где Е - модуль Юнга. Используя приведенные формулы, получим

где k - коэффициент упругости. Это другая запись закона Гука, согласно которому удлинение пропорционально приложенной силе. В такой форме этот закон используется, например, при растяжении пружины.

Список использованной литературы и источников

1. Трофимова Т.И. Курс физики, М.: Высшая школа, 1998, 478 с.

2. Трофимова Т.И. Сборник задач по курсу физики, М.: Высшая школа, 1996, 304с

4. Трофимова Т.И., Павлова З.Г. Сборник задач по курсу физики с решениями, М.: Высшая школа, 1999, 592 с.

6. Красильников О.М. Физика. Методическое руководство по обработке результатов наблюдений. М.: МИСиС, 2002, 29 с.

7. Супрун И.Т., Абрамова С.С. Физика. Методические указания по выполнению лабораторных работ, Электросталь: ЭПИ МИСиС, 2004, 54 с.

Подобные документы

Обзор разделов классической механики. Кинематические уравнения движения материальной точки. Проекция вектора скорости на оси координат. Нормальное и тангенциальное ускорение. Кинематика твердого тела. Поступательное и вращательное движение твердого тела.

презентация [8,5 M], добавлен 13.02.2016

Вывод формулы для нормального и тангенциального ускорения при движении материальной точки и твердого тела. Кинематические и динамические характеристики вращательного движения. Закон сохранения импульса и момента импульса. Движение в центральном поле.

реферат [716,3 K], добавлен 30.10.2014

Составление и решение уравнения движения груза по заданным параметрам, расчет скорости тела в заданной точке с помощью диффенциальных уравнений. Определение реакций опор твердого тела для определенного способа закрепления, уравнение равновесия.

контрольная работа [526,2 K], добавлен 23.11.2009

Решение задачи на нахождение скорости тела в заданный момент времени, на заданном пройденном пути. Теорема об изменении кинетической энергии системы. Определение скорости и ускорения точки по уравнениям ее движения. Определение реакций опор твердого тела.

контрольная работа [162,2 K], добавлен 23.11.2009

Момент инерции тела относительно неподвижной оси в случае непрерывного распределения масс однородных тел. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Плоское движение твердого тела. Уравнение динамики вращательного движения.

презентация [163,8 K], добавлен 28.07.2015

Основы движения твердого тела. Сущность и законы, описывающие характер его поступательного перемещения. Описание вращения твердого тела вокруг неподвижной оси посредством формул. Особенности и базовые кинематические характеристики вращательного движения.

презентация [2,1 M], добавлен 24.10.2013

Определение вязкости глицерина и касторового масла, знакомство с методом Стокса. Виды движения твердого тела. Определение экспериментально величины углового ускорения, момента сил при фиксированных значениях момента инерции вращающейся системы установки.

лабораторная работа [780,2 K], добавлен 30.01.2011

Читайте также: