Тригонометрия на ладони реферат

Обновлено: 05.07.2024

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Я заинтересовался этой темой, потому что хотел узнать больше о тригонометрии и особенно о ее истории.

Я поставил перед собой цель: определить на основе отобранного материала, где тригонометрия, за исключением школьного курса, встречается в решении проблем и идентичностей.

Прочитав литературу, я узнал, что тригонометрические вычисления используются практически во всех областях геометрии, физики и технологии. Большое значение имеет метод триангуляции, который может быть использован для измерения расстояний до далеких звезд в астрономии, между географическими достопримечательностями для управления спутниковыми навигационными системами.

Также стоит отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансового рынка, электроника, теория вероятности, статистика, биология, медицина (в том числе ультразвук и компьютерная томография), фармация, химия, теория чисел (и), как следствие криптографии), сейсмологии, метеорологии, океанографии, картографии, многих областях физики, топографии и геодезии, архитектуры, фонетики, экономики, электротехники, машиностроения, компьютерной графики, кристаллографии, а также я узнал много нового, чего раньше не знал.

По истории тригонометрии

Тригонометрия — греческое слово и буквально означает измерение треугольников (Триггунон — треугольник и измерение Метрю).

В этом случае под измерением треугольников следует понимать треугольное решение, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, но также и задачи планаметрии, стереометрии, астрономии и другие даны задачам решения треугольников.

Появление тригонометрии связано с астрономией и строительством.

Хотя название науки появилось сравнительно недавно, многие понятия и факты, связанные с тригонометрией, были известны уже две тысячи лет назад.

Решения для треугольников, основанные на зависимостях между сторонами и углами треугольника, были впервые найдены древнегреческими астрономами Гиппархом (II в. до н.э.) и Клавдием Птолемеем (II в. н.э.). Позже отношения между сторонами треугольника и его углами стали называться тригонометрическими функциями.

В долгой истории существует понятие синуса. Фактически, различные соотношения сечений треугольника и круга (а по существу, и тригонометрические функции) встречаются уже в III в. до н.э. в трудах великих математиков Древней Греции — Евклида, Архимеда, Аполлонии Пергусской. В римский период эти отношения систематически изучались Менелаем (I в. н.э.), хотя конкретное название им не давалось. Современный синус a, например, изучался как полуаккорд, на котором центральный угол лежит в размере a, или как двухдуговой аккорд.

Уже в IV-V веке в астрономических трудах великого индийского ученого Ариабхаты, чье имя было дано первому индийскому спутнику Земли, существовал особый термин. Он назвал отрезок АМ (рис. 1) аргаджива (арга — половина, джива — луковая струна, которая напоминает аккорд). Позже появилось более короткое имя Джива. Арабские математики в IX в. заменили это слово на арабское слово jib (выпуклость). В переводе арабских математических текстов в этом столетии он был заменен на латинский синус (синус — кривизна, изгиб).

Касательные появились в связи с решением задачи определения длины тени. Тангент (как и кокангент) был введен в X. столетие арабский математик Абу-л-Вафа, который создал первые таблицы для нахождения тангенса и кокангента. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенты были заново открыты только в XIV веке немецким математиком и астрономом Реджимонтаном (1467 г.). Он доказал теорему о тангенте. Regimontan также сделал подробные тригонометрические таблицы, благодаря его работам плоские и сферические тригонометрии стали отдельной дисциплиной в Европе.

Дальнейшее развитие тригонометрии состоялось в трудах выдающегося астронома Николая Коперника (1473-1543) — создателя мировой гелиоцентрической системы Тихо Браге (1546-1601) и Иоганна Кеплера (1571-1630), а также в трудах математика Франсуа Виета (1540-1603), который полностью решил задачу определения всех элементов плоского или сферического треугольника на три даты.

Долгое время тригонометрия была чисто геометрической. Факты, которые мы сейчас формулируем в виде тригонометрических функций, были сформулированы и доказаны с помощью геометрических концепций и высказываний. Так было уже в средние века, хотя иногда использовались аналитические методы, особенно после появления логарифмов. Пожалуй, наибольший стимул для развития тригонометрии возник в связи с решением астрономических задач, представлявших большой практический интерес (например, для решения задач определения положения корабля, прогнозирования отключения электроэнергии и т.д.). Астрономов интересовали отношения между сторонами и углами сферических треугольников. И надо сказать, что математики древнего мира успешно справились с поставленными задачами.

С XVII века тригонометрические функции стали использоваться для решения уравнений, задач механики, оптики, электротехники, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, изучения переменного тока и др. Поэтому тригонометрические функции были всесторонне и глубоко исследованы и приобрели значение для всей математики.

Аналитическая теория тригонометрических функций была разработана в основном Леонардом Эйлером (1707-1783), выдающимся математиком XVIII века, членом Санкт-Петербургской Академии наук. Большое научное наследие Эйлера включает в себя блестящие результаты, связанные с математическим анализом, геометрией, теорией чисел, механикой и другими математическими приложениями. Именно Эйлер первым ввел известные определения тригонометрических функций, начал рассматривать функции любого угла, и получил формулы редукции. По словам Эйлера, тригонометрия получила форму расчета: различные факты стали доказываться формальным применением формул тригонометрии, доказательства стали намного компактнее.

Таким образом, тригонометрия, зародившаяся как наука о разрешении треугольников, со временем переросла в науку о тригонометрических функциях.

Тригонометрические функции

Элементарные функции, которые исторически возникали при взгляде на прямоугольные треугольники и выражают зависимость сторон этих треугольников от острых углов гипотенузы (или, эквивалентно, зависимость аккордов и высоты от центрального угла в круге). Эти функции нашли самое широкое применение в различных областях науки. В результате было расширено определение тригонометрических функций, и их аргументом теперь может быть любое реальное или даже сложное число.

Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

Ссылка на тригонометрические функции:

Во-первых, прямые тригонометрические функции:

Во-вторых, противоположные тригонометрические функции:

В-третьих, производные тригонометрические функции:

В западной литературе загар х, кроватка х, цхх называются загаром, кроватка х, цхх.

В дополнение к этим шести, существуют также некоторые редко используемые тригонометрические функции (верна и т.д.) и обратные тригонометрические функции (арксин, аркозин и т.д.), которые рассматриваются в отдельных статьях.

Синусоидальный и косинусоидальный вещественные аргументы являются периодически непрерывными и бесконечно дифференцируемыми вещественными функциями.

Остальные четыре функции на реальной оси также являются материально значимыми, периодическими и бесконечно различимыми в областях определения, но не непрерывными.

Тангенты и секанты имеют паузы второго поколения на ±rp, в то время как катангенсы и секанты имеют паузы на ±rp.

Геометрическое определение

Обычно тригонометрические функции определяются геометрически. Укажем декартовую систему координат на плоскости и сформируем окружность радиусом R, центр которой находится в начале координат O. Измеряем углы как вращения от положительного направления оси абсциссы к акустическому пучку. Направление против часовой стрелки считается положительным, направление по часовой — отрицательным. Если мы обозначим абсциссой точку B с xB, то мы обозначим ординату с yB.

Понятно, что значения тригонометрических функций не зависят от радиуса окружности R из-за свойств подобных фигур.

Следует также отметить, что этот радиус часто принимается равным значению одного сечения.

Исходя из этого, синус является просто ординатой yB, а косинус — абсциссой xB.

Если b является вещественным числом, то в математическом анализе синус b называется угловым синусом, радиан которого равен b, аналогично другим тригонометрическим функциям.

Рассмотрим графическое изображение этого явления на рисунке 3.

Определение тригонометрических функций как решений дифференциальных уравнений, уравнений функций и по ряду

Во многих учебниках элементарной геометрии тригонометрические функции острого угла до сих пор определялись как отношения сторон прямоугольного треугольника. Пусть ОАБ будет треугольником с углом b.

Ну, тогда:

  • Синус угла b называется отношением AB/OB (отношение противоположного катетера к гипотенузе);
  • Козин угла b называется отношением OA/OB (отношение смежного катетера к гипотенузе);
  • Касательная угла b называется отношением AB/OA (отношение противоположного катетера к соседнему катетеру);
  • Катангензис угла b называется отношением OA/AB (отношение смежного катетера к противоположному катетеру);
  • Секанс угла b называется отношением ОВ/ОА (отношение гипотенузы к соседнему катетеру);
  • Угол cosecansome b называется отношением OV/AB (отношение гипотенузы к контркатетеру).

После того, как мы построили систему координат с началом в точке О, изменили направление оси абсциссы вдоль ОА и, при необходимости, ориентацию треугольника (перевернув его) так, чтобы он лежал в первой четверти системы координат, а затем построили окружность с радиусом, равным гипотенусе, сразу замечаем, что такое определение функций приводит к тому же результату, что и предыдущее.

На основании геометрии и свойств предельных значений можно доказать, что производная синуса равна косинусу, а производная косинуса равна минус синус. Затем можно использовать преимущества теории рядов Тейлора и представить синус и косинус как сумму степенных рядов.

Самые простые личности

Тригонометрические тождества — это математические выражения для тригонометрических функций, которые выполняются по всем значениям аргумента (из общего диапазона определений).

Поскольку синус и косинус являются ординатой и абсциссой точки, соответствующей единичной окружности впадин, то в соответствии с уравнением единичной окружности или пифагорейской теоремой.

Это соотношение называется базовой тригонометрической идентичностью.

Мы делим это уравнение на квадрат косинуса и синуса.

Синус и косинус являются непрерывными функциями. У тангентов и секантов есть точки перелома: катангенез и косекансы.

Где f — произвольная тригонометрическая функция, g — соответствующая ей кофункция (т.е. косинус для синуса, синус для косинуса и подобная для других функций), n — целое число. Полученной функции предшествует знак, который имеет начальную функцию в данной координатной четверти, при условии, что угол b острый.

Формулы для работы с касательными и катангами трех углов получены путем деления правой и левой частей соответствующих уравнений, представленных выше.

Вид одного параметра.

Все тригонометрические функции могут быть выражены полукруглым касательным.

Производные и интегралы

Все тригонометрические функции непрерывно и бесконечно дифференцируются по всему диапазону определения:

Интегралы тригонометрических функций в домене выражаются элементарными функциями следующим образом.

Большинство из вышеперечисленных свойств тригонометрических функций были сохранены даже в сложном случае.

Некоторые дополнительные свойства: тригонометрическое уравнение идентичности:

  • Сложные синусоидальные и косинусоидальные значения, в отличие от реальных, могут принимать любое количество значений модуля;
  • Все нули сложного синуса и косинуса лежат на оси материала.

Заключение

В данной работе были выполнены все задачи: получены более подробные сведения о тригонометрических функциях, приведены доказательства теорем косинуса и синуса, а также теоремы о площади треугольников, применены при решении задач по нахождению неизвестных элементов треугольника, научились применять эти теоремы при измерении работы на местности. Представленные проблемы представляют большой практический интерес, закрепляют полученные знания в области геометрии и могут быть использованы в практической работе.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Нажмите, чтобы узнать подробности

Синус угла - отношение противолежащей (углу) стороны к гипотенузе. Косинус - отношение прилежащей к гипотенузе. Тангенс - противолежащей стороны в прилежащей стороне Котангенс - прилежащей к противолежащей.

Для многих ребят в школе тригонометрия – один из самых трудных, непонятных разделов математики. С первых уроков уже идёт отторжение и нежелание изучать её, вникать в глубины, запоминать правила, значения функций.

Для облегчения запоминания, что косинус угла – это абсцисса точки, а синус угла – это ордината точки единичной окружности используем закон соответствия. Предлагаю ребятам посмотреть на начальные буквы функций (косинус, синус), начальные буквы координат (абсцисса, ордината) и записать их в алфавитном порядке: в первой строке – функции, во второй – координаты.

А значения синуса и косинуса для углов 0°, 30°, 45°, 60°, 90° легко вычислить с помощью левой руки. Для этого:

Пронумеруем пальцы от большого до мизинца, счет начинаем с нуля (рис. 1).


Затем из каждого числа извлечем корень и разделим на 2. Где возможно подсчитаем значения (рис. 2).

Для функции синус отсчет углов идет от большого пальца к мизинцу, для косинуса – от мизинца к большому, то есть:

Для sin Для cos

большой № 0 – соответствует 0°, большой № 0 – соответствует 90°,

указательный № 1 – соответствует 30°, указательный № 1 – соответствует 60°,

средний № 2 – соответствует 45°, средний № 2 – соответствует 45°,

безымянный № 3 – соответствует 60°, безымянный № 3 – соответствует 30°,

мизинец № 4 – соответствует 90°. мизинец № 4 – соответствует 0°.

Значение котангенса - это перевернутое значение тангенса. В итоге получаем вот такую штуку: ­ Обратите внимание, что тангенс не существует в П/2, например. Подумайте почему. (На ноль делить нельзя.) Что тут нужно запомнить: синус - это значение у, косинус - значение х. Тангенс - это отношение у к х, а котангенс - наоборот. так что, чтобы определять значения синусов/косинусов достаточно нарисовать табличку, которую я выше рассказал и круг с осями координат (по ней удобно смотреть значения при углах 0, 90, 180, 360). ­ Я надеюсь, что вы умеете различать четверти: ­ От того, в какой четверти находится угол, зависит знак его синуса, косинуса и тд. Хотя, абсолютно примитивные логически размышления выведут вас на верный ответ, если вы будете учитывать, что во второй и третьей четверти х отрицателен, а у отрицателен в третьей и четвертой.

Что нужно знать, уметь и делать, чтобы переводить углы в первую четверть: -разложить угол на удобоваримые слагаемые; -учесть, в какой четверти находится угол, и поставить соответствующий знак, если функция в этой четверти отрицательна или положительна; -избавиться от лишнего: *если надо избавиться от 90, 270, 450 и остальные 90+180n, где n - любое целое число, то функция меняется на противоположную (синус на косинус, тангенс на котангенс и наоборот); *если надо избавиться от 180 и остальных 180+180n, где n - любое целое число, то функция не меняется.





Ваш браузер должен поддерживать фреймы Ваш браузер должен поддерживать фреймы--> --> Ваш браузер должен поддерживать фреймы--> --> Ваш браузер должен поддерживать фреймы--> -->


-75%

Нажмите, чтобы узнать подробности

Проект выполнен в форме презенации. Включает в себя разделы:

  • Из истории тригонометрии
  • О тригонометрии
  • Тригонометрия в ладони
  • Методический материал
  • Дидактический материал

Проект предназначен для использования учителями математики.

Урок алгебры 9 класс

Тема. «ВВЕДЕНИЕ

План урока Из истории тригонометрии Тригонометрия в ладони Методический материал Дидактический материал Аннотация Литература Автор

  • Из истории тригонометрии
  • Тригонометрия в ладони
  • Методический материал
  • Дидактический материал
  • Аннотация
  • Литература
  • Автор

Из истории тригонометрии

ТРЕУГОЛЬНИК

Т Р И Г О Н

М Е Т Р И О

ТРИГОН О МЕТРИЯ

Из истории тригонометрии Потребность в измерении углов возникла так же давно, как и потребность в измерении расстояний. Одним из стимулов развития тригонометрии была необходимость определения времени, определения положения корабля в открытом море или каравана в пустыне. Некоторыми знаниями тригонометрии владели ученые Древнего Вавилона. Об этом свидетельствует тот факт, что вавилоняне умели предсказывать солнечные и лунные затме­ния. На одной из глиняных табличек Древнего Вавилона (2 тыс. лет до н. э.) решается задача, в которой по известному диаметру круга и высоте сегмента вычисляется длина хорды, что соответствует установлению связи между синусом и ко­синусом

Из истории тригонометрии

Потребность в измерении углов возникла так же давно, как и потребность в измерении расстояний. Одним из стимулов развития тригонометрии была необходимость определения времени, определения положения корабля в открытом море или каравана в пустыне.

Некоторыми знаниями тригонометрии владели ученые Древнего Вавилона. Об этом свидетельствует тот факт, что вавилоняне умели предсказывать солнечные и лунные затме­ния. На одной из глиняных табличек Древнего Вавилона (2 тыс. лет до н. э.) решается задача, в которой по известному диаметру круга и высоте сегмента вычисляется длина хорды, что соответствует установлению связи между синусом и ко­синусом

Из истории тригонометрии Первая книга в Европе, в которой тригонометрия рассматривалась как самостоя-тельная дисциплина, появилась в XV в. Ее написал И. Мюллер (1436 — 1476). Затем появились сочи-нения Н. Коперника, И. Кеп-лера В этих работах развитие тригонометрии в основном было направлено на потребности астрономии. Бернулли Кеплер (1571-1630) Коперник (1473-1543)

Из истории тригонометрии

Первая книга в Европе, в которой тригонометрия рассматривалась как самостоя-тельная дисциплина, появилась в XV в. Ее написал И. Мюллер (1436 — 1476).

Затем появились сочи-нения Н. Коперника, И. Кеп-лера

В этих работах развитие тригонометрии в основном было направлено на потребности астрономии.

Из истории тригонометрии Особую роль в развитии тригонометрии сыграли работы Л. Эйлера, который разработал теорию тригонометрических функций. Ещё тогда тригонометрия приобрела современный вид. Впервые обозначать синус и косинус знаками sin x и cos x стал И. Бернулли в письме 1739 г. к Эйлеру. Эйлер принял эти обозначения и систе-матически применял их. Бернулли Кеплер (1571-1630) Коперник (1473-1543)

Из истории тригонометрии

Особую роль в развитии тригонометрии сыграли работы Л. Эйлера, который разработал теорию тригонометрических функций.

Ещё тогда тригонометрия приобрела современный вид.

Впервые обозначать синус и косинус знаками sin x и cos x стал И. Бернулли в письме 1739 г. к Эйлеру. Эйлер принял эти обозначения и систе-матически применял их.

Тригонометрия в ладони Сейчас мы измерим углы между вашими пальцами. Берём два прямоугольных треугольника с углами 30°и 45 ° и приложим вершину нужного угла к бугру Луны на ладони. Бугор Луны находится на пересечении продолжений мизинца и большого пальца. Одну сторону угла совмещаем с мизинцем, а другую сторону — с одним из остальных. Сделайте вывод

Тригонометрия в ладони

Сейчас мы измерим углы между вашими пальцами.

Берём два прямоугольных треугольника с углами 30°и 45 ° и приложим вершину нужного угла к бугру Луны на ладони.

Бугор Луны находится на пересечении продолжений мизинца и большого пальца. Одну сторону угла совмещаем с мизинцем, а другую сторонус одним из остальных.

Тригонометрия в ладони Прикладываем угол в 30°; оказывается, это угол между мизинцем и безымянным пальцем; между мизинцем и средним пальцем — 45°, между мизинцем и указательным пальцем — 60°, между мизинцем и большим пальцем — 90°. И это у всех людей без исключения .

Тригонометрия в ладони

Прикладываем угол в 30°; оказывается, это угол

между мизинцем и безымянным пальцем;

между мизинцем и средним пальцем — 45°,

между мизинцем и указательным пальцем — 60°,

между мизинцем и большим пальцем — 90°.

И это у всех людей без исключения

№ пальца Угол α 0 0 ° 1 sin 0 ° = = 0 30 ° 2 sin 30 ° = = 45 ° 3 4 sin 45 ° = 60 ° sin 60 ° = 90 ° sin 90 ° = = 1 Тригонометрия в ладони

sin 0 ° = = 0

sin 30 ° = =

sin 45 ° =

sin 60 ° =

sin 90 ° = = 1

Тригонометрия в ладони

Методический материал

Протяните руку (любую) и разведите как можно сильнее пальцы, так, как показано на рисунке

Если пальцы считать лучами, исходящими из бугра Луны на ладони, то, если совместить (сжать) пальцы с мизинцем, угол между лучами будет равен 0°, то есть можно считать, что направление мизинца соответствует началу отсчета углов, то есть 0°, а потому введем нумерацию пальцев.

Методический материал  мизинец № 0 — соответствует 0° безымянный № 1 — соответствует 30° средний № 2 — соответствует 45° указательный № 3 — соответствует 60° большой № 4 — соответствует 90°. Таким образом, у всех людей на руке четыре пальца.

Методический материал

мизинец № 0 — соответствует 0°

безымянный № 1 — соответствует 30°

средний № 2 — соответствует 45°

указательный № 3 — соответствует 60°

большой № 4 — соответствует 90°.

Таким образом, у всех людей на руке четыре пальца.

Методический материал Таким образом, у всех людей на руке четыре пальца. А теперь, ребята, запомните формулу: SIN  = половина квадратного корня из номера (п) пальца

Методический материал

Таким образом, у всех людей на руке четыре пальца.

А теперь, ребята, запомните формулу:

SIN  =

половина квадратного корня из номера (п) пальца

Дидактический материал Решите задания самостоятельной работы Вариант 1 и Вариант 2 со взаимопроверкой

Дидактический материал

Решите задания самостоятельной работы

Вариант 1 и Вариант 2

со взаимопроверкой

ВАРИАНТ 1 1. Какой знак имеет: a) sin 169°; б ) cos 110°; в ) tg103°; г ) ctg 288°; a) sin 409°; б ) cos 372º; в ) tg 540°; г ) ctg364°; a) sin(-88°); б ) cos (-12°); в ) tg(-72°); г )ctg(110°)? 2. Укажите в таблице соответствующий знак синуса, косинуса, тангенса и котангенса: α sin α 116º cos α 208º tg α -367º ctg α -43º 105º

1. Какой знак имеет:

a) sin 169°; б ) cos 110°; в ) tg103°; г ) ctg 288°;

a) sin 409°; б ) cos 372º; в ) tg 540°; г ) ctg364°;

a) sin(-88°); б ) cos (-12°); в ) tg(-72°); г )ctg(110°)?

2. Укажите в таблице соответствующий знак синуса, косинуса, тангенса и котангенса:

ВАРИАНТ 2 1. Какой знак имеет: a) sin 185 °; б ) tg 116°; в ) cos 210°; г ) ctg 310°; a) sin 509 °; б ) cos 388º; в ) tg 456°; г ) ctg 373°; a) sin (- 16 °); б ) cos (-88°); в ) tg(-110°); г ) ctg(-93°)? 2. Укажите в таблице соответствующий знак синуса, косинуса, тангенса и котангенса: α sin α 135 º cos α 216 º tg α - 400 º ctg α - 460 º -127 º

1. Какой знак имеет:

a) sin 185 °; б ) tg 116°; в ) cos 210°; г ) ctg 310°;

a) sin 509 °; б ) cos 388º; в ) tg 456°; г ) ctg 373°;

a) sin (- 16 °); б ) cos (-88°); в ) tg(-110°); г ) ctg(-93°)?

2. Укажите в таблице соответствующий знак синуса, косинуса, тангенса и котангенса:

135 º

216 º

- 400 º

- 460 º

-127 º

Выпускной проект

Проект выполнен в виде презентации. Включает в себя разделы

  • Из истории тригонометрии
  • Тригонометрия в ладони
  • Методический материал
  • Дидактический материал

Проект предназначен для использования учителями математики в практической деятельности.

Задача, поставленная при создании проекта : Овладеть технологиями создания презентации, методами и способами поиска информации в Сети.

Геометрия - одна из самых древних и интересных наук, занимающаяся изучением геометрических фигур. Наш мир невозможно представить без их существования. Эта наука имеет огромный запас различных теорем, которые постоянно применяются как при решении математических задач, так и в жизни. Больше всего меня заинтересовали теоремы синусов и косинусов, которые применяются при решении произвольных треугольников. Цель данного реферата - уметь доказывать теоремы косинусов и синусов, применять их в решении задач, выбирать правильный ход решения при их использовании, знать, где данные теоремы применяются в жизни.

Треугольники

Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки - его сторонами.


Виды треугольников :

· Треугольник называется равнобедренным, если у него две стороны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.


· Треугольник, у которого все стороны равны, называется равносторонним или правильным.



· Треугольник называется прямоугольным , если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой , две другие стороны называются катетами .


· Треугольник называется остроугольным , если все три его угла – острые, то есть меньше 90°

· Треугольник называется тупоугольным, если один из его углов – тупой, то есть больше 90°.


Бермудский Треугольник - широко известная аномальная зона. Расположен он в границах между Бермудскими островами, Майями во Флориде и Пуэрто-Рико. Площадь Бермудского треугольника составляет свыше одного миллиона квадратных километров. Рельеф дна в этой акватории хорошо изучен. На шельфе, который составляет значительную часть этого дна, было проведено множество бурений с целью отыскать нефть и другие полезные ископаемые. Течение, температура воды в разное время года, ее соленость и движение воздушных масс над океаном - все эти природные данные занесены во все специальные каталоги. Этот район не особенно сильно отличается от других похожих географических мест. И, тем не менее, именно в районе Бермудского треугольника загадочно исчезали суда, а затем и самолеты.

Выдвигаются различные гипотезы для объяснения этих исчезновений, от необычных погодных явлений до похищений инопланетянами. Скептики утверждают, однако, что исчезновения судов в бермудском треугольнике происходят не чаще, чем в других районах мирового океана и объясняются естественными причинами.Морские и воздушные суда погибают и в других районах земного шара, иногда бесследно. Неисправность радио или внезапность катастрофы может помешать экипажу передать сигнал бедствия. Поиск обломков в море — непростая задача, особенно в шторм или когда место катастрофы точно неизвестно. Если учесть очень оживлённое движение в районе бермудского треугольника, частые циклоны и штормы, большое количество отмелей, количество случившихся здесь катастроф, которые так и не получили объяснения, не является необычно большим.

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.

Особенностью такого треугольника, известной ещё со времён античности, является то, что при таком отношении сторон теорема Пифагора даёт целые квадраты как катетов, так и гипотенузы, то есть 9:16:25. Египетский треугольник является простейшим (и первым известным) из Героновых треугольников — треугольников с целочисленными сторонами и площадями.

Название треугольнику с таким отношением сторон дали эллины: в VII - V веках до н. э. греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 до н. э. по настоянию Фалеса для изучения астрономии и математики отправился в Египет — и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы.

Египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов землемерами и архитекторами.

Для построения прямого угла использовался шнур или верёвка, разделённая отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.


В архитектуресредних веков египетский треугольник применялся для построения схем пропорциональности.

Общие сведения о тригонометрических функциях

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников.

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад.


Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Длительную историю имеет понятие синус . Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус a, например, изучался как полухорда, на которую опирается центральный угол величиной a, или как хорда удвоенной дуги. В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus – изгиб, кривизна).

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completelysinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cosa = sin(90° - a)). Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Современные обозначения синуса и косинуса знаками sin и cos были впервые введены в 1739 г. швейцарским математиком Иоганном Бернуллив письме к Леонарду Эйлеру, который и стал употреблять их в своих математических работах. Эйлер ввел также обозначения для функций угла х: tg x , ct g x , sec x , cosec x .

· Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе (AB/OB).

· Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе (ОА/OB).

· Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету (AB/OA).

· Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему катету (ОА/AB) .

Значения тригонометрических функций для некоторых углов.

0°(0 рад) 30° (π/6) 45° (π/4) 60° (π/3) 90° (π/2) 180° (π) 270° (3π/2) 360° (2π)
N/A N/A
N/A N/A N/A

Значения косинуса и синуса на окружности.

Так как синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α то, согласно уравнению единичной окружности или основному тригонометрическому тождеству, имеем:

Деля это уравнение на квадрат косинуса и синуса соответственно, имеем далее:

Формулы приведения:

sin(180° - α) = sinα

cos(180° - α) = - cosα

Чётность и нечетность функций.

Чётная функция - функция y = f ( x ) называется чётной, если область её определения симметрична относительно 0 и для любого значения аргумента Х верно равенство

f (- x ) = f ( x )

Нечётная функция - функция, область её определения симметрична относительно 0 и для любого значения аргумента Х верно равенство

f(- x) = - f( x)

Косинус — единственная чётная функция. Остальные три функции — нечётные, то есть:

Теоремы

Площадь треугольника равна половине произведения двух его сторон на синус угла между ними.

S = ½ ab sin C

Дано:

АВС, АВ= с, ВС = a , СА = b , h - высота

Доказать:

S = ½ absinC

Доказательство:


Введём систему координат с началом в точке С так, чтобы точка В лежала на положительной полуоси Сх , а точка А имела положительную ординату. Площадь данного треугольника можно вычислить по формуле S = ½ ah , где h высота треугольника. Но h равна ординате точки А , т.е. h = b sinC (т.к. sinC = h / b ) => S = ½ absinC

Стороны треугольника пропорциональны синусам противолежащих углов.

a/ sinA = b/ sin B = c/ sinC


Дано:


∆АВС АВ= с, ВС= а, СА= b

Доказать :

a/ sinA = b/ sin B = c/ sinC

Доказательство:

По теореме о площади треугольника S= ½ absinC, S = ½ bcsinA, S= ½ acsinB.

Из первых двух равенств получаем ½ absinC = ½ bcsinA,

½ ab sinC = ½ bc sinA │ : ½ b

a sinC = c sinA │: sinA sinC

Точно также из второго и третьего равенства получаем

½ bc sinA = ½ ac sinB │: ½ c

b sinA = a sinB │: sinA sinB

Таккакa/sinA = c/sinC иb/sinB = a/sinA, тоa/sinA= b/sinB= c/sinC.

Замечание:

Отношение стороны треугольника к синусу противолежащего

угла равно диаметру описанной окружности.

a/sinA= b/sinB= c/sinC= 2R

Дано:

R – радиус описанной окружности, ВС = a, BA1 - диаметр

Доказать:

BC/sinA = 2R (BC=2RsinA)

Доказательство:

Проведем диаметр ВА1. Рассмотрим ∆А1ВС, ∟С - прямоугольный => ВС=ВА1×sinA1. Если т.А1 лежит на дуге ВАС, то ∟А1=∟А, если на дуге BDC, то ∟A1= 180° - ∟A. И в том, и в другом случае sinA1 = sinA => BC= BA1*sinA, BC= 2RsinAили BC/sinA= 2R.

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2bc cosα .


Дано:
∆АВС АВ= с, ВС= а, СА= b

Доказать:

a 2 = b 2 + c 2 − 2bc cosα

Доказательство:

Введем систему координат с началом в точке А. Точка В имеет координаты (с; 0), а точка С(bcosA; bsinA). По формуле расстояния между двумя точками d2 = (x2 – x1)2 + (y2 – y1)2получаем:

ВС 2 = a 2 = (b cosA – c) 2 +(bsinА- 0) 2 ,

a 2 = b 2 cos2A - 2bc cosA + c 2 + b 2 sin 2 A,

a 2 = b 2 (cos2A + sin2A) + c 2 - 2bc cosA,

a 2 = b 2 + c 2 – 2bc cosA.

Обобщенная теорема Пифагора.

Теорему косинусов называют иногда обобщенной теоремой Пифагора. Такое название объясняется тем, что в теореме косинусов содержится как частный случай теорема Пифагора. В самом деле, если в ∆АВС ∟А прямой, то cosA = cos 90° = 0 и по a 2 = b 2 + c 2 − 2bc cosα получаем:

a 2 = b 2 + c 2 ,

т.е. квадрат гипотенузы равен сумме квадратов катета.

Задачи

Решение треугольника по двум сторонам и углу между ними.

Дано :

a = 7 см, b = 23cм, C = 130°

Найти: с , А, В

Решение :

c 2 = a 2 + b 2 − 2bc cosC

cos A = b 2 + c 2 − a 2 / 2bc

Решение треугольника по стороне и прилежащим к ней углам.

Дано:

а= 20 см, А= 75°, В= 60°

Найти: C , b , c

Решение:

a /sin A = b /sin B = c /sin C

b = a × (sin B / sin A )

c = a × (sin C / sin A )

Решение треугольника по трем сторонам.

Дано:

а= 7 см, b =2 см, с =8 см

Найти: А, В, С.

Решение:

С = 180° - (54° + 13°) = 113°


№4

Измерение высоты предмета.

Предположим, что требуется определить высоту АН какого – то предмета. Для этого отметим точку В на определённом расстоянии а от основания Н предмета и измерим ∟АВН=a. По этим данным из прямоугольного треугольника АНВ находим высоту предмета: АН = а tg a.

Если основание предмета недоступно, то можно поступить так: на прямой, проходящей через основание Н предмета, отметим две точки В и С на определенном расстоянии а друг от друга и измерим углы АВН и АСВ: ∟АВН =a, ∟АСВ = b, ∟ВАС = a –b.Эти данные позволяют определить все элементы треугольника АВС; по теореме синусов находим АВ: АВ = asinb/ sin (a –b). Из прямоугольного треугольника АВН находим высоту АН предмета:

АН = АВ sin a= a sina sinb / sin ( a –b).


№5

Измерение расстояния до недоступной точки (измерение ширины реки).

На местности выберем точку В и измерим длину с отрезка АВ. Затем измерим, например с помощью астролябии, углы А и В:А= a и ∟В = b. Эти данные, т.е. с , a и b, позволяют решить ∆АВС и найти искомое расстояние d=AC.

Находим ∟С и sinC :С= 180°- a –b, sin C= sin(180°- a –b) = sin(a+b).

Так как d/sinb = c/sinC, то d = csinb/ sin(a+b).

В данном реферате были выполнены все поставленные задачи: узнали более подробную информацию о тригонометрических функциях; привели доказательства теорем косинусов и синусов, а также теоремы о площади треугольников, применили их в решении задач на нахождение неизвестных элементов треугольника, узнали, как используются данные теоремы при проведении измерительных работ на местности. Приведенные задачи имеют значительный практический интерес, закрепляют полученные знания по геометрии и могут использоваться для практических работ.

1. Анатасян Л.С., Бутузов В.Ф. Геометрия 7-9 класс – 12-е изд.-М.: Просвещение, 2002г., стр.157-159, 256-261

3. Берманд А. Ф. Тригонометрия, 1967г., стр.4-6

4. Макарычев Ю.Н., Миндюк Н.Г. Алгебра 9 класс – 13-е изд.-М.: Просвещение, 2006г., стр.112-114

Читайте также: