Транспорт веществ в организме реферат

Обновлено: 04.07.2024

Человеческий организм состоит из эукариотических клеток, особенностью которых является наличие ядра, цитоплазмы и цитоплазматической мембраны, состоящей из слоя липидных молекул, белков и полисахаридных комплексов. ЦПМ клеток являются непроницаемыми для многих витальных молекул.

Транспорт веществ через ЦПМ представляет собой эволюционно сформированный механизм, необходимый для нормального функционирования целостного организма.

Виды мембранного транспорта

Процесс может осуществляться различными способами, на основе этого выделяют следующие виды мембранного транспорта:

пассивный (без затрат энергии);

активный (с энергетическими затратами на транспортировку различных структур).

Прежде чем переходить к описанию каждого конкретного вида и его особенностью, необходимо обозначить основные функции транспорта веществ в клетке:

доставка питательных веществ к системам синтеза;

доставка субстратов для образования АТФ в митохондрии;

обеспечение клетки субстратами, необходимыми для поддержания ее нормального функционирования.

Пассивный транспорт через мембрану

Пассивный перенос веществ через ЦПМ представляет собой процесс, который протекает без использования энергии. В его основе лежат законы физики и химии, связанные с разностью концентрации низкомолекулярных соединений внутри клетки и в межклеточном матриксе.

Диффузия

Диффузия – это процесс переноса химических соединений через ЦПМ без значимых затрат энергии. В основе диффузии лежит градиент концентрации веществ.

Градиент концентрации – это величина, которая отражает разность между химическими соединениями, находящимися в тканевой жидкости и внутри непосредственно клеточной структуры. Отличным примером, который полностью раскрывает понятие градиента концентрации, является транспорт низкомолекулярных соединений в кишечник из его просвета.

транспорт веществ через мембрану

Итак, при поступлении в просвет кишечника большого количества электролитов (низкомолекулярные, ионизированные соединения) происходит их трансмембранный перенос в энтероциты (клетки кишечника). Это связано с тем, что концентрация электролитов в просвете кишечника выше, чем их концентрация в энтероцитах, в результате чего образуется градиент концентрации, по которому данные низкомолекулярные вещества направляются в энтероциты.

Особым видом диффузии является осмос. Осмос – это ток воды из области с более высоким осмотическим давление в область, в которой данный показатель ниже. Осмотическое давление – это сила, с которой низкомолекулярные и не только соединения давят на стенку мембраны клеточных структур. Осмос как частный вид диффузии можно рассматривать, так как при данном виде переноса субстратов вода переносится согласно осмотическому градиенту, то есть соблюдается основное правило диффузии.

Отдельно стоит отметить, что посредством диффузии осуществляется не только перенос электролитов или воды, но и некоторые липофильных веществ (например, через гематоэнцефалический барьер).

Облегченная диффузия

Данная разновидность диффузии базируется на тех же принципах, что и обычная диффузия. Разница между этими двумя, на первый взгляд схожими понятиями, заключается в том, что транспортировка химических соединений посредством облегченной диффузии происходит благодаря участию белков-переносчиков. Данная функция белковых молекул реализуется за счет смены последними своей нативной конформации в результате лиганд-рецепторных взаимодействий с низкомолекулярными веществами.

функция транспорта веществ в клетке

Активный транспорт

Активный транспорт веществ через мембрану – это вид трансмембранного переноса веществ и молекул, в основе которого лежит затрата энергии, образуемой в результате гидролиза макроэргических молекул аденозинтрифосфата.

Активный транспорт можно подразделить на первично-активный и вторично-активный. Также частным видом данного способа переноса различных соединений через цитоплазматическую мембрану является везикулярный транспорт (экзо- и эндоцитоз, а также трансцитоз).

Первично-активный

Первично-активный транспорт реализуется с затратами энергии, использованием специальных белковых молекул (переносчиков), а также обладает невысокой скоростью переноса молекул сквозь мембранную структуру. В основе данного вида переноса лежит гидролиз молекулы АТФ, в результате которого образуется свободная энергия, которая тратится на перенос той или иной молекулы через ЦПМ. Посредством работы механизмом первично-активного способа перемещения веществ через плазматическую мембрану в клетки поступают некоторые виды аминокислот и ионов.

Вторично-активный

Вторично-активный транспорт в целом схож с другими видами активного транспорта, однако имеет уникальную особенность – белок (транспортер) содержит в себе два центра связывания, то есть он связывается не только с субстратом, который необходимо перенести сквозь мембранную структуру, но и также с другими каким-либо дополнительным агентом. В качестве подобного дополнительного агента чаще всего выступает положительно заряженный ион натрия, отсюда возникло название Na-зависимый перенос. Так, в клетках кишечника осуществляется транспорт питательных веществ: глюкозы и некоторых аминокислот вслед за переносом через ЦПМ положительного заряженного иона натрия. Таким образом, во время протекания механизмов вторично-активного транспорта создается градиент энергии, способствующей транспортировке другой молекулы через ЦПМ клетки. Стоит отметить, что данный вид переноса молекул сквозь мембранную структур может быть следующих видов:

Экзоцитоз и эндоцитоз

Везикулярный способ переноса молекул сквозь мембрану характеризуется переносом веществ в клетку или в межклеточный матрикс посредством образования вокруг них специальных структур, называемых везикулами (пузырьками). Везикулярный способ переноса молекул сквозь мембранную структуру может быть двух видов:

Экзоцитоз – это способ удаления веществ и молекул из клетки посредством, окружения последних везикулами. Экзоцитоз происходит с затратой энергии на образование пузырька и сокращение белков мембраны, которое необходимо для образования выпячивания последней для отшнуровывания везикулы в межклеточное пространство.

транспорт питательных веществ

Эндоцитоз – это транспорт питательных веществ во внутрь клетки посредством инвагинации (выпячивания) мембраны. Данный способ переноса молекул через мембранную структуру также протекает с затратой энергии.

Отдельно стоит выделить трансцитоз – это способ перемещения молекулы через клетку в везикуле. Трансцитоз является основным видом транспорта веществ внутри клетки.

Транспорт через несколько слоев клеток

Перенос какого-либо субстрата или лиганда через многослойные структуры лежит в основе формирования врожденного иммунитета и выработки селективного иммуноглобулина А. В поверхностном слое эпителия кишечника содержатся специальные эпителиодобные клетки (М-клетки), которые осуществляют захват веществ из просвета кишечника и посредством трансцитоза направляют его к макрофагам подслизистой оболочки кишечника (скопление макрофагов в подслизистой оболочки в области тонкого кишечника называется пейеровой бляшкой).

Макрофаги, входящие в состав пейеровых бляшек, поглощают транспортируемую посредством трансцитоза молекулу, а затем передают информацию на более специализированные клетки иммунной системы, что в итоге приводит выработке селективного иммуноглобулина А и формирования врожденного гуморального иммунитета. Таким образом, транспортировка веществ сразу через несколько слоев клеток в кишечнике позволяет человеку эффективней справляться впоследствии с воздействием факторов внешней среды.

Перенос молекул или веществ сквозь мембрану – это жизненно-важный, эволюционно сформированный процесс, который необходим для реалиизации гомеостатической регуляции как на клеточном, так и на других уровнях организации организма человека. Посредством мембранного транспорта клеточные структуры получают необходимые пластические и энергетические субстраты для размножения, роста, развития, что впоследствии реализуется в виде роста, развития, регенерации целостного человеческого организма.

Транспорт веществ в организме осуществляется двумя путями — дыханием и пищеварением:

транспорт веществ в живых организмах

Гуморальная регуляция присутствует у всех живых организмов — начиная от одноклеточных и заканчивая сложно устроенными млекопитающими.

У простейших (одноклеточных ) организмов с транспортом веществ все просто —

  • дыхание осуществляется всей поверхностью тела,
  • пищеварительная система — пищеварительные и выделительные вакуоли.
  • Транспорт кислорода и питательных веществ, а так же продукты обменных процессов у более высокоорганизованных животных выполняет кровеносная и лимфатическая системы . Главный орган этой системы — сердце .
  • Пищеварение — органы и системы органов.
  • Кольчатые черви
  • Моллюски
  • Членистоногие
  • Рыбы
  • Амфибии
  • Рептилии
  • Птицы и млекопитающие
  • замкнутая
  • незамкнутая
  • незамкнутая
  • замкнутая
  • замкнутая
  • замкнутая
  • замкнутая
  • сердца нет
  • сердце
  • сердце
  • двухкамерное
  • трехкамерное
  • 3-\4-х камерное
  • четырехкамерное
  • Кольчатые черви
  • Моллюски
  • Членистоногие
  • Рыбы
  • Амфибии
  • Рептилии
  • Птицы и млекопитающие
  • поверхностью тела
  • жабры\легкие
  • жабры\легкие\трахеи
  • жабры
  • легкие
  • легкие
  • легкие

Жидкости организма

  • У животных с незамкнутой системой кровообращения транспорт веществ осуществляет внутренняя жидкость организма — гемолимфа — вода, неорганические соли и органические вещества (белки, жиры, углеводы и т.д.). Функции — те же, что и у крови.
  • у развитых животных основа транспортной системы — основные жидкости — лимфа (лимфоциты + вода + белок), кровь — форменные элементы + жидкая часть и тканевая жидкость.

Значение транспорта веществ:

В организме человека с кровью транспортируются кислород и питательные вещества к клеткам тканей, чтобы образовалась энергия для жизнедеятельности . С другой стороны уносятся вредные и отработанные вещества (углекислый газ).

Кроме того, транспортируются гормоны к органам-мишеням, т.е. происходит гуморальная регуляция жизнедеятельностью организма .

A13 ГИА по биологии вариант 1

Самыми удаленными от сердца являются капилляры — в них скорость движения крови и, соответственно, давление, меньше — ответ 1)

Ключевые слова: транспорт веществ, сердечно-сосудистая система, лимфатическая система

Сердечно-сосудистая система

Сердечно-сосудистая система образована системой кровообращения (кровеносной) и лимфатической системой. Кровеносная система — физиологическая система, состоящая из сердца и кровеносных сосудов, обеспечивающая замкнутый круговорот крови. Лимфатическая система состоит из сети капилляров, узлов и протоков, впадающих в венозную систему.

Основные функции сердечно-сосудистой системы:

  1. Транспорт веществ — транспортировка питательных веществ, газов, гормонов и продуктов метаболизма к клеткам и из клеток.
  2. Защита от вторгающихся микроорганизмов и чужеродных клеток.
  3. Регуляция температуры тела.

Эти функции непосредственно выполняются жидкостями, циркулирующими в системе, — кровью и лимфой.

Лимфатическая система

Лимфатическая система — совокупность сосудов, собирающих лимфу из тканей и органов и отводящих её в венозную систему.

Лимфа — бесцветная жидкость; образуется из тканевой жидкости, просочившейся в лимфатические капилляры и сосуды; содержит в 3-4 раза меньше белков, чем плазма крови; реакция лимфы щелочная. В ней присутствует фибриноген, поэтому она способна свертываться. В лимфе нет эритроцитов, в небольших количествах содержатся лейкоциты, проникающие из кровеносных капилляров в тканевую жидкость.

Из межклеточных пространств лимфа концентрируется в замкнутых окончаниях лимфатических капилляров. Из сетей лимфатических капилляров берут начало более крупные лимфатические сосуды, пронизывающие все ткани и органы. Их ход совпадает с ходом вен; подобно венам они снабжены клапанами, предотвращающими обратный ток лимфы. Лимфатические сосуды, сливаясь друг с другом, в конце концов, образуют два больших лимфатических протока, которые впадают в крупные вены шеи. Смешиваясь с венозной кровью, лимфа попадает в правое предсердие (так в вены возвращается жидкость, профильтровавшаяся через стенки кровеносных капилляров в окружающие их ткани). По ходу лимфатических сосудов располагаются бобовидные лимфатические узлы.

лимфатическая система

Обращение лимфы: ткани, лимфатические капилляры, лимфатические сосуды с клапанами, лимфатические узлы, грудной и правый лимфатические протоки, крупные вены, кровь, ткани. Лимфа движется по сосудам благодаря ритмическим сокращениям стенок крупных лимфатических сосудов, наличию в них клапанов, сокращению скелетных мышц, присасывающему действию грудною протока при вдохе.

Функции лимфатической системы:

  1. Защитная (в лимфатических сосудах происходит размножение лимфоцитов и фагоцитирование болезнетворных организмов, а также вырабатываются антитела).
  2. Дополнительная система оттока жидкости от органов.
  3. Участвует в обмене веществ (всасывание продуктов расщепления жира).

Связь кровообращения и лимфообращения

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Транспорт веществ в живом организмеУрок биологии в 11 классе

Описание презентации по отдельным слайдам:

Транспорт веществ в живом организмеУрок биологии в 11 классе

Транспорт веществ в живом организме
Урок биологии в 11 классе

Задачи урока:Раскрыть значение транспорта веществ в организме; Показать особе.

Задачи урока:
Раскрыть значение транспорта веществ в организме;
Показать особенности транспорта у позвоночных и беспозвоночных животных;
Систематизировать знания о внутренней среде организма.

Актуализация знанийКакие способы питания существуют у живых организмов? Какой.

Актуализация знаний
Какие способы питания существуют у живых организмов?
Какой способ добывания пищи у растительноядных организмов?
Почему у животных возникло множество способов добывания пищи?
Что такое пищеварение? Какие функции оно выполняет?
Почему у травоядных животных сформировалась в процессе эволюции сложная пищеварительная система?

Транспорт веществ Процесс переноса необходимых веществ по организму к клеткам.

Транспорт веществ
Процесс переноса необходимых веществ по организму к клеткам и внутрь клеток, а также удаление отработанных веществ

Транспортная системаКровеносная системаСердце Лимфатическая системаВнутренняя.

Транспортная система
Кровеносная система
Сердце
Лимфатическая система
Внутренняя среда организма
Кровь
Лимфа
Тканевая жидкость

Сердце Обеспечивает ток крови через артерии к различным тканям

Сердце
Обеспечивает ток крови через артерии к различным тканям


Стенки предсердий гораздо тоньше стенок желудочков. Это связано с тем, что ра.

Стенки предсердий гораздо тоньше стенок желудочков. Это связано с тем, что работа, совершаемая предсердиями, сравнительно невелика.
Желудочки совершают значительно большую работу, проталкивают кровь по всей длине сосудов.
Мышечная стенка левого желудочка толще стенки правого, так как он совершает большую работу.
На границе между каждым предсердием и желудочком имеются клапаны в виде створок, которые сухожильными нитями прикреплены к стенкам сердца. Это створчатые клапаны.

СосудыКровеносные Артерии Капилляры Вены Лимфатические

Сосуды
Кровеносные
Артерии
Капилляры
Вены
Лимфатические


Капилляры Диаметр 7мкм Могут сжиматься Располагаются между клетками тканей В.

Капилляры
Диаметр 7мкм
Могут сжиматься
Располагаются между клетками тканей
В тканях соединяют артериальные и венозные сосуды
В них осуществляется обмен с тканевой жидкостью

В организме человека примерно 150 млрд. капилляров. Если все капилляры вытян.

В организме человека примерно 150 млрд. капилляров. Если все капилляры вытянуть в одну линию, то ею можно опоясать земной шар по экватору два с половиной раза.

Артерии Артерии coстоят из трех оболочек: • Внутренняя оболочка, или интима.

Артерии
Артерии coстоят из трех оболочек:
• Внутренняя оболочка, или интима, обеспечивает легкое протекание крови.
• Средняя оболочка, или медиа. Состоит из гладкомышечных волокон, прочных и эластичных, позволяет изменять просвет артерии.
• Наружная оболочка, или адвентиция. Соединительно-тканная внешняя оболочка.
coсуды, по которым циркулирует кровь, выходящая из сердца и идущая к различным органам.

Вены Более тонкие стенки, т.к. давление в них незначительно

Вены
Более тонкие стенки, т.к. давление в них незначительно


Типы кровеносных системНезамкнутая

Типы кровеносных систем
Незамкнутая

Замкнутая Типы кровеносных систем

Замкнутая
Типы кровеносных систем

Гемолимфа — жидкость, циркулирующая в сосудах и межклеточных полостях многих.

Гемолимфа — жидкость, циркулирующая в сосудах и межклеточных полостях многих беспозвоночных животных (членистоногие,онихофоры, моллюски) с незамкнутой системой кровообращения.
Выполняет те же функции, что кровь и лимфа у животных с замкнутой системой кровообращения.
Гемолимфа состоит из воды, неорганических солей (преимущественно Na+, Cl− и Ca2+) и органических соединений (в основном, углеводы, белки, и липиды).
Основным переносчиком кислорода является молекула гемоцианина. Функционирует, перенося питательные вещества и удаляя экскременты. У моллюсков гемолимфа транспортирует по всему организму также кислород и углекислый газ.


Гемоцианин (от др.-греч. αἷμα — кровь и др.-греч. κυανoῦς — лазурный, голубой.

Гемоцианин (от др.-греч. αἷμα — кровь и др.-греч. κυανoῦς — лазурный, голубой) — дыхательный пигмент из группы металлопротеинов, является медьсодержащим функциональным аналогом гемоглобина.
Нижняя часть тела краба Cancer productus имеет фиолетовый цвет благодаря гемоцианину

Лимфатическая системаЧасть сосудистой системы, которая дополняет венозную и у.

Лимфатическая система
Часть сосудистой системы, которая дополняет венозную и участвует в обмене веществ.
Важной ее функцией является очищение клеток и тканей, вывод инородных тел из кровеносной системы.
Жидкость из тканей органов поступает именно в лимфатическую систему, где ее фильтруют лимфатические узлы, а затем по крупным сосудам лимфа попадает грудной лимфатический проток и впадает в крупную вену грудной клетки.


Состав лимфатической системы1. Капилляры – они образуют сети во всех тканях и.

Состав лимфатической системы
1. Капилляры – они образуют сети во всех тканях и органах для вывода жидкости.
2. Сосуды – образованы из соединения капилляров, имеют клапаны, допускающие ток лимфы только в одном направлении.
3. Узлы – прерывают лимфатические сосуды, деля их на вступающие в узел и выходящие из него. Здесь лимфа оставляет микробы и другие инородные тела в лимфатической ткани, обогащается лимфоцитами и направляется по другим сосудам в грудной лимфатический ток и правый лимфатический ток.

К органам лимфатической системы относятся: 1. Костный мозг, в котором создают.

К органам лимфатической системы относятся:

1. Костный мозг, в котором создаются все клетки крови. Стволовые клетки, созданные в миелоидной ткани костного мозга попадают в органы иммунной системы.
2. Вилочковая железа принимает стволовые клетки, превращая их в Т-лимфоциты – клетки, убивающие чужеродные тела и злокачественные клетки.
3. Селезенка напоминает большое скопление лимфатических узлов, в ней распадаются мертвые клетки крови. Она реагирует на чужеродные тела и занимается выработкой антител (координирует создание В-лимфоцитов в лимфатических узлах).

Транспортная система растенийУвысших растений эта система устроена проще и со.

Транспортная система растений
Увысших растений эта система устроена проще и состоит из ксилемы и флоэмы.
У некоторых растений есть еще третья подсистема, содержащая латекс — млечный сок, богатый углеводами, жирами и белками, из которого получают ряд ценных продуктов, в частности каучук.
По ксилеме передвигаются (вода и минеральные соли) и флоэме (органические вещества). Передвижение веществ по ксилеме направлено от корней к надземным частям растения; по флоэме питательные вещества движутся от листьев.

Одним из важнейших механизмов транспорта веществ в растении является осмос. .

Одним из важнейших механизмов транспорта веществ в растении является осмос.
Осмос – это переход молекул растворителя (например, воды) из областей с более высокой концентрацией в области с более низкой концентрацией через полупроницаемую мембрану.
Этот процесс похож на обычную диффузию, но протекает быстрее.
Численно осмос характеризуется осмотическим давлением – давлением, которое нужно приложить, чтобы предотвратить осмотическое поступление воды в раствор.


В клеточных стенках имеются полоски, пояски Каспари. Они состоят из водонепр.

В клеточных стенках имеются полоски, пояски Каспари.
Они состоят из водонепроницаемого суберина и препятствуют продвижению воды и растворённых в ней веществ.
В этих местах вода вынуждена проходить через плазматические мембраны клеток; полагают, что таким образом растения защищаются от проникновения токсичных веществ, патогенных грибов и т. п.

Подъём воды по ксилеме происходит, по-видимому, за счёт испарения воды в лист.

Подъём воды по ксилеме происходит, по-видимому, за счёт испарения воды в листьях.
В процеcсе испарения в кроне образуется недостаток воды.
Поверхностное натяжение в сосудах ксилемы способно тянуть вверх весь столб воды, создавая массовый поток.
Скорость подъёма воды составляет около 1 м/ч (до 8 м/ч в высоких деревьях); чтобы поднять воду к вершине высокого дерева, требуется давление порядка 40 атм.
Следует иметь в виду, что одни только капиллярные эффекты способны поднять воду на высоту не более 3 м.

Вторая важная сила, участвующая в подъёме воды, – это корневое давление. Оно.

Вторая важная сила, участвующая в подъёме воды, – это корневое давление.
Оно составляет 1–2 атм (в исключительных случаях – до 8 атм).
Этой величины, конечно, недостаточно, чтобы в одиночку обеспечить движение жидкости, но её вклад у многих растений несомненен.


Ситовидные трубки

Закрепление знаний:Какая система органов выполняет транспортную функцию у рас.

Закрепление знаний:
Какая система органов выполняет транспортную функцию у растений? У животных?
Какие функции выполняют различные жидкости организма?
Что такое внутренняя среда организма и в чем состоит ее значение?

Читайте также: