Топология сети кольцо реферат

Обновлено: 07.07.2024

На сегодняшний день невозможно представить деятельность человека без использования им компьютерных сетей.
Компьютерная сеть - представляет собой систему распределенной обработки информации, состоящую как минимум из двух компьютеров, взаимодействующих между собой с помощью специальных средств связи.

Работа состоит из 1 файл

основной.docx

На сегодняшний день невозможно представить деятельность человека без использования им компьютерных сетей.

Компьютерная сеть - представляет собой систему распределенной обработки информации, состоящую как минимум из двух компьютеров, взаимодействующих между собой с помощью специальных средств связи.

В зависимости от удалённости компьютеров и масштабов, сети условно разделяют на локальные и глобальные.

Локальные сети 1 - сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Локальные сети развёртываются обычно в рамках некоторой организации, поэтому их называют также корпоративными сетями.

Иногда выделяют сети промежуточного класса 2 - городская или региональная сеть, т.е. сеть в пределах города, области и т.п.

Глобальная сеть 3 покрывает большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Глобальные сети практически имеют те же возможности, что и локальные. Но они расширяют область их действия. Польза от применения глобальных сетей ограничена в первую очередь скоростью работы: глобальные сети работают с меньшей скоростью, чем локальные.

Из выше перечисленных компьютерных сетей, обратим свое внимание на локальные сети, для того чтобы лучше понять архитектуру сетей, способы передачи данных. А для этого надо знать такое понятие, как топология сети.

1. ПОНЯТИЕ ТОПОЛОГИЙ СЕТИ

Топология - это физическая конфигурация сети в совокупности с ее логическими характеристиками. Топология - это стандартный термин, который используется при описании основной компоновки сети. Если понять, как используются различные топологии, то можно будет определить, какими возможностями обладают различные типы сетей.

Существует два основных типа топологий:

Логическая топология описывает правила взаимодействия сетевых станций при передаче данных.

Физическая топология определяет способ соединения носителей данных.

Термин "топология сети" характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология сети обуславливает ее характеристики.

Выбор той или иной топологии влияет на:

  • состав необходимого сетевого оборудования
  • характеристики сетевого оборудования
  • возможности расширения сети
  • способ управления сетью

Конфигурация сети может быть или децентрализованной (когда кабель "обегает" каждую станцию в сети), или централизованной (когда каждая станция физически подключается к некоторому центральному устройству, распределяющему фреймы и пакеты между станциями). Примером централизованной конфигурации является звезда с рабочими станциями, располагающимися на концах ее лучей. Децентрализованная конфигурация похожа на цепочку альпинистов, где каждый имеет свое положение в связке, а все вместе соединены одной веревкой. Логические характеристики топологии сети определяют маршрут, проходимый пакетом при передаче по сети.

При выборке топологии нужно учитывать, чтобы она обеспечивала надежную и эффективную работу сети, удобное управление потоками сетевых данных. Желательно также, чтобы сеть по стоимости создания и сопровождения получилась недорогой, но в то же время оставались возможности для ее дальнейшего расширения и, желательно, для перехода к более высокоскоростным технологиям связи. Это непростая задача! Чтобы ее решить, необходимо знать, какие бывают сетевые топологии.

2. БАЗОВЫЕ ТОПОЛОГИЙ СЕТИ

Существует три базовые топологии, на основе которых строится большинство сетей.

  • шина (bus)
  • звезда (star)
  • кольцо (ring)

Если компьютеры подключены вдоль одного кабеля, топология называется "шиной". В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология носит название кольца.

Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

2.1 Топология сети типа "шина" (bus)

В этой топологии все компьютеры соединяются друг с другом одним кабелем .

Схема топологии сети тип "шина"

В сети с топологией "шина" компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов - аппаратных MAC-адресов4. Чтобы понять процесс взаимодействия компьютеров по шине, нужно уяснить следующие понятия:

  • передача сигнала
  • отражение сигнала
  • терминатор

1. Передача сигнала

Данные в виде электрических сигналов, передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу. Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

  • характеристики аппаратного обеспечения компьютеров в сети
  • частота, с которой компьютеры передают данные
  • тип работающих сетевых приложений
  • тип сетевого кабеля
  • расстояние между компьютерами в сети

Шина - пассивная топология. Это значит, что компьютеры только "слушают" передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

2. Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

3. Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают заглушки (терминаторы, terminators), поглощающие эти сигналы . Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети может произойти, если разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть "падает". Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

У такой топологии сети есть достоинства и недостатки. К достоинствам можно отнести:

  • небольшое время установки сети
  • дешевизна (требуется меньше кабеля и сетевых устройств)
  • простота настройки
  • выход из строя рабочей станции не отражается на работе сети

Недостатки такой топологии следующие.

Такие сети трудно расширять (увеличивать число компьютеров в сети и количество сегментов - отдельных отрезков кабеля, их соединяющих). Поскольку шина используется совместно, в каждый момент времени передачу может вести только один из компьютеров.

"Шина" является пассивной топологией - компьютеры только "слушают" кабель и не могут восстанавливать затухающие при передаче по сети сигналы.

Надежность сети с топологией "шина" невысока. Когда электрический сигнал достигает конца кабеля, он (если не приняты специальные меры) отражается, нарушая работу всего сегмента сети.

Проблемы, характерные для топологии "шина", привели к тому, что эти сети, столь популярные еще десять лет назад, сейчас уже практически не используются.

Топология сети типа "шина" известна как логическая топология Ethernet 10 Мбит/с.

2.2 Базовая топология сети типа "звезда" (star)

При топологии "звезда" все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором5 (hub) .

Сигналы от передающего компьютера поступают через концентратор ко всем остальным.

Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

Схема топологии сети типа "звезда"

Достоинства такой типологии следующие:

  • выход из строя одной рабочей станции не отражается на работе всей сети в целом
  • хорошая масштабируемость сети
  • лёгкий поиск неисправностей и обрывов в сети
  • высокая производительность сети (при условии правильного проектирования)
  • гибкие возможности администрирования
  • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом
  • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий
  • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара. UTP категория 3 или 5. Топология типа "звезда" нашла свое отражение в технологии Fast Ethernet6.

2.3 Базовая топология сети типа "кольцо" (ring)

При топологии "кольцо" компьютеры подключаются к кабелю, замкнутому в кольцо (Рисунок 4). Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии "шина", здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Схема сети типа "кольцо"

Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который "хочет" передать данные. Передающий компьютер изменяет маркер, помещает адрес получателя в данные и посылает их по кольцу.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

На тему: Топология локальных сетей

Выполнил: специалист по программному обеспечению

Чурилов Семен Витальевич

Компьютерная сеть – это система компьютеров, связанная каналами передачи информации. Обмен информацией производится по каналам передачи информации. Эти каналы могут иметь различные физические принципы: звуковые волны, радиоволны, электрические сигналы; для компьютеров это могут быть кабельные, оптоволоконные, радиоканалы…

Топология локальных сетей

Под топологией вычислительной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают три основные топологии:

топология типа звезда;

топология типа кольцо;

топология типа общая шина.

При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел. В качестве центрального узла может выступать сервер или специальное устройство - концентратор (Hub).

hello_html_m6085a730.jpg

Топология сети "Звезда"

Преимущества данной топологии состоят в следующем:

Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.

Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный компьютер выйдет из строя, то работа всей сети прекратится.

Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

При топологии типа кольцо все компьютеры подключаются к линии, замкнутой в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер.

hello_html_m4cda0a2d.jpg

Топология сети "Кольцо"

Передача информации в такой сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, которому требуется передать данные. Получив маркер, компьютер создает так называемый "пакет", в который помещает адрес получателя и данные, а затем отправляет этот пакет по кольцу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя.

После этого принимающий компьютер посылает источнику информации подтверждение факта получения данных. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

К недостаткам данной топологии относятся:

Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.

Для подключения нового клиента необходимо отключить работу сети.

При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.

Общая производительность сети определяется производительностью самого медленного компьютера.

При топологии типа общая шина все клиенты подключены к общему каналу передачи данных. При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

hello_html_mfcc8681.jpg

Топология сети "Шина"

Передача информации в данной сети происходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот компьютер, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу данных.

Преимущества топологии общая шина:

Вся информация находится в сети и доступна каждому компьютеру.

Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.

Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.

Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

К недостаткам топологии типа общая шина относятся:

Низкая скорость передачи данных, т.к. вся информация циркулирует по одному каналу (шине).

Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем медленнее идет передача информации от одного компьютера к другому.

Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Самым распространенным типом сети с топологией общая шина является сеть стандарта Ethernet со скоростью передачи информации 10 - 100 Мбит/сек.

Мы рассмотрели основные топологии ЛВС. Однако на практике при создании ЛВС организации могут одновременно использоваться сочетание нескольких топологий. Например, компьютеры в одном отделе могут быть соединены по схеме звезда, а в другом отделе по схеме общая шина, и между этими отделами проложена линия для связи.

Так как сигнал в кольце проходит через все компьютеры сети, выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу всей сети в целом. Точно так же любой обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Кольцо наиболее уязвимо к повреждениям кабеля, поэтому в этой топологии обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

В то же время крупное преимущество кольца состоит в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всей сети в целом (порой до нескольких десятков километров). Кольцо в этом отношении существенно превосходит любые другие топологии.

Недостатком кольца (по сравнению со звездой) можно считать то, что к каждому компьютеру сети необходимо подвести два кабеля.

2.1.4 Другие топологии



Применяются довольно часто и комбинированные топологии, среди которых наибольшее распространение получили звездно-шинная (рис. 1.8) и звездно-кольцевая (рис. 1.9).


Рис. 1.8. Пример звездно-шинной топологии


Рис. 1.9. Пример звездно-кольцевой топологии

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.9 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов все линии связи образуют замкнутый контур (как показано на рис. 1.9). Данная топология позволяет комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети.

Раздел: Коммуникации и связь
Количество знаков с пробелами: 79516
Количество таблиц: 0
Количество изображений: 19

Топология построения ЛВС [20.10.10]

Целью теоретической части данной курсовой работы является рассмотрение такого вида сетей как локальная вычислительная сеть (ЛВС). В работе описана ее характеристика, виды, основные элементы, топология построения локальных вычислительных сетей, предоставлены графические изображения схем основных видов топологии. Описано назначение ЛВС, область ее применения.

В практической части описывается алгоритм решения предложенной экономической задачи по осуществляемой страховой деятельности на территории России по видам полисов.

Курсовая работа выполнена при помощи текстового редактора Microsoft Office Word 2003, табличного редактора Microsoft Office Excel 2003, графического редактора Paint, на ноутбуке Acer Aspire 5738ZG с техническими характеристиками: Intel Pentium dual-core processor Т4200 (2.0 GHz, 800 MHz FSB, 1 MB L2 cache).

Основные понятия локальных вычислительных сетей

К локальным компьютерным сетям (ЛВС или LAN – Local Area NetWork) относятся сети, узлы которых располагаются на небольшом расстоянии друг от друга, обычно не дальше нескольких сотен метров. Примерами таких сетей могут служить сети отдельных предприятий и организаций, а также их структурных подразделений. Основным назначением ЛВС является предоставление информационных, вычислительных и технических ресурсов подключенным к сети пользователям [1, С.129-130].

ЛВС имеют характерные отличительные черты, позволяющие их выделить в отдельный класс компьютерных сетей:

  1. Компактное территориальное расположение узлов сети. Расстояние между узлами сети обычно не превышает нескольких сот метров.
  2. В качестве среды передачи данных используется кабельная система.
  3. В качестве узлов сети чаще всего используются персональные компьютеры.
  4. Методы доступа, топологии, компоненты ЛВС разнообразны, имеют высокую степень совместимости и гибкости применения, что позволяет разрабатывать сети любой сложности и архитектуры [1, С.130].

Под архитектурой сети понимается вариант сети с конкретными компонентами сети (компьютеры, данные, программы, сетевое оборудование, различные устройства внешней памяти, принтеры, сканеры и другие устройства), топологией построения и технологией функционирования сети.

Под топологией вычислительной сети понимается изображение сети в виде графа, вершинами которого соответствуют компьютеры сети, отдельные виды сетевого оборудования, а ребрам – физические связи между ними [1, С.113-114]. Также под топологией понимают, различные способы конфигурации соединения кабелей для объединения компьютеров в ЛВС [2, С.72].

Общая характеристика топологий компьютерных сетей

Существуют три основные базовые топологии:

  • звезда (Star);
  • кольцо (Ring);
  • шина (Bus), или общая.

Наряду с перечисленными топологиями компьютерных сетей на практике применяются и различные виды комбинированных топологий, которые получаются в результате комбинаций базовых топологий, это:

  • полносвязная;
  • ячеистая;
  • иерархическая;
  • смешанная.

Различные виды ЛВС выделяются по следующим признакам:

  1. Технология функционирования сети. В зависимости от используемой технологии работы существуют сети Ethernet,Arcnet,TokenRing.
  2. Топология построения ЛВС. По этому признаку различают сети с шиной, звездообразной, кольцевой и комбинированными топологиями построения.
  3. Наличие или отсутствие сервера в сети. В зависимости от того, имеет ли ЛВС в своем составе выделенный сервер или все узлы сети равноправны, различают иерархические и одноранговые сети.
  4. В зависимости от типа среды передачи данных выделяют сети, построенные на основе коаксиального кабеля, витой пары, волоконно-оптического кабеля. Существуют также ЛВС, отдельные части которых используют разные типы кабелей.

Подробная характеристика топологий компьютерных сетей

Выбор топологии существенно влияет на многие характеристики сети. На рисунке 3.1 представлены базовые топологии сетей.

Шинная топология (рис. 3.1, в) представляет собой наиболее простой способ установки сети. Она требует меньше оборудования, кабелей, времени на настройку, чем другие топологии. Физическая среда передачи состоит из единственного кабеля, который называется общей шиной, к которой подключаются все компьютеры сети. Недостатками являются подключение небольшого числа рабочих станций (не более 30) и полное прекращение работы сети при повреждении общего кабеля [1, С.115]. Шинную архитектуру использует большая часть сетей, построенных на коаксиальных кабелях, таких, как сети Ethernet [2, С.72].

Рис. 3.1. Базовые топологии сетей:

Рис. 3.1. Базовые топологии сетей:

а – звезда; б – кольцо; в – общая шина

В Приложении приведена краткая характеристика базовых топологий вычислительных сетей.

Виды комбинированных топологий представлены на рисунке 3.2.

Ячеистая топология (рис. 3.2, б) предполагает, что любой узел сети располагает не менее чем двумя физическими связями с другими узлами. Данная топология применяется в неблагоприятных условиях агрессивной окружающей среды при недостаточно большой вероятности разрыва сетевых соединений. Если одна из связей доступа к узлу будет нарушена, то всегда в качестве альтернативной связи будет существовать еще одна.

Иерархическая топология (рис. 3.2, в) используется в сетях, где существует жесткое распределение рабочих станций по уровням иерархии. При этом каждый узел более нижнего уровня имеет только одну линию связи с узлом более высокого уровня.

Рис. 3.2. Комбинированные топологии компьютерных сетей:

Рис. 3.2. Комбинированные топологии компьютерных сетей:

При построении архитектуры ЛВС следует учитывать существующие зависимости между используемыми технологиями работы, топологиями сети и кабельной системой. Возможные сочетания этих элементов архитектуры определены соответствующими стандартами и спецификациями.

Отметим, что основными методами доступа при построении современных ЛВС являются высокоскоростные технологии Ethernet, которые называются соответственно Fast Ethernet (скорость передачи – 100 Мбит/с) и Gigabit Ethernet (скорость передачи – 1Гбит/с).

Технологии Arcnet (скорость передачи – 2,5 Мбит/с) и Token Ring (скорость передачи – 4 Мбит/с или 16 Мбит/с) в настоящее время практически не используются из-за низкой производительности. Таким образом, технологии Fast Ethernet и Gigabit Ethernet являются основными технологиями построения ЛВС. Несмотря на то, что эти технологии являются прямыми преемниками Ethernet, у них отсутствуют многие недостатки, присущие прежней технологии.

Одноранговые ЛВС. В одноранговых ЛВС все компьютеры сети имеют равные права. Ресурсы сети распределены равномерно между разными компьютерами сети. Любой из компьютеров может разделять ресурсы с любыми другими компьютерами ЛВС. При этом компьютер сам управляет использованием ресурса, которым владеет. Это означает наличие возможности предоставления доступа к ресурсу в свободном режиме, по паролю авторизованным компьютерам, или запрещение доступа к ресурсу. Распределение резервов требует наличия информации у каждого компьютера о местонахождении ресурсов сети и способов доступа к ним. Таким образом, в одноранговой сети отсутствуют централизованное администрирование сетью и общее управление безопасностью ресурсов. Компьютеры ЛВС во время предоставления ресурса сталкиваются с падением собственной производительности, в результате образования дополнительных затрат процессорного времени, памяти, загрузки внешних устройств, связанных с обслуживанием запросов сети. В одноранговых ЛВС затруднена процедура резервного копирования данных, при которой необходимо копировать данные с разных компьютеров, повреждение кабеля приводит к остановке работы сети. Перечисленные недостатки одноранговых ЛВС усиливаются при увеличении числа узлов сети. Положительными сторонами являются простота и оперативность их установки, низкая стоимость оборудования и программного обеспечения. Для установки сети требуются только сетевые адаптеры, кабель и операционная система [1, С.132].

Сети с выделенным сервером. Сети с выделенным сервером, называемые еще иерархическими ЛВС, имеют в своем составе функционально ориентированные компьютеры. С технической точки зрения серверы оснащаются мощными многопроцессорными системами, обладающими увеличенным объемом оперативной памяти, высокоскоростными каналами обмена с внешними устройствами, RAID-системами хранения информации на жестких дисках с минимальным временем обращения к данным и т.д. Помимо специальных программных средств, обеспечивающих различные способы защиты данных и серверов от несанкционированного доступа, серверы размещают в специальных помещениях с контролируемым доступом.

К недостаткам сетей с выделенным сервером относятся более высокая их стоимость, сложность построения сети, необходимость постоянного мониторинга за состоянием сети и происходящих процессах, наличие персонала высокой квалификации [1, С.132].

Кабельное оборудование ЛВС. При выборе лучшей передающей среды для ЛВС следует учитывать следующие факторы: скорость передачи данных, возможность применения в конкретных сетевых архитектурах, расстояние между соседними сетевыми устройствами, устойчивость к помехам от внешних источников, стоимость кабеля, сложность установки и модернизации.

В ЛВС применяют три типа кабеля: кабели на основе скрученных пар медных проводов (витая пара), коаксиальные кабели, волоконно-оптические кабели.

Витая пара существует в экранированном варианте, когда пара медных проводов заключается в изоляционный экран, и неэкранированном без изоляционной обертки. Скручивание проводов, а также наличие изоляционного экрана снижают влияние внешних помех на полезные сигналы, передаваемые по кабелю. Все кабели типа витой пары имеют 4 пары скрученных проводов и делятся на 5 категорий, каждая из которых характеризуется определенной совокупностью электромагнитных характеристик (5-я категория позволяет передавать данные со скоростью до 1 Гбит/с).

Коаксиальный кабель состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существуют два типа коаксиального кабеля, толстый коаксиальный кабель и тонкий.

Толстый коаксиальный кабель достигает в диаметре 10 мм (скорость передачи данных не превышает 10 Мбит/с), тонкий – 5 мм (достигает 100 Мбит/с). Поэтому тонкий коаксиальный кабель используется при прокладке ЛВС в агрессивной внешней среде с высоким уровнем воздействия радио- и электромагнитных волн.

Волоконно-оптический кабель состоит из одной или нескольких стеклянных или пластиковых жил (световодов), по которым распространяются световые сигналы. Жилы покрыты защитной поливинилхлоридной оболочкой. Этот тип кабеля обеспечивает наивысшую скорость передачи данных до 100 Гбит/с. По волоконно-оптическому кабелю можно одновременно передавать по нескольку световых волн. Волоконно-оптический кабель применяется в ЛВС в качестве магистральных каналов передачи данных благодаря высокой скорости передачи и малого затухания сигнала. К достоинствам волоконно-оптического кабеля следует также отнести сложность получения несанкционированного доступа к данным во время передачи и невосприимчивость кабеля к радио- и электромагнитным помехам. Недостатками являются его высокие стоимость и хрупкость, сложность монтажа, а также высокие требования к квалификации обслуживающего персонала [1, С.133].

Практическая часть

1. Общая характеристика задачи

Компания имеет свои филиалы в нескольких городах (рис. 2) и поощряет развитие каждого филиала, предоставляя определенный дисконт. Дисконт пересматривается ежемесячно по итогам общих сумм договоров по филиалам.

В конце каждого месяца составляется общий реестр договоров по всем филиалам (рис. 3).

1. Построить таблицы (рис. 1 – 3).

3. Организовать двумя способами расчет общей суммы полисов по филиалам:

1) подвести итоги в таблице реестра;

2) построить соответствующую сводную таблицу, предусмотрев возможность одновременно отслеживать итоги и по виду полиса.

Читайте также: