Традиционные и альтернативные виды энергии реферат

Обновлено: 04.05.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство образования и науки

ФГБОУ ВО «Башкирский государственный

НЕТРАДИЦИОННЫЕ (АЛЬТЕРНАТИВНЫЕ) ИСТОЧНИКИ ЭНЕРГИИ И ПЕРСПЕКТИВЫ ИХ ИСПОЛЬЗОВАНИЯ

Выполнил: Федоров Сергей Алексеевич

ФМФ, заочное отделение, 2 курс, ЗОПОМОИТС-21-16

Солнечная энергия 5

Энергия океана 8

Энергия ветра 10

Энергия морских течений 12

Энергия приливов и отливов 13

Геотермальная энергия 16

Список литературы 25

В глубокой древности человечество начало с бережного использования возобновляемых источников энергии, но постепенно перешло к безрассудному использованию невозобновимых источников.

Вся история доказывает, что с ростом уровня жизни увеличивается количество необходимой человеку энергии.

Любая деятельность, независимо от её природы, предполагает использование энергии. Нынешняя человеческая деятельность на земле является доказательством того, что люди использовали и используют много энергии. Человек слишком слаб физически, чтобы собственными силами достичь тех результатов, которых достигло человечество в результате своей деятельности. Однако кроме физической силы у людей есть и другие способности. Главная из них – способность мыслить и осуществлять свои замыслы. На протяжении всей истории результатом этого были различные способы использования других энергоисточников, помимо мускульной энергии, для достижения с их помощью желаемых результатов. В настоящее время ежегодно расходуемая всеми странами энергия составляет 0,1% в отношении возможных для использования запасов угля, природного газа и нефти, вместе взятых.

Но ведь потребление всех видов энергетических ресурсов быстро растёт. Что же будет дальше? На наш взгляд, проблемы, связанные с энергообеспечением, очень актуальны в наше время. Они не могут не интересовать любого здравомыслящего человека и требуют изучения и решения.

Существуют разные прогнозы, касающиеся будущего наших ресурсов. Разрабатывая такие прогнозы, надо исходить, с одной стороны, из оценки перспектив роста населения и производства соответственно потребности общества, а с другой – из наличия запасов каждого ресурса. Однако прогнозировать современную тенденцию роста населения и производства далеко в будущее было бы рискованно. Кроме того, научно - технический прогресс, несомненно, будет продолжаться в направлении поисков более экономных, ресурсосберегающих технологий, что позволит постепенно сокращать потребность во многих природных источниках производства.

Исходя из сказанного, следует ожидать, по крайне мере, в ближайшие десятилетия, дальнейший рост потребностей в самых разнообразных энергетических ресурсах. При оценке их запасов важно различать две большие группы ресурсов – невозобновимые и возобновимые. Первые практически не восполняют, и их количество неуклонно уменьшается по мере использования. Сюда относятся минеральные и земляные ресурсы. Возобновимые ресурсы либо способны к самовоспроизведению (биологические), либо непрерывно поступают к Земле извне (солнечная энергия), либо, находятся в непрерывном круговороте, могут использоваться повторно(вода). Возобновляемые ресурсы — природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет.

Разумеется возобновимые ресурсы, как и невозобновимые, не бесконечны, но их возобновляемая часть может постоянно использоваться.

Если обратиться к главным типам мировых природных ресурсов, то в самом общем мы получаем следующую картину. Основным видом энергоресурсов является пока ещё минеральное топливо – нефть, газ, уголь. Эти источники энергии невозобновимы и при нынешнее темпах роста их добычи они могут быть, по мнению учёных, исчерпаны через 80-140 лет.

В данном проекте в качестве источников энергии рассмотрены нетрадиционные: энергия солнца, энергия ветра, геотермальная энергия, энергия приливов и отливов, энергия морских течений, энергия океана и использование биологического топлива.

СОЛНЕЧНАЯ ЭНЕРГИЯ

Дальше все происходит так же, как на обычных ТЭС: вода нагревается, закипает, превращается в пар, пар крутит турбину, турбина передает вращение на ротор генератора, а тот вырабатывает электричество.

В мире сейчас действуют несколько гибридных солнечно-тепловых электростанций общей мощностью более 600 МВт. Днем они работают от Солнца, а ночью, чтобы вода не остывала и электричество не кончалось, - от газа. Температура пара в установках достигает 370 градусов Цельсия, а давление - 100 атмосфер.
Устройства, использующие энергию солнца, разработаны для отопления, освещения и вентиляции зданий, небоскрёбов, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с "солнечным приводом" : моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями.

Телевизор, работающий от солнечной энергии

Компания Sharp представила на недавно проходившей выставке телевизор, работающий от солнечной батареи. Энергии солнечной панели оказалось вполне достаточно для просмотра телепередач на 52-дюймовом экране со светодиодной подсветкой.

ЭНЕРГИЯ ОКЕАНА

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн.кв.м) занимают моря и океаны. Кинетическая энергия океанских течений примерно равна 10 18 Дж. Энергоресурсы океана представляют большую ценность как возобновляемые и практически неисчерпаемые источники энергии. Океаны, помимо механической энергии волн и приливов, содержат также потенциальную энергию в виде тепла. Преобразование солнечного излучения в электроэнергию происходит за счет разности температур верхнего и нижнего слоев. Как известно, Солнце нагревает лишь верхние слои воды морей и океанов, причем, нагретая вода не опускается вниз, так как ее плотность меньше, чем у холодной. В тропических морях верхний слой воды, толщина которого не превышает нескольких метров, нагревается до 25-300° С, в то время как температура воды на глубине в 1 км не превышает 50° С. Получаемый в результате разности температур естественный тепловой градиент и создает запасы энергии. Причем, существенное количество ее можно получить при условии, когда температура между теплым поверхностным и холодным глубоководным слоями воды отличается, примерно, на 200°С значит тепловая энергоустановка, плывущая под водой могла бы производить энергию.
Установка мини-ОТЕС (преобразование тепловой энергии океан в элекрическую) смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.
Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это – одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии. Верхний конец трубопровода холодной воды расположится в океане на глубине 25–50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время.

ЭНЕРГИЯ ВЕТРА

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергетики всех рек планеты. Климатические условия позволяют развивать ветроэнергетику на огромной территории – от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана. Считается, что общий ветровой энергопотенциал Земли равен 1200ГВт.

Энергия ветра представляет собой самый быстрорастущий во всем мире источник электричества. Энергия ветра производится массивными трехлопастными ветротурбинами, устанавливаемыми на самом верху высоких башен и работающими подобно вентиляторам, но в обратном порядке. Вместо того чтобы использовать электричество для получения ветра, турбины используют ветер для получения электричества.

Ветровые установки являются одним из самых перспективных и одновременно экологически чистых способов выработки электроэнергии, с КПД около 59%. Вместе с тем, энергия ветра относится к числу возобновляемых источников энергии. В общих чертах, устройство ветровой электростанции выглядит следующим образом. Ветер вращает лопасти, а лопасти крутят вал, который соединен с набором зубчатых колес, приводящих в действие электрогенератор. Самая трудная проблема состоит в том, чтобы обеспечить одинаковое число оборотов пропеллера при разной силе ветра. Для этого угол наклона лопастей по отношению к ветру регулируется за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра. Избыток энергии в ветреную погоду и недостаток её в периоды безветрия реализуется за счет запасов воды в верхнем резервуаре, которая набирается в ветреную погоду и стекает в безветренную погоду. Крупные турбины для электроснабжения могут вырабатывать от 750 киловатт (киловатт = 1 000 ватт) до 1,5 мегаватт (мегаватт = 1 миллиону ватт) электроэнергии. В жилых домах, на телекоммуникационных станциях и в водяных насосах в качестве источника энергии применяются небольшие одиночные ветротурбины мощностью менее 100 киловатт. Это, прежде всего, характерно для отдаленных районов, в которых отсутствует энергосистемы общего пользования. В ветровых установках группы турбин связаны вместе с целью выработки электроэнергии для энергосистем общего пользования. Электричество подается потребителям посредством линий передач и распределительных линий. Такие станции работают труднодоступных районах, на дальних островах, в Арктике, на тысячах населенных пунктах, где нет поблизости электростанций.

За последние 10 лет глобальное производство энергии ветра увеличился в 10 раз - с 3,5 гигаватт (гигаватт = 1 миллиарду ватт). Этого достаточно для того, чтобы обслуживать более 1,6 миллиона домохозяйств.

ЭНЕРГИЯ МОРСКИХ ТЕЧЕНИЙ

Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью генераторов, погруженных в воду. .

ЭНЕРГИЯ ПРИЛИВОВ И ОТЛИВОВ

ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ

Биото́пливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса , кукурузы , сои . Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол , метанол , биодизель ), твёрдое биотопливо ( дрова , солома ) и газообразное ( биогаз , водород ).

Энергия биомассы - Для производства электрической и тепловой энергии в лесоперерабатывающей промышленности широко используется биомасса — энергоносители растительного происхождения, образуемые в процессе фотосинтеза. Если производство биомассы соизмеримо с ее сжиганием, содержание углекислого газа в атмосфере остается неизменным. Наиболее оптимальный способ использования биомассы — ее газификация с последующим срабатыванием в газовых турбинах. Предварительные расчеты показывают, что турбогенераторы, работающие на продуктах газификации биомассы, могут успешно конкурировать с традиционными тепловыми, ядерными и гидравлическими энергоустановками. Наиболее перспективными областями применения таких турбогенераторов уже в ближайшем будущем могут стать отрасли экономики, в которых скапливаются большие объемы биомассы (в частности, сахарные и винокуренные заводы, перерабатывающие сахарный тростник). Ежегодный объем органических отходов (биомассы) в СНГ составляет 500 млн. т. Их переработка потенциально позволяет получить до 150 млн.т условного топлива в год: за счет производства биогаза (120 млрд. м 3 ) — 100-110 млн. т, этанола — 30-40 млн. т. Окупаемость современных технологий производства биогаза из отходов по оценкам специалистов составляет от 3 до 5 лет. За счет использования биогаза к 2000 г. можно получить годовую экономию органического топлива 6 млн. т, а к 2010 г. в 3 раза больше. Для этого необходимо создать высокоэффективные штампы анаэробных микроорганизмов, специальные виды энергетической биомассы, технологии, эффективное оборудование. Специалисты научно-исследовательского центра “АКМАС” во Владивостоке (Россия) разработали метод получения биотоплива из морской воды. Сейчас все говорят о биотопливе, как об экологически чистом продукте. В Европа его делают из рапса, из пшеницы, в Америке - из кукурузы, в Юго-Восточной Азии - из риса. Но все это продукты питания, цены на которые будут расти, так же, как и на углеводороды. Например, в Приморье собираются к форуму АТЭС построить завод по производству биотоплива из сои, который будет перерабатывать 40 тыс. т сои в год.

- Биотоплива второго поколения. Биотоплива второго поколения — различные топлива, полученные различными методами разложение химических соединений при нагревании биомассы , или другие топлива, отличные от метанола , этанола , биодизеля . Этот способ позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций .

-Биотоплива третьего поколения

С 1978 года по 1996 года исследовал водоросли с высоким содержанием масла. Проблема заключается в агроклиматичекских условиях не всегда пригодных для выращивания водорослей. Например, водоросли любят высокую температуру, для их производства хорошо подходит пустынный климат, но требуется некая температурная регуляция при ночных перепадах

температур. Кроме выращивания водорослей в открытых прудах из можно культивировать в биореакторах, которые могут работать на основе ТЭЦ, а значит не требуется жаркий климат. На основе переработки водорослей получают газообразное топливо.

Преимущества применения нетрадиционных источников энергии:

-отсутствие топливной составляющей

-возможность создания рабочих мест

-устойчиво работают в энергосистемах как в базе так и в пике графика нагрузок при гарантированной постоянной месячной выработке электроэнергии

-не загрязняют атмосферу вредными выбросами в отличие от тепловых станций

-не затапливают земель в отличие от гидроэлектростанций - не представляют потенциальной опасности в отличие от атомных станций - не оказывают вредного воздействия на человека

-нет вредных выбросов (в отличие от ТЭС) - нет радиационной опасности (в отличие от АЭС) экологическая безопасность.

-исключен выброс вредных газов, золы, радиоактивных и тепловых отходов, добыча, транспортировка, переработка, сжигание и захоронение топлива, предотвращение сжигания кислорода воздуха, затопление территорий, угроза волны прорыва

Недостатки применения нетрадиционных источников энергии:

-агроклиматическая зависимость и изменчивость по времени

-дополнительные затраты на одновременное использование других источников энергии

Недостатки использования биотоплива топлива:

- развитие биотопливной индустрии вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных .

- производство и использование биотоплива приводит к выбросу в атмосферу гораздо большего количества парниковых газов, чем сжигание нефти, газа или угля.

Основными доводами в пользу использования биотоплива являются следующие:

-в производстве не используются ни плодородные почвы, ни пресная вода;

-процесс не конкурирует с сельскохозяйственным производством;

-создание новых рабочих мест;

-улучшить оборот земельных ресурсов в развивающихся странах;

ЗАКЛЮЧЕНИЕ

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину.

Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма".

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю. Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы. Стали интенсивней использовать источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия ветра и воды лишь наиболее яркие штрихи, того будущего, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Лабиринты энергетики. Таинственные переходы, узкие, извилистые тропки. Полные загадок, препятствий, неожиданных озарений, воплей печали и поражений, и радости побед.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому, следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: "Нет простых решений, есть только разумный выбор".

Энергетика является, пожалуй, важнейшей сферой в хозяйственно-экономических отношениях. От энергетической промышленности зависят абсолютно все другие области экономики, включая не только промышленность, но и сельское хозяйство и непроизводственные сферы.

За всю свою историю человечество использовало разные источники энергии. В доисторические времена основным производителем механической энергии был ручной труд, а основным видом топлива — древесина. С дальнейшим развитием значительная часть ручного труда была заменена животной силой. Затем труд животных также частично был заменён ветряными и водяными мельницами, а дрова, как топливо, начали замещаться углём, который до сих порявляется основным источником энергии. Но всё же уголь был значительно замещён другими энергоносителями — нефть, газ, атомная и гидроэнергия. Но все эти источники энергии, за исключением гидроэнергии, являются иссякаемыми и их использование, в большинстве случаев, несёт за собой многочисленные вредные последствия.

Поэтому уже с давних пор ведутся разработка и использование альтернативных источников энергии. Самыми первыми, конечно же, были ветряные и водяные мельницы, которые к нашему времени преобразовались в ветряки и ГЭС (малые и традиционные), а также солнечная и геотермальная энергии. И уже сейчас альтернативнативная энергетика в некоторых странах вырабатывает значительную долю электроэенргии, как например в Исландии, где геортермальные электростанции вырабатывают до четверти электроэнергии в стране.

Целью данного реферата является сравнение альтернативных источников энергии с традиционными, взвешивание их плюсов и минусов.

Поставленная цель несёт за собой следующие задачи:

- Краткое рассмотрение традиционных источников.

- Изучение нетрадиционных источников энергии — альтернативной гидроэнергетики, гелиоэнергетики, ветроэнергетики, геотермальной энергии и прочих.

- Оценка влияния альтернативной энергетики на окружающую среду

- Сравнение плюсов и минусов каждого альтернативного источника энергии.

Работа разделена на две части. В первой части кратко рассмотрены традиционные источники энергии и их плюсы и минусы. Во второй части рассмотрены альтернативные источники энергии, проведено их сравнение с традиционными источниками, рассмотрено их возможное распространение в будущемю

Традиционные источники энергии

К традиционным источникам энергии относят ископаемое топливо, гидроэнергию (причём к трад. источникам относятся только крупные ГЭС, ГЭС мощность менее 10 МВт относят к альтернативным источникам) и атомную энергию. Данные источники энергии очень сильно привязаны к современному миру. Их использование в сумме достигает около 90% от общего объёма энергопроизводства в мире .

Для постепенного замещения стандартных энергоносителей альтернативными необходимо знать для начала изучить традиционные энергоресурсы.

Ископаемое топливо

Ископаемое топливо является самым распространённым источником энергии. К нему относятся:

- Горючие сланцы и сланцевый газ

- Нефть и нефтепродукты

Торф — горючее полезное ископаемое, образуемое при неполном распаде болотных растений в условиях недостатка кислорода. В топливной энергитике торф используется крайне мало ( в России — менее 1% от всего объёма электро-энергетического баланса). Это свяано с тем, что в торфе низкое углеродное число и высокое количество примесей, что значительно снижает эффективность его горения[4].

Уголь — наиболее распространённое топливо в энергетике - ТЭС, работающие на угле, вырабатывают более трети от общей произведённой электроэнергии. При этом ТЭС подобного типа оказывают сильное негативное влияние на окружающую среду — выделяется в виде выбросов или отходов большое число сажи и золы, многочисленные продукты неполного сгорания, серосодержащие соединения и т.д .

Горючие сланцы — топливо не высокого качества — доля углерода от 56% до 80%, при этом доля серы составляет до 16%, что приводит вы высокому количиству вредных выбросов при сжигании. Также из горючих сланцев добывают т. н. сланцевый газ, который может использоваться в качестве топлива для электростанции, с меньшим количеством вредных выбросов, но при этом сама добыча газа несёт за собой многочисленные негативные последствия — изменения структуры недр, загрязнение подземных вод .

Нефть и нефте продукты являются не таким распространёнными энергоносителями, как уголь. Нефтепродукты как топливо для ТЭС используются в основном в нефтедобывающих государствах. Так только шесть государств - США, Россия, Саудовская Аравия, Канада, Иран и КНР - вместе вырабатывают 52,8% от общего объёма энергии, произведёнными на ТЭС, работающими на нефтепродуктах.[8] При этом сжигание производных нефти, в частности наиболее частоиспользуемой — мазута, выделяется большое количество продуктов неполного сгорания, что приводит к загрязнению прилегающей к ТЭС местности.

Природный газ — второе по распространённости топливо в электроэнергетике. Является наиболее экологически чистым, при это он является наиболее пожароопасным и труднотранспортируемым.

Атомная энергетика

Атомная энергетика является третей по производимому объёму энергии, посте традиуионных ТЭС и ГЭС. АЭС по всему миру производят более 10% всей электроэнергии.[7] При правильном использовании атомные станции являются одним из самых надёжных источников энергии. Но при этом данный тип электростанций несёт за собой некоторый ряд проблем. Главная из них — ядерные отходы. Также осложняет дело и необходимость многочисленного высококвалифицированного пресонала, так как зачастую человеческий фактор приводит к масштабным котострофам, которые несут за собой многочисленные негативные последствия, как это произошло на Чернобыльской АЭС в 1986 году.



1.3 Традиционная гидроэнергетика

Гидроэнергетика является некоторым переходным звеном между традиционными и альтернативными источниками энергии. Гидроэлектростанции подразделяются на 3 типа :

- Крупные ГЭС — с можностью свыше 250 МВт

- Средние ГЭС — мощностью до 250 МВт

- Малые ГЭС — мощностью менее 10 МВт1 [1].

К традиционным гидроэлектростанциям отностятся крупные и средние ГЭС, тогда как малые ГЭС относят к источникам альтернативной энергетики.

Гидроэлектростанции являются наиболее экологически чистыми — они в принципе не создают вредных выбросов в атмосферу и воду. Но даже ГЭС несёт значительный вред природе. Как правило, главным негативным последствием строительства ГЭС является затопление плодородных территорий, в результате образования водохранилища. Из этого же следует высокая опасность наводнений в низовье рек, в случае прорыва дамб или сброса лишней воды из водохранилища. Также важным недостатком ГЭС является перекрытие миграционных путей для речных обитателей.


Все существующие направления энергетики можно условно разделить на зрелые, развивающиеся и находящиеся в стадии теоретической проработки. Одни технологии доступны для реализации даже в условиях частного хозяйства, а другие могут использоваться только в рамках промышленного обеспечения. Рассматривать и оценивать современные виды энергетики можно с разных позиций, однако принципиальное значение имеют универсальные критерии экономической целесообразности и производственной эффективности. Во многом по этим параметрам сегодня расходятся концепции применения традиционных и альтернативных технологий генерации энергии.

Традиционная энергетика

Это широкий пласт сформировавшихся отраслей тепло- и электроэнергетики, обеспечивающей порядка 95% мировых потребителей энергии. Генерация ресурса происходит на специальных станциях – это объекты ТЭС, ГЭС, АЭС и т. д. Они работают с готовой сырьевой базой, в процессе переработки которой происходит выработка целевой энергии. Выделяют следующие стадии производства энергии:

  • Изготовление, подготовка и доставка исходного сырья на объект выработки того или иного вида энергии. Это могут быть процессы добычи и обогащения топлива, сжигание нефтепродуктов и т. д.
  • Передача сырья к узлам и агрегатам, непосредственно преобразующим энергию.
  • Процессы преобразования энергии из первичной во вторичную. Эти циклы присутствуют не на всех станциях, но, к примеру, для удобства доставки и последующего распределения энергии могут использоваться разные ее формы – в основном тепло и электричество.
  • Обслуживание готовой преобразованной энергии, ее передача и распределение.

На завершающем этапе ресурс отправляется конечным потребителям, в качестве которых могут выступать и отрасли народного хозяйства, и рядовые домовладельцы.

Атомная энергетика

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Гидроэнергетика

Гидротехнические электростанции

Гидротехнические сооружения в виде энергетических подстанций предназначены для выработки электричества в результате преобразования энергии потока воды. То есть, технологический процесс генерации обеспечивается сочетанием искусственных и природных явлений. В ходе работы станция создает достаточный напор воды, которая в дальнейшем направляется к турбинным лопастям и активизирует электрогенераторы. Гидрологические виды энергетики различаются по типу используемых агрегатов, конфигурации взаимодействия оборудования с естественными потоками воды и т. д. По рабочим показателям можно выделить следующие разновидности гидростанций:

  • Малые – вырабатывают до 5 МВт.
  • Средние – до 25 МВт.
  • Мощные – более 25 МВт.

Также применяется классификация в зависимости от силы напора воды:

  • Низконапорные станции – до 25 м.
  • Средненапорные – от 25 м.
  • Высоконапорные – выше 60 м.

К достоинствам гидроэлектростанций относят экологическую чистоту, экономическую доступность (бесплатная энергия), неисчерпаемость рабочего ресурса. В то же время гидротехнические сооружения требуют больших начальных затрат на техническую организацию аккумулирующей инфраструктуры, а также имеют ограничения по географическому размещению станций – только там, где реки обеспечивают достаточный напор воды.

Атомная энергетика

Ключевую роль в исполнении процессов генерации ядерной энергии играет реактор. Это агрегат, предназначенный для поддержания реакций деления атомов, которые, в свою очередь, сопровождаются выделением тепловой энергии. Существуют разные типы реакторов, отличающиеся применяемым видом топлива и теплоносителем. Чаще используется конфигурация с легководным реактором, использующим в качестве теплоносителя обычную воду. Основным ресурсом переработки в ядерной атомной энергетике выступает урановая руда. По этой причине АЭС обычно проектируются с расчетом на размещение реакторов вблизи от месторождений урана. На сегодняшний день в России действует 37 реакторов, совокупная мощность выработки которых составляет около 190 млрд кВт*ч/год.

Характеристика альтернативной энергетики

Биомассовая энергия

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию. Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении. Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Геотермальная энергетика

Один из самых распространенных способов получения энергии в бытовых условиях. Геотермальная энергия вырабатывается в процессе аккумуляции, передачи и преобразования внутреннего тепла Земли. В промышленных масштабах обслуживаются подземные породы на глубинах до 2-3 км, где температура может превышать 100°С. Что касается индивидуального применения геотермальных систем, то чаще задействуются поверхностные аккумуляторы, располагаемые не в скважинах на глубине, а горизонтально. В отличие от других подходов к выработке альтернативной энергии, практически все геотермальные виды энергетики в производственном цикле обходятся без этапа преобразования. То есть первичная тепловая энергия в этой же форме и поставляется конечному потребителю. Поэтому используется такое понятие, как геотермальные системы отопления.

Геотермальные источники энергии

Солнечная энергетика

Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.

Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.

Волновая энергетика

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества. Отчасти этот вид энергетики схож с принципами работы гидроэлектростанциями, но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Ветровая энергетика

Еще один доступный для применения в частном хозяйстве способ получения электричества, отличающийся технологической простотой и экономической доступностью. В качестве обрабатываемого ресурса выступает кинетическая энергия воздушных масс, а роль аккумулятора выполняет двигатель с вращающимися лопастями. Обычно в ветровой энергетике применяют генераторы электрического тока, которые активизируются в результате вращения вертикальных или горизонтальных роторов с пропеллерами. Средняя бытовая станция такого типа способна генерировать 2-3 кВт.

Ветровая энергетика

Энергетические технологии будущего

Перспективы российской энергетики

Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте. Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям. В России и сегодня этот сегмент предлагает немало привлекательных идей – в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.

Солнечная энергия

Заключение

Современные проблемы энергетического обеспечения ставят крупнейшие государства перед выбором между мощностью и экологической чистотой выработки тепла и электричества. Большинство освоенных альтернативных источников энергии при всех своих плюсах не способны в полной мере заменить традиционные ресурсы, которые, в свою очередь, могут использоваться еще несколько десятилетий. Поэтому энергию будущего многие специалисты представляют как некий симбиоз различных концепций генерации энергоресурсов. Причем новые технологии ожидаются не только на промышленном уровне, но и в бытовом хозяйстве. В этой связи можно отметить градиент-температурные и биомассовые принципы энергетической выработки.

Ухудшение экологии и истощение природных ресурсов заставляет задумываться о том, как получать электричество и тепло из возобновляемых источников.

В этой статье рассказываем, как работает альтернативная энергия и почему многие страны делают выбор в её пользу.

Что такое альтернативная энергия?

альтернативные источники энергии

Энергия бывает возобновляемой (альтернативной) и невозобновляемой (традиционной).

Невозобновляемые источники – это нефть, природный газ и уголь. Им ищут замену, потому что они могут закончиться. Ещё их использование связано с выбросом углекислого газа, парниковым эффектом и глобальным потеплением.


Человечество получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций. Альтернативная энергетика – это методы, которые отдают энергию более экологичным способом и приносят меньше вреда. Она нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.

Ресурсы возобновляемой энергии

  • Солнечный свет
  • Водные потоки
  • Ветер
  • Приливы
  • Биотопливо (топливо из растительного или животного сырья)
  • Геотермальная теплота (недра Земли)

Альтернативные виды энергии

1. Солнечная энергия

альтернативный источник энергии солнца

Один из самых мощных видов альтернативных источников энергии. Чаще всего её преобразуют в электричество солнечными батареями. Всей планете на целый год хватит энергии, которую солнце посылает на Землю за день. Впрочем, от общего объёма годовая выработка электроэнергии на солнечных электростанциях не превышает 2%.

Солнечное электричество распространено там, где оно дешевле обычного: отдалённые обитаемые острова и фермерские участки, космические и морские станции. В тёплых странах с высокими тарифами на электроэнергию, оно может покрывать нужны обычного дома. Например, в Израиле 80% воды нагревается солнечной энергией.

Батареи также устанавливают на беспилотные автомобили, самолёты, дирижабли, поезда Hyperloop .

2. Ветроэнергетика

ветряные мельницы

Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).

Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.

Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.

3. Гидроэнергия

гидроэлектростанция

Чтобы преобразовать движение воды в электричество нужны гидроэлектростанции (ГЭС) с плотинами и водохранилищами. Их ставят на реках с сильным потоком, которые не пересыхают. Плотины строят для того, чтобы добиться определённого напора воды – он заставляет двигаться лопасти гидротурбины, а она приводит в действие электрогенераторы.

Строить ГЭС дороже и сложнее относительно обычных электростанций, но цена электричества (на российских ГЭС) в два раза ниже. Турбины могут работать в разных режимах мощности и контролировать выработку электричества.

4. Волновая энергетика

волновая электростанция wave star energy

Есть много способов генерации электричества из волн, но эффективно работают только три. Они различаются по типу установок на воде. Это камеры, нижняя часть которых погружена в воду, поплавки или установки с искусственным атоллом.

Такие волновые электростанции передают кинетическую энергию морских или океанических волн по кабелю на сушу, где она на специальных станциях преобразуется в электричество.

Этот вид используется мало – 1% от всего производства электроэнергии в мире. Системы тоже дорогие и для них нужен удобный выход к воде, который есть не у каждой страны.

5. Энергия приливов и отливов

приливная электростанция

Эту энергию берут от естественного подъёма и спада уровня воды. Электростанции ставят только вдоль берега, а перепад воды должен быть не меньше 5 метров. Для генерации электричества строят приливные станции, дамбы и турбины.

Приливы и отливы хорошо изучены, поэтому этот источник более предсказуем относительно других. Но освоение технологий было медленным и их доля в глобальном производстве мала. Кроме того, приливные циклы не всегда соответствуют норме потребления электричества.

6. Энергия температурного градиента (гидротермальная энергия)

гидротермальная станция

Морская вода имеет неодинаковую температуру на поверхности и в глубине океана. Используя эту разницу, получают электроэнергию.

Первая установка, которая даёт электричество за счёт температуры океана была сделана ещё в 1930 году. Сейчас есть океанические электростанции закрытого, открытого и комбинированного типа в США и Японии.

7. Энергия жидкостной диффузии

осмотическая станция

Это новый вид альтернативного источника энергии. Осмотическая электростанция, установленная в устье реки, контролирует смешение солёной и пресной воды и извлекает энергию из энтропии жидкостей.

Выравнивание концентрации солей даёт избыточное давление, которое запускает вращение гидротурбины. Пока есть только одна такая энергетическая установка в Норвегии.

8. Геотермальная энергия

геотермальная станция в исландии

Геотермальные станции берут внутреннюю энергию Земли – горячую воду и пар. Их ставят в вулканических районах, где вода у поверхности или добраться до неё можно пробурив скважину (от 3 до 10 км.).

Извлекаемая вода отапливает здания напрямую или через теплообменный блок. Ещё её перерабатывают в электричество, когда горячий пар вращает турбину, соединённую с электрогенератором.

Недостатки: цена, угроза температуре Земли, выбросы углекислого газа и сероводорода.

Больше всего геотермальных станций в США, Филиппинах, Индонезии, Мексике и Исландии.

9. Биотопливо

дрова биотопливо

Биоэнергетика получает электричество и тепло из топлива первого, второго и третьего поколений.

  • Первое поколение – твёрдое, жидкое и газообразное биотопливо (газ от переработки отходов). Например, дрова, биодизель и метан.
  • Второе поколение – топливо, полученное из биомассы (остатков растительного или животного материала, или специально выращенных культур).
  • Третье поколение – биотопливо из водорослей.

Биотопливо первого поколения легко получить. Сельские жители ставят биогазовые установки, где биомасса бродит под нужной температурой.

Самый традиционный способ и древнейшее топливо – дрова. Сейчас для их производства сажают энергетические леса из быстрорастущих деревьев, тополя или эвкалипта.

Плюсы и минусы альтернативной энергии

работник изучает солнечные батареи

Главная перспектива альтернативных источников – существования человечества даже в условиях жёсткого дефицита нефти, газа и угля.

Преимущества:

  • Доступность – не нужно обладать нефтяными или газовыми месторождениями. Правда, это относится не ко всем видам. Страны без выхода к морю не смогут получать волновую энергию, а геотермальную можно преобразовывать только в вулканических районах.
  • Экологичность – при образовании тепла и электричества нет вредных выбросов в окружающую среду.
  • Экономия – полученная энергия имеет низкую себестоимость.

Недостатки и проблемы:

  • Траты на этапе строительства и обслуживание – оборудование и расходные материалы дорогие. Из-за этого повышается итоговая цена электроэнергии, поэтому она не всегда оправдана экономически. Сейчас главная задача разработчиков снизить себестоимость установок.
  • Зависимость от внешних факторов: невозможно контролировать силу ветра, уровень приливов, результат переработки солнечной энергии зависит от географии страны.
  • Низкий КПД и маленькая мощность установок (кроме ГЭС). Вырабатываемая мощность не всегда соответствует уровню потребления.
  • Влияние на климат. Например, спрос на биотопливо привёл к сокращению посевных площадей для продовольственных культур, а плотины для ГЭС изменили характер рыбных хозяйств.

Возобновляемая энергия в мире

солнечные батареи в Китае

Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.

Германия

40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.

Исландия

У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.

Швеция

После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.

Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.

Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.

Китай

Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.

Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.

Альтернативная энергия в Россиисаяно-шушенская гэс

Разное географическое положение регионов и специфика климатических поясов в России не позволяют развивать эту отрасль равномерно. Нет инвестиций и есть пробелы в законе.

Виды возобновляемой энергии в России

Солнечная энергия

Ветровая энергетика

Гидроэнергетика

Геотермальная энергетика

За счёт обилия вулканов этот вид энергетики распространён на Камчатке. Там 40% потребляемой энергии генерируется на геотермальных источниках. По данным учёных, потенциал Камчатки оценивается в 5000 МВт, а вырабатывается только 80 МВт энергии в год. Ещё геотермальные станции есть на Курилах, Ставропольском и Краснодарском крае.

Биотопливо

Наша страна входит в тройку экспортёров пеллет на европейском рынке. В России есть заводы, создающие из остатков древесины пеллеты и брикеты, которыми топят котлы и печки.

Сельскохозяйственные отходы преобразуют в жидкое топливо и биогаз для дизельных двигателей. А вот свалочный газ не используется вообще, его просто выбрасывают в атмосферу, нанося ущерб окружающей среде.

Компании, которые занимаются возобновляемыми источниками энергии

монтаж солнечной батареи

Рост инвестиций в возобновляемую энергетику и поддержка правительства помогает многим компаниям успешно вести бизнес.

First Solar Inc.

Эта американская компания была образована в 1990 году и стала известной благодаря производству солнечных батарей. Сейчас это крупнейшая фирма, которая продаёт солнечные модули, поставляет оборудование и отвечает за технический сервис.

Vestas Wind Systems A/S

Старейший производитель ветрогенераторов из Дании. Компания основана в 1898 году и на сегодняшний день ей удалось установить более 60 тысяч ветровых турбин в 63 странах. Vestas продаёт отдельные генераторы, комплексные станции и обслуживает устройства.

Atlantica Yield PLC

Эта компания с офисом в Лондоне владеет классическими линиями электропередач, солнечными и ветровыми станциями в Северной Америке, Испании, Алжире, Южной Америке и Южной Африке.

ABB Ltd. Asea Brown Boveri

Шведско-швейцарская компания, известная автомобильными двигателями, генераторами и робототехникой. С 1999 года бренд занимается преобразованием солнечной и ветровой энергии. В 2013 году компания стала мировым лидером в области оборудования фотоэлектрической энергии.

Читайте также: