Типы оптических деталей поверхностей реферат

Обновлено: 04.07.2024

Оптические приборы — это устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Содержание

Введение
1. Базовые оптические элементы
2. Световые фильтры
3. Виды фильтров
4. Оптическая система — микроскоп
5. Оптическая система телескоп
6. Разрешение телескопов
7. Искусственный глаз телескопа
Заключение
Список использованных источников

Введение

Оптические приборы — это устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение – светосила; способность различать соседние детали изображения – разрешающая сила; соотношение размеров предмета и его изображения – увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения – угол, под которым из центра прибора видны крайние точки предмета.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

1. Базовые оптические элементы

  1. Линзы.
  2. Призмы.
  3. Зеркала.
  4. Световые фильтры.

Теперь рассмотрим каждый оптический элемент или как их еще называют, оптические детали, подробней.

Линзы

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Собирающие:
1 — двояковыпуклая
2 — плоско-выпуклая
3 — вогнуто-выпуклая (положительный(выпуклый) мениск)
Рассеивающие:
4 — двояковогнутая
5 — плоско-вогнутая
6 — выпукло-вогнутая (отрицательный(вогнутый) мениск)

. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырёк воздуха в воде — двояковыпуклая рассеивающая линза. Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего — хроматической, обусловленной дисперсией света, — ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне. Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления.

Призмы

Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. На сегодняшний день известно большое количество различных призм.

  1. Дисперсионные призмы, как правило, имеют три равных угла по 60°, их используют в спектральных приборах для пространственного разделения излучений различных длин волн. Вот некоторые из них:
  • Простая трехгранная призма
  • Призма Броунинга-Рузерфорда
  • Дисперсионная призма Аббе
  • Призма Амичи (призма прямого зрения)
  • Призма Литтрова
  • Призма Корню
  • Призма Пеллин-Брока

2. Отражательные призмы используют для изменения хода лучей, изменения направления оптической оси, изменения направления линии визирования, для уменьшения габаритных размеров приборов. Классифицируются отражательные призмы по нескольким признакам:

Также, особую нишу среди отражательных призм занимают составные призмы, — состоящие из нескольких частей, разделённых воздушными промежутками. Некоторые широко распространённые призмы получили собственные имена.

3. Поляризационные призмы, с их помощью получают линейно поляризованноеоптическое излучение. Обычно состоят из 2 или более трёхгранных призм, по меньшей мере одна из которых вырезается из оптически анизотропного кристалла. Призма Глана-Тейлора — одна из наиболее часто используемых в настоящее время призм, предназначена для преобразования излучения с произвольной поляризацией в линейно поляризованное. Конструкция была предложена Аркардом и Тейлором в 1948 году. Основные из поляризационных призм:

  • Призма Аренса
  • Призма Волластона
  • Призма Глазебрука
  • Призма Глана-Тейлора
  • Призма Глана-Томпсона
  • Призма Глана-Фуко
  • Призма Николя
  • Призма Номарски
  • Призма Рошона
  • Призма Сенармонта

Зеркала

Зеркало — гладкая поверхность, предназначенная для отражения света (или другого излучения). Наиболее известный пример — плоское зеркало. Зеркала широко используются в оптических приборах — спектрофотометрах, спектрометрах в других оптических приборах. Различают несколько видов зеркал:

2. Световые фильтры

Светофильтр в оптике, технике — оптическое устройство, которое служит для подавления (выделения) части спектра электромагнитного излучения. В мире существует огромное количество всевозможных световых фильтров и каждый предназначен для своих целей, например: защитный фильтр, предназначен для предохранения передней поверхности объектива от механических воздействий. Часто в этой роли используется ультрафиолетовый фильтр.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

3. Виды фильтров:

Нейтральный фильтр, служит для снижения эффективной светосилы объектива без изменения геометрической, а также для снижения эффективной светосилы объектива, не имеющего диафрагмы.

Солнечный фильтр — чрезвычайно плотный нейтральный фильтр, позволяющий без вреда для фотографа и фотоматериала снимать солнце, ядерный взрыв и другие явления, значительно превышающие по яркости обычные предметы.

Спектральные (цветные)

Светофильтры методов цветовоспроизведения

  • Аддитивные светофильтры — цветоделительные зональные светофильтры, выделяющие из исходного светового потока белого света трёх пространственно разделённых (с помощью других оптических элементов) потоков: синего, зелёного и красного.
  • Тепловой фильтр, теплофильтр — избирательно поглощает или отражает инфракрасное излучение и пропускает с малыми потерями диапазон видимого света. Применяются в осветительной аппаратуре, в проекторах для защиты плёнки, а также в микрофотографии для защиты биологических объектов от нагревания.
  • Абсорбционные, обладают спектральной избирательностью, обусловленной различным поглощением различных участков спектра электромагнитного излучения. Наиболее массовые фильтры. Производятся на основе окрашенных оптических стёкол или органических веществ (например, из желатины).
  • Интерференционный фильтр, отражает одну и пропускает другую часть спектра падающего излучения, благодаря явлению многолучевой интерференции в тонких диэлектрических плёнках. Также называется Дихроичный фильтр.
  • Отражательный фильтр. Действие отражательных фильтров основано на спектральной зависимости отражения непрозрачного материала. Преимуществом отражательного фильтра перед абсорбционными является единственность участвующей в оптической системе поверхности и отсутствии хроматических аберраций, вносимых преломляющими прозрачными средами.
  • Поляризационный фильтр. Простейший съёмочный поляризационный фильтр линейной поляризации, содержит один поляризатор, поворачивающийся в оправе. Его применение основывается на том, что часть света в окружающем нас мире поляризована. Частично поляризованы все лучи, неотвесно падающие отражённые от диэлектрических поверхностей. Частично поляризован свет, поступающий от неба. Поэтому, применяя поляризатор при съёмке, фотограф получает дополнительную возможность изменения яркости и контраста различных частей изображения. Например, результатом съёмки пейзажа в солнечный день с применением такого фильтра может получиться тёмное, густо-синее небо. При съёмке находящихся за стеклом объектов поляризатор позволяет избавиться от части отражений в стекле.
  • Дисперсные фильтры основаны на зависимости показателя преломления от длины волны. В сочетании с отражающими и/или интерференционными фильтрами, а также растром часто служат для создания расщепляющих оптических систем — дихроических призм. Находят применение в современных мультимедийных проекторах, где являются основным инструментом разделения светового потока мощной лампы накаливания на три спектральных диапазона. Применяются в качестве эффектных фильтров для получения радужных изображений.

4. Оптическая система — микроскоп

Изучение микроскопических объектов в медицине, биологии, химии, электронике нельзя представить без такого важного предмета, как микроскоп. Этот оптический прибор дает человеку возможность исследовать процессы и явления микромира. Современный лабораторный микроскоп – это высокотехнологичное, функциональное оборудование, предназначенное для комфортной ежедневной работы специалистов.

Микроскопы могут быть оптическими, электронными, цифровыми. В лабораториях находят широкое применение все модели. А какой именно прибор нужен в работе зависит от специфики исследований. Классическая модель – оптический микроскоп. Его конструкция состоит из окуляра и объектива, которые закреплены в подвижном тубусе. Под объективом размещается предметный столик для исследуемых образцов. Оптическая система с точным механизмом настройки и осветительный модуль позволяют получить четкое изображение высокого качества. Галогеновые, ксеноновые или светодиодные лампы дают бестеневое рабочее поле, не искажая цвета. В лабораторной работе широко распространены бинокулярные микроскопы. Они передают объемное увеличенное изображение. Стереомикроскопы применяются для препарирования микроскопических объектов. Благодаря тому, что изображение не инвертируется, можно легко манипулировать инструментами. Чтобы получить многократное увеличение применяется электронный микроскоп. Он дает изображение в тысячи раз крупнее, чем обычный оптический. Это возможно благодаря специальной технологии электростатических линз.

Для обработки данных на компьютере используется цифровой микроскоп. Оптическая система цифровых микроскопов совмещена с матрицей, трансформирующей световой поток в электрические сигналы. Это дает возможность передавать данные на компьютер для дальнейшей работы. Его конструкция позволяет присоединять камеру, изображение с которой можно анализировать на экране. Цифровой прибор обладает значительно расширенными возможностями по сравнению с другими моделями.

На сегодняшний день одним из самых мощных микроскопов является “Titan”. Созданный в рамках американско-европейского проекта TEAM , получил свои первые изображения с рекордным разрешением 0,04 нанометра. Это равно четверти поперечника атома углерода. Чтобы понять, какие новый инструмент открывает возможности по изучению материалов или биологических молекул, нужно добавить, что диаметр спирали ДНК составляет целых 2 нанометра. TEAM означает Transmission Electron Aberration-corrected Microscope, то есть трансмиссионный электронный микроскоп с коррекцией аберрации (аберрация — отклонение от нормы). Он появился в результате смешения двух технологий: электронного микроскопа сканирующего и трансмиссионного типов (так называемая технология S/TEM). Для повышения разрешения здесь был применён ряд новаций, в частности, сразу две оригинальные системы коррекции сферической аберрации. Конечно, по техническим характеристикам на сегодняшний день лучше этого микроскопа нет. Но один из американских физиков Дэрок Истэм, считает, что возможно достигнуть в 4 раза лучший результат — 0,01 нм. Планируемый электронный микроскоп настолько мал, что соответствует в размерах кончику пальца, и в четыре раза мощнее. В его проекте используется луч меньшей энергии, эмиттер электронов расположен всего в нескольких миллиметрах от изучаемого объекта. Вместо выделения электронов с вольфрамовой нити производится бомбардировка с одного атома крошечной золотой пирамиды высотой около 100 нм. Луч будет сосредоточен, поскольку он проходит через отверстие величиной 2 мкм, расположенное в кремниевом чипе, прежде чем достигнет цели. Луч электронов в новом микроскопе Истэма имеет длину всего 10 мкм. Длина в стандартном аппарате соответствует 600 мм. Луч, создаваемый прибором Истэма, имеет в 100 раз меньшую энергию, чем обычный сканирующий электронный микроскоп. Именно сокращение расхода энергии, по мнению Истэма, является главным направлением развития сканирующих электронных микроскопов. Меньшая мощность луча также позволяет изучать тонкие структуры, разрушаемые электронными микроскопами, например, необработанные белки и ДНК. Но многие эксперты консервативны в своих ожиданиях результатов работы нового микроскопа. Признавая верность сокращения длины луча, достижение разрешения в 0,01 нм расценивается как маловероятное. При этом существует эффект колебания энергии луча, что также ограничивает разрешающую способность, и, как ожидается, этот эффект имеет место и в разработке Истэма. При всей полезности сокращения энергопотребления, по мнению специалистов, этот микроскоп имеет недостаточную глубину проникновения для создания трехмерных изображений из-за конструкции отверстия.

Ко всему выше сказанному можно добавить только одно, что и по сей день основной задачей оптических приборов, используемых в лаборатории, является — оперативность в получении точных данных, необходимых для ежедневной работы. Микроскоп, помимо своего прямого назначения, должен отвечать таким требованиям, как надежность, функциональность и простота использования. Оснащение лабораторий качественными микроскопами обеспечивает эффективность ежедневного труда.

5. Оптическая система телескоп

Основное назначение телескопов — собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа — его объектива. Объективы бывают зеркальными и линзовыми.

Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями — аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с не идеальностью объектива. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. На сегодняшний день первенство среди линзовых телескопов держит телескоп, Йеркской обсерватории с объективом 102 см в диаметре.

Что касается зеркальных объективов, то у простых зеркальных телескопов, телескопов-рефлекторов, объектив — это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра — линзы, в фокусе которой строится изображение. Рефлекс – это отражение

Оптическая система – это совокупность оптических сред, разделенных оптическими поверхностями, которые ограничиваются диафрагмами. Оптическая система предназначена для формирования изображения путем перераспределения в пространстве электромагнитного поля, исходящего из предмета (преобразования световых пучков).

Преобразование световых пучков в оптической системе происходит за счет преломления и отражения света поверхностями, а также за счет ограничения пучков диафрагмой. Кроме того, пучки света могут преобразовываться за счет дифракции.

В наиболее общем случае оптическая система может состоять из следующих функциональных элементов:

- дифракционные оптические элементы.

Оптические среды

Оптические среды – это прозрачные однородные среды с точным значением показателя преломления (с точностью до 4-6 знаков после запятой).

В качестве оптических сред в оптических системах в основном применяют:

- воздух (вакуум) (n ≈ 1 ),

- оптические стекла – точно известны их показатели преломления и различные оптико-физические свойства (n = 1,42 ¸ 2,0),

- оптические кристаллы – работают в более широком диапазоне длин волн, чем стекла.

Оптические системы используются в широком интервале длин волн (от УФ до ИК), поэтому важно знать показатели преломления стекол и кристаллов для разных длин волн. Дисперсия оптических материалов – это зависимость показателя преломления от длины волны. Она описывается дисперсионными формулами, называемыми формулами Зельмейера :


(1)


(2)

Все стекла отличаются друг от друга характером зависимости показателя преломления от длины волны. Можно описывать оптические материалы либо значениями коэффициентов дисперсионной формулы, либо непосредственно значениями показателя преломления для различных длин волн.

Оптические материалы могут работать только в определенном интервале длин волн (от λ1 до λ2 ), в пределах которого показатель преломления хорошо описывается дисперсионной формулой. Вблизи границ этого интервала зависимость показателя преломления сильно отличается от описанного дисперсионной формулой (показатель преломления либо резко убывает, либо резко увеличивается). Пограничные интервалы длин волн называются полосами поглощения. У различных стекол эти полосы разные.

В видимой области спектра имеются стандартные длины волн , называемые Фраунгоферовыми линиями:

Основными характеристиками стекол являются показатель преломления для основной длины волны и общая дисперсия , где , – наибольшая и наименьшая длины волн, которые пропускает стекло.

В качестве опорных или основных длин волн для видимой области сейчас используются: центральная длина волны , крайние длины волн . Ранее в качестве основных длин волн использовались: .

Оптическое стекло характеризуется показателем преломления для основной длины волны (или ), а также общей дисперсией (или).

Еще одной важной характеристикой стекла является число Аббе (коэффициент относительной дисперсии):


(3)


.

Эрнст Аббе (Ernst Abbe) – немецкий ученый, основатель современной прикладной оптики, научный руководитель фирм Carl Zeiss и Schott (конец XIX века).

Чем меньше число Аббе, тем больше дисперсия, то есть сильнее зависимость показателя преломления от длины волны. По числу Аббе оптические стекла делят на две группы:


- - кроны,


- - флинты.

Комбинация стекол, принадлежащих различным группам, дает возможность создавать высококачественные оптические системы. Кроны и флинты – это основные группы оптических стекол. Их названия сформировались в Англии в XVIII веке, когда впервые было основано промышленное производство оптических стекол.

Оптические поверхности

Оптическая поверхность – это гладкая регулярная поверхность точно известной формы.

Поверхности могут быть:

Чаще всего в оптике применятся плоские поверхности и сферические поверхности. Для сферических поверхностей задается один параметр поверхности – радиус кривизны R . Плоской поверхностью можно считать сферическую поверхность с радиусом кривизны равным бесконечности. Для плоскости R = ∞, но условно принято считать, что R = 0.

При компьютерных расчетах удобно использовать не радиус кривизны, а кривизну поверхности:


. (4)


Форма оптических поверхностей должна выдерживаться с точностью меньше длины волны. В идеальных оптических системах отклонения от идеальной формы поверхности не должны превышать , при этом допуск не зависит от размера поверхности.

Плоские и сферические поверхности изготавливаются достаточно просто (методом притирки), и поэтому именно их чаще всего используют в оптических системах. Асферические поверхности используются редко из-за сложности их изготовления и контроля, так как у них различная величина радиуса кривизны по различным направлениям. В настоящее время существуют технологии изготовления асферических поверхностей на станках с программным управлением. Получение точного профиля асферической поверхности возможности возможно только методом ретуши.

Диафрагмы

Диафрагма – это металлический экран с круглым отверстием. На оптических схемах диафрагмы могут быть заданы явно – диафрагма является самостоятельным элементом оптической системы (рис.1.а), или неявно – роль диафрагмы играет край или оправа линзы (рис.1.б).


Рисунок 1 – Диафрагмы

Взаимное расположение элементов в оптической системе

Центрированная оптическая система.

Центрированная оптическая система – это оптическая система, которая имеет ось симметрии (оптическую ось) и сохраняет все свои свойства при вращении вокруг этой оси.

Для центрированной оптической системы должны выполняться следующие условия:

- все плоские поверхности перпендикулярны оси,

- центры всех сферических поверхностей принадлежат оси,

- все диафрагмы круглые, центры всех диафрагм принадлежат оси,

- все среды либо однородны, либо распределение показателя преломления симметрично относительно оси.

Центрированные оптические системы могут включать в себя плоские зеркала и отражающие призмы, ломающие оптическую ось, но по сути не влияющие на симметрию системы (рис.2).


Рисунок.2 – Центрированная оптическая система с изломом оптической оси

Нумерация элементов оптической системы ведется по ходу луча (рис.3). Все расстояния между поверхностями (толщины линз или воздушные промежутки) откладываются по оси.


Рисунок 3 – Нумерация элементов оптической системы

Правила знаков

Для удобства чтения оптических схем и компьютерных расчетов в оптике приняты единые правила знаков.

Положительным направлением света считается распространение слева направо.

Осевые расстояния между преломляющими поверхностями считаются положительными, если они измеряются по направлению распространения света (слева направо) (рис.4).

Радиус кривизны поверхности считается положительным, если центр кривизны находится справа от поверхности (поверхность обращена выпуклостью влево) (рис. 4).

Угол между лучом и оптической осью считается положительным, если для совмещения оси с лучом ось нужно вращать по часовой стрелке (рис. 4).

Отрезки, перпендикулярные оптической оси считаются положительными, если они располагаются над осью (рис.4).


Рисунок 4 – Правила знаков

На чертежах и рисунках всегда указывают знак отрезков и углов. При оптических расчетах считается, что после каждой отражающей поверхности показатель преломления, осевое расстояние и угол отражения меняют знак на противоположный.

Луч может пройти одну и ту же поверхность несколько раз, поэтому физическое и расчетное число поверхностей может различаться. Например, на рис.5.5 показаны 8 физических и 12 расчетных поверхностей.


Рисунок 5 – Физические и расчетные поверхности

По составу оптические системы делятся на:

- линзовые (нет зеркал, кроме плоских для излома оптической оси),

Меридиональная и сагиттальная плоскости

При анализе оптической системы используются понятия меридиональной и сагиттальной плоскости. Меридиональная плоскость – это плоскость, проходящая через оптическую ось (например плоскость рисунка 5).

Сагиттальная плоскость – это плоскость, содержащая луч и перпендикулярная меридиональной плоскости (может быть ломаной и рассматривается по частям). Ее название произошло от слова “сагитта” (лат.) – стрела. Примером такой плоскости может служить воображаемая ломаная плоскость, содержащая луч на рис. 5.5 и перпендикулярная плоскости этого рисунка.

Предмет и изображение в оптической системе

Основные положения

Оптические системы в основном предназначены для формирования изображения (изображающие оптические системы). Для таких систем вводится понятие предмета и изображения. Для оптических систем, не строящих изображение, понятие предмета и изображения вводится условно.

В геометрической оптике предмет – это совокупность точек, из которых выходят лучи, попадающие в оптическую систему.

Из каждой точки предмета выходит гомоцентрический пучок лучей. Вся возможная совокупность точек (от +∞ до -∞) образует пространство предметов . Пространство предметов может быть действительным или мнимым.

Оптическая система делит все пространство на две части:

Плоскость предметов и плоскость изображений – это плоскости, перпендикулярные оптической оси и проходящие через предмет и изображение.

Сопряженные точки

В геометрической оптике любой точке пространства предметов можно поставить в соответствие сопряженную ей точку в пространстве изображений. Если из некоторой точки в пространстве предметов выходят лучи и эти лучи затем пересекаются в пространстве изображений в какой-либо точке, то эти две точки называются сопряженными.

Сопряженные линии – это линии, для которых каждая точка линии в пространстве предметов сопряжена с каждой соответствующей точкой линии в пространстве изображений (для идеальных оптических систем).

В реальных оптических системах лучи, выходящие из точки A , только приближенно сходятся в точке A ′. Для идеальных оптических систем каждой точке пространства предметов обязательно соответствует идеально сопряженная ей точка в пространстве изображений.

Типы предмета и изображения

Существуют два типа предмета и изображения:

Ближний тип – предмет (изображение) расположены на конечном расстоянии, поперечные размеры измеряются в единицах длины.

Дальний тип – предмет (изображение) расположены в бесконечности, поперечные размеры выражены в угловой мере.

Термины “конечное расстояние” и “бесконечность” достаточно условны и просто соответствуют более или менее близкому расположению предмета (изображения) по отношению к оптической системе.

Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004 2004

Заказнов Н.П. Прикладная оптика. – М.: Машиностроение, 2002 2002

Дубовик А.С. Прикладная оптика. – М.: Недра, 2002 2002

Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2005 2005

Оптическая система – это совокупность оптических сред, разделенных оптическими поверхностями, которые ограничиваются диафрагмами. Оптическая система предназначена для формирования изображения путем перераспределения в пространстве электромагнитного поля, исходящего из предмета (преобразования световых пучков).

Преобразование световых пучков в оптической системе происходит за счет преломления и отражения света поверхностями, а также за счет ограничения пучков диафрагмой. Кроме того, пучки света могут преобразовываться за счет дифракции.

  • оптические среды,
  • оптические поверхности,
  • зеркала,
  • диафрагмы,
  • дифракционные оптические элементы.

Оптические среды

Оптические среды – это прозрачные однородные среды с точным значением показателя преломления (с точностью до 4-6 знаков после запятой).

  • воздух (вакуум) ;
  • оптические стекла – точно известны их показатели преломления и различные оптико-физические свойства ;
  • оптические кристаллы – работают в более широком диапазоне длин волн, чем стекла.

Оптические системы используются в широком интервале длин волн (от УФ до ИК), поэтому важно знать показатели преломления стекол и кристаллов для разных длин волн. Дисперсия оптических материалов – это зависимость показателя преломления от длины волны. Она описывается дисперсионными формулами, называемыми формулами Зельмейера :

Все стекла отличаются друг от друга характером зависимости показателя преломления от длины волны. Можно описывать оптические материалы либо значениями коэффициентов дисперсионной формулы, либо непосредственно значениями показателя преломления для различных длин волн.

Оптические материалы могут работать только в определенном интервале длин волн (от до ), в пределах которого показатель преломления хорошо описывается дисперсионной формулой. Вблизи границ этого интервала зависимость показателя преломления сильно отличается от описанного дисперсионной формулой (показатель преломления либо резко убывает, либо резко увеличивается). Пограничные интервалы длин волн называются полосами поглощения . У различных стекол эти полосы разные.

В видимой области спектра имеются стандартные длины волн , называемые Фраунгоферовыми линиями :

– 365 нм – 587 нм
– 404 нм – 589 нм
– 434 нм – 643 нм
– 436 нм – 656 нм
– 480 нм – 706 нм
– 486 нм – 768 нм
– 546 нм

Основными характеристиками стекол являются показатель преломления для основной длины волны и общая дисперсия , где , – наибольшая и наименьшая длины волн, которые пропускает стекло.

В качестве опорных или основных длин волн для видимой области сейчас используются: центральная длина волны , крайние длины волн , . Ранее в качестве основных длин волн использовались: .

Оптическое стекло характеризуется показателем преломления для основной длины волны (или ), а также общей дисперсией (или ).

Еще одной важной характеристикой стекла является число Аббе (коэффициент относительной дисперсии):

(5.1.3)
или

Эрнст Аббе (Ernst Abbe) – немецкий ученый, основатель современной прикладной оптики, научный руководитель фирм Carl Zeiss и Schott (конец XIX века).

Комбинация стекол, принадлежащим различным группам, дает возможность создавать высококачественные оптические системы. Кроны и флинты – это основные группы оптических стекол. Их названия сформировались в Англии в XVIII веке, когда впервые было основано промышленное производство оптических стекол.

Оптические поверхности

Оптическая поверхность – это гладкая регулярная поверхность точно известной формы.

  • плоские,
  • сферические,
  • асферические.

Чаще всего в оптике применятся плоские поверхности и сферические поверхности. Для сферических поверхностей задается один параметр поверхности – радиус кривизны . Плоской поверхностью можно считать сферическую поверхность с радиусом кривизны равным бесконечности. Для плоскости , но условно принято считать, что .

При компьютерных расчетах удобно использовать не радиус кривизны, а кривизну поверхности :

Форма оптических поверхностей должна выдерживаться с точностью меньше длины волны. В идеальных оптических системах отклонения от идеальной формы поверхности не должны превышать , при этом допуск не зависит от размера поверхности.

Плоские и сферические поверхности изготавливаются достаточно просто (методом притирки), и поэтому именно их чаще всего используют в оптических системах. Асферические поверхности используются редко из-за сложности их изготовления и контроля, так как у них различная величина радиуса кривизны по различным направлениям. В настоящее время существуют технологии изготовления асферических поверхностей на станках с программным управлением. Получение точного профиля асферической поверхности возможно только методом ретуши.

Диафрагмы

Диафрагма – это металлический экран с круглым отверстием. На оптических схемах диафрагмы могут быть заданы явно – диафрагма является самостоятельным элементом оптической системы (рис.5.1.1.а), или неявно – роль диафрагмы играет край или оправа линзы (рис.5.1.1.б).

5.1.2. Взаимное расположение элементов в оптической системе

Центрированная оптическая система

Центрированная оптическая система – это оптическая система, которая имеет ось симметрии (оптическую ось) и сохраняет все свои свойства при вращении вокруг этой оси.

  • все плоские поверхности перпендикулярны оси,
  • центры всех сферических поверхностей принадлежат оси,
  • все диафрагмы круглые, центры всех диафрагм принадлежат оси,
  • все среды либо однородны, либо распределение показателя преломления симметрично относительно оси.

Центрированные оптические системы могут включать в себя плоские зеркала и отражающие призмы, ломающие оптическую ось, но по сути не влияющие на симметрию системы (рис.5.1.2).


Рис.5.1.2. Центрированная оптическая система с изломом оптической оси.

Нумерация элементов оптической системы ведется по ходу луча (рис.5.1.3). Все расстояния между поверхностями (толщины линз или воздушные промежутки) откладываются по оси.


Рис.5.1.3. Нумерация элементов оптической системы.

Для удобства чтения оптических схем и компьютерных расчетов в оптике приняты единые правила знаков.

Положительным направлением света считается распространение слева направо.

Осевые расстояния между преломляющими поверхностями считаются положительными, если они измеряются по направлению распространения света (слева направо) (рис.5.1.4).

Радиус кривизны поверхности считается положительным, если центр кривизны находится справа от поверхности (поверхность обращена выпуклостью влево) (рис.5.1.4).

Угол между лучом и оптической осью считается положительным, если для совмещения оси с лучом ось нужно вращать по часовой стрелке (рис.5.1.4).

Отрезки, перпендикулярные оптической оси считаются положительными, если они располагаются над осью (рис.5.1.4).


Рис.5.1.4. Правила знаков.

На чертежах и рисунках всегда указывают знак отрезков и углов. При оптических расчетах считается, что после каждой отражающей поверхности показатель преломления, осевое расстояние и угол отражения меняют знак на противоположный.

Луч может пройти одну и ту же поверхность несколько раз, поэтому физическое и расчетное число поверхностей может различаться. Например, на рис.5.1.5 показаны 8 физических и 12 расчетных поверхностей.


Рис.5.1.5. Физические и расчетные поверхности.

Примеры описания конструктивных параметров оптических систем с учетом правила знаков рассматриваются в практическом занятии "Правило знаков в оптике. Основные законы распространения света", в пункте "2.1. Правила знаков и записи конструктивных параметров".

  • линзовые (нет зеркал, кроме плоских для излома оптической оси),
  • зеркальные,
  • зеркально-линзовые.

Меридиональная и сагиттальная плоскости

При анализе оптической системы используются понятия меридиональной и сагиттальной плоскости. Меридиональная плоскость – это плоскость, проходящая через оптическую ось (например плоскость рисунка 5.1.5).

Сагиттальная плоскость – это плоскость, которая содержит луч, перпендикулярна меридиональной плоскости и не проходит через ось (может быть ломаной и рассматривается по частям). Ее название произошло от слова “сагитта” (лат.) – стрела. Примером такой плоскости может служить воображаемая ломаная плоскость, содержащая луч на рис. 5.1.5 и перпендикулярная плоскости этого рисунка.

5.1.3. Предмет и изображение в оптической системе

Основные положения

Оптические системы в основном предназначены для формирования изображения (изображающие оптические системы). Для таких систем вводится понятие предмета и изображения. Для оптических систем, не строящих изображение, понятие предмета и изображения вводится условно.

В геометрической оптике предмет – это совокупность точек, из которых выходят лучи, попадающие в оптическую систему.

Из каждой точки предмета выходит гомоцентрический пучок лучей. Вся возможная совокупность точек (от до ) образует пространство предметов . Пространство предметов может быть действительным или мнимым.

  • пространство предметов,
  • пространство изображений.

Плоскость предметов и плоскость изображений – это плоскости, перпендикулярные оптической оси и проходящие через предмет и изображение.

Сопряженные точки

В геометрической оптике любой точке пространства предметов можно поставить в соответствие сопряженную ей точку в пространстве изображений. Если из некоторой точки в пространстве предметов выходят лучи и эти лучи затем пересекаются в пространстве изображений в какой-либо точке, то эти две точки называются сопряженными .

Сопряженные линии – это линии, для которых каждая точка линии в пространстве предметов сопряжена с каждой соответствующей точкой линии в пространстве изображений (для идеальных оптических систем).

В реальных оптических системах лучи, выходящие из точки , только приближенно сходятся в точке . Для идеальных оптических систем каждой точке пространства предметов обязательно соответствует идеально сопряженная ей точка в пространстве изображений.

Типы предмета и изображения

Существуют два типа предмета и изображения:

Ближний тип – предмет (изображение) расположены на конечном расстоянии, поперечные размеры измеряются в единицах длины.

Дальний тип – предмет (изображение) расположены в бесконечности, поперечные размеры выражены в угловой мере.

Термины “конечное расстояние” и “бесконечность” достаточно условны и просто соответствуют более или менее близкому расположению предмета (изображения) по отношению к оптической системе.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Министерство образования Республики Беларусь

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Поверхности оптических деталей представляют собой части сферы у линз и сферических зеркал или части плоскости у пластинок, клиньев, призм и плоских зеркал. Такие поверхности могут иметь погрешности как по общей кривизне или плоскостности, так и по местным ошибкам. Допуски на эти погрешности задаются количеством интерференционных колец или полос, или их долей. Обычно на практике интерференционную картину принято называть “ цветом ” .

Допуск на общую ошибку от номинального радиуса кривизны или от идеальной плоскости принято обозначать буквой N . Количество интерференционных колец или полос проставляется рядом с численным выражением, например N =3,0. Одно кольцо в линейной мере соответствует толщине воздушного промежутка в 0,00025 мм; 4 кольца – 0,001 мм (1 мкм).

Схематическое изображение отступлений от заданного радиуса кривизны сферической поверхности показано на рис.1. Если воздушный промежуток больше в центре, получается так называемая “яма”, а если с краев – “бугор”. При нажиме сверху кольца расходятся в направлении, указанном стрелками.

1-пробное стекло; 2-деталь

На рис.2 показаны некоторые случаи обнаружения ошибок как в случае сферических поверхностей, так и плоских. Растянутый, эллиптический вид цветных колец (рис.3) указывает на то, что в двух взаимно перпендикулярных сечениях поверхность линзы имеет разные радиусы кривизны (астигматизм, цилиндр). Величина астигматизма определяется отношением расстояний h между красными интерференционными кольцами (ширина полосы).

Местные ошибки ( Δ N ) поверхности являются нарушением равномерности ее профиля, что обнаруживается при наложении пробного стекла характерными искривлениями интерференционных полос или колец. Обычно допуски на общие отступления от радиусов ( N ) задают в пределах от 0,1 до 10 колец, а на местные ( Δ N ) от 0,05 до 2 колец, причем одновременное соотношение N / Δ N ≤5/1 ÷ 2/1.

Необходимо учитывать, что температура помещения влияет на правильность измерений N и Δ N . Так, например, если в помещении температура ниже нормальной, то “цвет”, как принято говорить, идет на “бугор”, если выше нормальной – на “яму”. Это объясняется деформированием поверхности детали от влияния температуры.

Рис.3 Схематиче ское изображение астигматической ошиб ки на поверхности линзы

Пробным стеклом измеряется не только точность поверхности, но и для сфер отклонения радиуса от номинального как сумма отклонений R пробного стекла от R ном. и R дет от R пробного стекла. В случае плоских поверхностей измеренная величина R дает оценку сферичности плоской поверхности.

Метод пробного стекла контактный и может стать источником появления дефектов чистоты.

Бесконтактная проверка проводится на интерферометрах.

Принципиальная оптическая схема интерферометров, используемых для контроля форм плоских поверхностей, указана на черт.1.

Монохроматический источник света с помощью конденсатора и светофильтра освещает отверстие диаграммы, установленной в фокальной плоскости объектива. Вышедшие из объектива параллельные пучки попадают на клиновидную пластину, нижняя поверхность которой является поверхностью образца сравнения и затем на контролируемую поверхность зеркала. Отразившиеся от образцовой и контролируемой поверхностей пучки возвращаются в обратном направлении и с помощью светоделительной пластины направляются в наблюдательную систему.

Принципиальная оптическая схема интерферометра, используемого для контроля сферических поверхностей, указана на черт.2.

Пучок света от лазерного источника с помощью зеркал и телескопической трубки направляется на микрообъектив, собирается в его фокусе F , с которым постоянно совмещен центр кривизны образцового сферического зеркала. Затем пучок направляется на диагональную грань светоделительного кубика, где делится на два пучка – сигнальный и опорный. Опорный пучок проходит через светоделительную грань, попадает на зеркало, отражается от него и собирается в точке F ’’ , являющейся автоколлимационным изображением точки F ’ . Сигнальный пучок, отразившись от светоделительной грани кубика, направляется к контролируемой детали, центр кривизны которой совмещается с фокусом F ’ . Отраженный пучок собирается в точке F ’’ и при совмещении сигнального и опорного пучков они интерферируют между собой. Наблюдение ведется из точек F ’’ и F ’’’ .

1-источник света; 2-конденсорная линза; 3-светофильтр; 4-диафрагма; 5-светоделительная пластина; 6-объектив; 7-клиновидная пластина (образец сравнения); 8 – контролируемое

зеркало; 9 - наблюдательная система

1-источник света; 2-зеркала; 3-телескопическая трубка; 4-микрообъектив; 5-светоделительный кубик 6-сферическое зеркало

(образец сравнения); 7-контролируемое зеркало

При контроле плоских поверхностей интерференционную картину получают, регулируя зазор между контролируемой поверхностью и поверхностью образца сравнения.

Измерение величины общей и местной ошибок производят в соответствии с инструкцией по эксплуатации.

Для измерения интерферограмм применяют контрольно-измерительные приборы, обеспечивающие погрешность измерения не более 0,05 интерференционной полосы.

Проводят измерение интерферограммы, определяя стрелку прогиба H и расстояние между полосами l (черт.3).

На черт. 3а дан пример интерферограммы поверхности, имеющей только общую ошибку N =0,4, а на черт. 3б – местную, Δ N =0,3 интерференционной полосы.

Данные записывают в рабочий журнал, форма которого приведена в приложении 2.

Определяют знак ошибки поверхности (бугор или яма).

Для этого необходимо положение ребра клина, образуемого либо двумя поверхностями (при контроле плоских поверхностей), либо двумя интерферирующими волновыми фронтами (при контроле сферических поверхностей).

Определение знака ошибки поверхности приведено в приложении 3.

1.1.Общую ошибку определяют по формуле

где – стрелка прогиба полосы;

– интервал между полосами (ширина полосы).

Допускается определить общую ошибку N 1,5 по числу наблюдаемых интерференционных колец.

1 .2. Местную ошибку вычисляют по формуле

где – стрелка прогиба изгиба полосы в данном месте;

– интервал между полосами.

1.3. Данные записывают в журнал.

Пример записи измерения ошибки поверхности данным методом:

ПРИМЕРЫ ИНТЕРФЕРОГРАММ, ХАРАКТЕРИЗУЮЩИХ ВОЗМОЖНЫЕ МЕСТНЫЕ ОШИБКИ ПОВЕРХНОСТЕЙ.

В приложении даны в аксонометрической форме наиболее часто встречаемые на практике дефекты поверхностей, а также соответствующие им интерференционные картины.

На черт. 1а приведен пример поверхности, имеющей астигматизм. У такой поверхности радиусы кривизны в двух главных взаимно перпендикулярных сечениях различны.

Вид полос зависит от величины астигматизма и положения ребра клина. На черт. 1б представлена интерферограмма, соответствующая настройке прибора, когда ребро клина находится в бесконечности.

На черт. 1в интерферограмма соответствует случаю, когда ребро клина параллельно одному из главных сечений. Переменная ширина полос свидетельствует о наличии астигматизма.

На черт. 1г интерферограмма характеризует настройку, при которой ребро клина наклонено к одному из главных сечений. Полосы в этом случае имеют веерообразную форму.

ОШИБКА ОСЕСИММЕТРИЧНОГО ХАРАКТЕРА.

На черт. 2а показана поверхность, имеющая “яму” в центре и завал по краю.

При настройке на полосы кольцевой формы (черт. 2б) частота полос меняется не монотонно.

Незамкнутые полосы имеют волнистую форму, повторяющую в масштабе профиль поверхности в этом сечении, где проходит наблюдаемая полоса (черт. 2в).

На черт. 2 показана поверхность с “бугром” в центре, “ямой” между центром и краем и приподнятым краем. Интерференционная картина для данной поверхности идентична, показанной на черт. 2. Действительный профиль поверхности определяется путем нахождения положения клина.

. ОШИБКА АССИМЕТРИЧНОГО ХАРАКТЕРА (ПОВЕРХНОСТЬ С ОДНОЙ ОСЬЮ СИММЕТРИИ)

На черт. 4а показана поверхность, имеющая один край приподнятый, другой заваленный. Вид от нее интерференционных картин показан на рисунках:

4б – замкнутые полосы,

4в – полосы вертикального направления,

4г – полосы горизонтального направления.

ПОВЕРХНОСТЬ, НЕ ИМЕЮЩАЯ ОШИБОК

На черт. 5 показана интерференционная картина, полученная от поверхности с такой малой ошибкой, что ею можно пренебречь.

Для этого, интерференционную картину настраивают на желаемое направление полос. Затем с помощью лупы взаимное положение автоколлимационных изображений точки F , полученных от рабочего и опорного пучков. Ребро клина располагается перпендикулярно линии, соединяющей указанные изображения, причем со стороны изображения от образцовой поверхности. После определения положения ребра клина знак ошибки определяют как указано выше.

Для определения знака ошибки поверхности в условиях вибраций рекомендуется один из следующих способов:

Настраивают интерференционную картину так, чтобы полосы занимали горизонтальное положение, затем под нижнюю часть рабочего пучка вводят предмет, нагретый да температуры 100-300 0 С.

Поток нагретого воздуха называют искривление полос подобное “бугру” на поверхности, искривление в противоположном направлении соответствует “яме” (способ 1).

Рассматривают только предфокальную интерференционную картину, где общее искривление полос всегда соответствует “бугру” на поверхности (черт. 8а).

Если направление искривления интерференционных полос при определении местной ошибки совпадает с общим искривлением полос, то это соответствует “бугру” на поверхности (черт. 8б), местное искривление интерференционных полос в противоположном направлении (черт. 8в) соответствует “яме” (способ 2).

ОПРЕДЕЛЕНИЕ ЗНАКА ОШИБКИ ПОВЕРХНОСТИ

ОПРЕДЕЛЕНИЕ ЗНАКА ОШИБКИ ПЛОСКОЙ ПОВЕРЗНОСТИ

Находят положение ребра клина между проверяемой и образцовой поверхностями. Для этого производят легкий нажим на край стола вверх или вниз вблизи точки А или Б (черт. 1).

Например, если при нажиме вниз ширина полос уменьшается, то это означает, что ребро клина находится на стороне, противоположной точке нажима. Нажим вверх приводит в этом случае к расширению полос.

Определяют знак ошибки. Поверхность имеет яму, если выпуклость дуг или местные изгибы полос направлены в сторону ребра клина. Если указанные искривления полос направлены в сторону, противоположную ребру клина, проверяемая поверхность имеет бугор.

Пример. На черт. 1 ребро клина расположено в точке В. Следовательно, поверхность имеет яму.

Если в направлении линии АВ интерферометр дает перевернутое изображение, то знак ошибки будет противоположным указанному выше.

3.2. ОПРЕДЕЛЕНИЕ ЗНАКА ОШИБКИ СФЕРИЧЕСКОЙ ПОВЕРХНОСТИ

Определяют положение ребра клина, образуемого интерференционными волновыми фронтами, черт. 2.

Малов А.Н., Законников Обработка деталей оптических приборов. Машиностроение, 2006. - 304 с.

Бардин А.Н. Сборник и юстировка оптических приборов. Высшая школа, 2005. - 325с.

Кривовяз Л.М., Пуряев Д.Т., Знаменская М.А. Практика оптической измерительной лаборатории. Машиностроение, 2004. - 333 с.

Как уже известно, оптико-механические приборы представляют собой сложные устройства со множеством оптических деталей. При установке оптических деталей в механические оправы требуется особое крепление. В зависимости от назначения оптических деталей и узлов в приборах оптические детали закрепляют в механических деталях завальцовкой, с помощью резьбовых и пружинящих проволочных колец, жестких и пружинящих планок, а также клеем или герметиком.

Завальцовка применяется для жесткого неразборного соединения круглых оптических деталей диаметром до 60 мм с оправами.

Сборка оптических деталей с механическими

Рис.1. Крепление оптических деталей в оправах.

Крепление оптических деталей резьбовым кольцом (рис. 1, а) применяют для разборных соединений с различным диаметром линз. Оптическую деталь 2 укрепляют в оправе 1 резьбовым кольцом 3 и стопорят резьбовое кольцо стопорным винтом 4.

При температурных перепадах вследствие разности коэффициентов линейного расширения материалов оправ и стекла возникают дополнительные деформации, способствующие образованию внутренних натяжений в стекле. Поэтому для таких условий применяют крепление (рис. 4$, 6) с компенсационными упругими кольцами. Компенсационные кольца 5 устанавливает между резьбовым кольцом 6 и линзой. Это дает возможность обеспечить равномерное прижатие кромок оптических деталей 2 и 4 резьбовым кольцом 6. Технологический процесс крепления оптических деталей с компенсационным кольцом ведется в следующей последовательности.

1. Устанавливают линзу 2 в посадочное отверстие оправы 1. В случае необходимости линзу устанавливают в оправу на водонепроницаемой замазке.

2. Устанавливают промежуточное кольцо 3 и линзу 4, выдерживая воздушный промежуток между линзами за счет толщины кольца 3.

3. Устанавливают компенсационное кольцо 5, ввинчивают резьбовое кольцо 6 и стопорят его винтом 7.

В процессе сборки данного узла тщательно чистят оптические детали и соблюдают аккуратность при установке линз и креплении их резьбовым кольцом, чтобы не вызвать деформации и загрязнения поверхностей линз.

На рис. 1, в показано крепление оптической детали пружинящим проволочным кольцом. Такой вид крепления применяют для неответственных оптических деталей; например защитных стекол и светофильтров.

В процессе крепления оптической детали 2 пружинящим проволочным кольцом 3 устанавливают эту деталь в посадочное отверстие оправы /, затем вводят сжатое разрезное пружинящее кольцо в канавку оправы таким . образом, чтобы при его разжатии в канавке обеспечивалось плотное прижатие оптической детали торцем кольца 3. При этом кольцо должно утопать в канавке на половину диаметра проволоки, из которой изготовлено кольцо.

Крепление жесткими планками применяют для призм, например для пентапризмы (рис. 1, г). Технологический процесс сборки при этом ведется в следующей последовательности.

1. Призму 4 устанавливают на базовые поверхности 2 оправы 1 таким образом, чтобы одна из прямоугольных граней опиралась на поверхность выступа 3 оправы 1.

2. Закрепляют призму планкой 9 через неметаллическую прокладку 8 с помощью винтов 10, ввинчиваемых в стойки 7.

3. Устанавливают и прижимают упорные планки 5 и 11 к граням призмы, закрепляя их винтами 6 и 13 и штифтами 12.

На этом процесс крепления призмы заканчивается, после чего грани призмы чистят.

На рис. 1, д показано крепление призмы бинокля пружинящей планкой. Крепление осуществляют путем установки призмы 5 в посадочное гнездо корпуса 1 и прижатия призмы пружинящей планкой 2, вилкообразные концы которой заводят под приливы корпуса; центральные концы планки входят в пазы приливов 3 и 4 и предохраняют пружины от выпадения из-под приливов. Для защиты призмы от повреждения между призмой и пружинящей планкой прокладывают неметаллическую прокладку 6.

Крепление оптических деталей пружинящими планками применяют с целью компенсации разницы линейного расширения деталей, возникающей при значительных температурных перепадах.

Крепление оптических деталей клеем нашло применение для неразборных соединений в тех случаях, когда невозможно закрепить детали другими способами из-за малых размеров оптических деталей и оправ или чувствительности оптической детали к деформациям при механическом креплении.

Хорошее качество склейки оптических деталей с механическими обеспечивает эпоксидный клей ОК-50 и полиуретановый клей ПУ-2. Меньшее натяжение, чем указанные клеи, обеспечивает крепление деталей из стекла герметиком УТ-32 и УТ-34. Это соединение вследствие упругости герметика выдерживает резкие колебания температуры и значительные механические воздействия.

Технологический процесс склейки оптических деталей с механическими (рис. 1, е) включает следующие операции: установку оптической детали в посадочное отверстие оправы 1, нанесение нужного слоя клея па цилиндрическую поверхность и между дисками деталей 1 и 3, выдержку деталей при определенной температуре для отвердевания клеевого шва 2. При чистке поверхностей оптических деталей, закрепленных клеем, следят за тем, чтобы растворители не оставались долге: время на клеевом соединении во избежание расклейки шва.

Особенности сборки оптических деталей с механическими

В процессе сборки оптических деталей необходимо учитывать особенности соединения оптических деталей с механическими.

При сборке, в момент закрепления оптических деталей в оправы, по возможности необходимо исключать загрязнение оптических поверхностей инструментом и руками. После соединения оптических деталей с механическими проводят их чистку.

После сборки и юстировки положение оптических деталей должно сохраняться постоянным.

Надежность крепления оптических деталей обеспечивается выбором соответствующего типа крепления, а также фиксацией крепежных деталей стопорными винтами и штифтами и т. д.

При креплении оптических деталей недопустима их деформация крепежными деталями. Деформация оптических деталей вызывает внутренние натяжения в стекле, ухудшающие качество изображения оптических приборов. Чтобы исключить деформацию оптических деталей, применяют способ установки их па три точки (площадки). На рис. 1, г призма 4 установлена в оправе 1 на три площадки 2, поверхности которых должны находиться в одной плоскости. При такой установке деталей легче обеспечить плоскостность базовых поверхностей трех площадок оправы, чем всей поверхности соприкосновения с приз­мой. При этом оптическую деталь укрепляют прижимными планками и винтами в местах расположения базовых площадок. Такой метод крепления и базирования оптических деталей на три точки широко применяется для крепления точных зеркал.

Сборка оптических деталей с механическими

Рис.2. Устройство для юстировки сетки.

В ходе сборки оптических приборов, как правило, возникает необходимость в дополнительной юстировке их отдельных элементов. Поэтому в их конструкции предусматривают котировочные устройства. Подобное котировочное устройство показано на рис. 2. Сетка 1 с оправой 2 перемещается в детали 4 котировочными винтами 3. После юстировки оправу сетки в нужном положении фиксируют винтами 6. Такое юстировочное устройство позволяет быстро совместить перекрестие сетки с оптической осью зрительной трубы 5.

Инструмент, применяемый при сборке оптических деталей

Для качественного соединения оптических деталей с механическими необходимо иметь набор отверток и специальных ключей разных размеров. Отвертки применяют для завинчивания винтов, а также стопорят и перемещают детали и узлы при их сборке и юстировке. Для ввинчивания резьбовых колец и оправ, имеющих шлицы, применяют ключи, представленные на рис. 3, а.

Сборка оптических деталей с механическими

Рис.3. Ключи для соединения оптических деталей с механическими.

Для завинчивания круглых гаек и колец, имеющих отверстия, применяют ключи, показанные на рис. 3, б. При работе инструментом соблюдают аккуратность, чтобы не повредить поверхности металлических и оптических деталей. Для этого инструмент подбирают по диаметрам соответствующих отверстий и ширине шлицев оправ.

Инструмент и принадлежности, необходимые для выполнения операций чистки поверхностей оптических деталей после сборки, были рассмотрены при изучении процесса чистки.

После закрепления оптических деталей в оправах убеждаются в отсутствии деформации их оптических поверхностей или внутренних натяжений в стекле.

Так как внутренние натяжения в стекле и деформации снижают качество изображения, важным моментом при сборке является отбраковка оптических деталей, имеющих внутренние натяжения. Натяжения выявляют на поляризационном приборе (рис. 4), состоящем из осветителя 1, конденсора 2, зеркала 3, поляризатора 4, предметного стекла 5, лупы 6, анализатора 7, призмы 8 и экрана 9.

Сборка оптических деталей с механическими
Сборка оптических деталей с механическими

Рис.4. Схема проверки натяжения Рис.5. Схема автоколлимационного в стекле. микроскопа для контроля деформаций поверхностей оптических деталей.

При контроле проверяемый оптический узел устанавливают на предметное стекло и освещают поляризованным светом. При скрещенных поляризаторе и анализаторе на экране появляется фиолетовый фон, по равномерности которого судят о наличии натяжений. Если фон равномерный, то внутренние натяжения отсутствуют. Если же на фоне появились световые участки в виде пятен или полос, то оптическая деталь имеет натяжения.

Сборка и юстировка окуляров

Механическая и оптическая сборка окуляров

Окуляры оптических приборов предназначены для рассматривания изображения, образуемого предыдущей оптической системой. Окуляры по устройству и применению можно разбить на три группы: окуляры ми­кроскопов; окуляры телескопических приборов; автоколлимационные окуляры измерительных приборов.

Примеры конструктивного оформления окуляров показаны на рис. 6-8.

Как правило, окуляры имеют сетки, относительно которых наблюдатель устанавливает окуляр в соответствии с аметропией своего зрения. Эту установку можно осуществлять либо перемещением всех линз окуляра (рис. 8), либо перемещением маховиком 1 оправы 2, в которой установлена часть его линз (рис.7).

Простейшим механизмом перемещения окуляра является многозаходная окулярная резьба, нарезаемая на его оправе. Окулярную резьбу нарезают на специальных станках сначала на одной из деталей резьбовой пары, а затем на другой. Резьбу второй детали нарезают таким образом, чтобы обеспечивалось плотное тугое взаимное перемещение деталей по резьбе. После этого детали притирают по резьбе с помощью притирочной пасты, содержащей мелкий шлифовальный порошок.

Сборка оптических деталей с механическими

Рис.6. Окуляры микроскопов.

Притиркой снимают неровности обработанной поверхности и обеспечивают небольшой зазор между деталями для свободного перемещения окуляра.

Притертые по резьбе детали промывают в бензине, сушат и смазывают резьбовое соединение одной из окулярных смазок. Линзы окуляров в оправах закрепляют завальцовкой или с помощью зажимных резьбовых колец. Для обеспечения хорошего качества изображения в окулярах монокулярных приборов считается достаточным отцентрировать линзы в пределах 0,05—0,1 мм (в зависимости от фокусного расстояния линз). Соединение линз с оправой по диаметру осуществляют обычно по ходовой посадке третьего класса точности. Допуск на расстояния между линзами обычно составляет 0,05—0,1 мм, что во многих случаях позволяет исключить при сборке регулировку этих расстояний. Необходимый воздушный промежуток обеспечивается правильным выбором допусков на длину междулинзовых колец и диаметры оправ, на которые опираются сферические поверхности линз. При такой сборке отклонение фокусного расстояния окуляра от номинальной величины не превышает 1,5—2%.

Сетки и близко к ним расположенные линзы окуляров видны под большим увеличением и требуют тщательной чистки и высокой чистоты поверхности' при изготовлении. Сетки крепят завальцовкой или резьбовыми кольцами. Сетки приборов, подвергающихся тряске, предохраняют от смещения, прикрепляя их к оправе цементом или клеевым составом.

В качестве примера приведем укрупненный технологический процесс сборки окуляра, изображенного па рис.8.

Сборка оптических деталей с механическими

Рис.7. Окуляр телескопического прибора с внутренней фокусировкой.

Предварительная сборка:

притереть окулярную резьбу, промыть детали бензи­ном, просушить и уложить в ящик;

промыть бензином оправу 1 сетки, кольца 6 и 8, про­сушить их и уложить в ящик;

подать механические и опти­ческие детали окуляра на окон­чательную сборку.

закрепить линзы 7 и сетку в оправах 4 и 1, очистить линзы и сетку и установить их в корпус окуляра 2;

смазать окулярную резьбу смазкой ОКБ-122-7;

Сборка оптических деталей с механическими

Рис.8. Окуляр перископической буссоли.

установить окуляр на нуль диоптрий относительно сетку, надеть на него в этом положении шкалу 3 и закрепить ее стопорными винтами 5;

очистить наружную поверхность сетки и наружную линзу окуляра;

уложить окуляр в специальный противопыльными ящик для транспортирования на участок сборки прибора.

Проверка диоптрийной установки окуляров

Неподвижные окуляры приборов устанавливают относительно сетки или диафрагмы поля зрения на (0,5-1) дптр. Выбор такого значения диоптрийной установки окуляров, не имеющих диоптрийной подвижки, обусловлен тем, что наблюдатели, пользующиеся этими приборами, имеют нормальное зрение с небольшой близорукостью (до —1 дптр) при ненапряженной мышце зрачка глаза. Такие окуляры устанавливают на стрелковых приборах, подвергающихся ударным и атмосферным воздей­ствиям (орудийная панорама, прицел снайперской винтовки и др.), в которых необходимо обеспечить несбиваемость установки окуляра при стрельбе и водонепроницаемость прибора.

Окуляры, имеющие диоптрийную подвижку, должны быть установлены относительно сетки так, чтобы обеспечить в крайних положениях перемещение, соответствующее пределам диоптрийной шкалы (обычно ±5 дптр).

Сборка оптических деталей с механическими

Рис.9. Диоптрийная трубка.

Для проверки диоптрийной установка окуляров служит диоптрийная трубка, конструкция которой изображена на рис. 9. Трубка имеет объектив, окуляр и сетку с перекрестием. Окуляр устанавливается относительно сетки по глазу наблюдателя. Объектив перемещается в тубусе трубки, обеспечивая фокусировку сходящихся и расходящихся пучков лучей в пределах ±5 дптр. Перемещение объектива проградуировано в диоптриях с ценой деления шкалы в 0,25 дптр и оцифровкой через 1 дптр.

Диоптрийную установку окуляра проверяют в следующем порядке.

1. Окуляр диоптрийной трубки устанавливают так, чтобы перекрестие трубки было резко видимым.

2. Перемещением объектива трубку фокусируют на удаленные предметы, расстояние до которых составляет не менее 50—100 м. При этом отсчет по шкале трубки должен быть равен нулю диоптрий (знак ∞ шкалы), что указывает па правильность юстировки трубки.

3. Диоптрийную трубку размещают средним концом вплотную к проверяемому окуляру и, не смещая объектив трубки, добиваются одновременной резкости изображения сетки окуляра и перекрестия диоптрий ной трубки. Отсчет по шкале диоптрийной трубки укажет при этом диоптрийную установку окуляра в данном положении.

Для окуляров, не имеющих подвижки, диоптрийную установку исправляют подрезкой опорного торца корпуса окуляра или перемещением сетки на величину

где — фокусное расстояние окуляра в мм;

D — показание шкалы диоптрийной рубки со знаком.

На рис. 10 показано изменение диоптрийной установки окуляра в зависимости от расположения окуляра относительно сетки. Знак плюс означает, что окуляр 2 следует приблизить к сетке 1 (рис. 10, а), а знак минус — удалить на величину (рис. 10, б). Точная установка окуляра показана на рис. 10, в. Если диоптрийная трубка не обеспечивает контроля шкалы в пределах ± 5 дптр, то проверку выполняют при помощи трубки и линз с известной оптической силой. Между диоптрийной трубкой и окуляром (в плоскости его выходного зрачка) помещают линзу, оптическая сила которой равна числу диоптрий, установленному по шкале окуляра, но с противоположным знаком. При этом диоптрийную трубку фокусируют на резкое изображение сетки испытуемого окуляра и по шкале диоптрийной трубки определяют погрешность установки шкалы окуляра.

Сборка оптических деталей с механическими

Рис.10. Установка окуляра относительно сетки.

Бардин А.Н. Сборник и юстировка оптических приборов. Высшая школа, 2005. - 325с.

Кривовяз Л.М., Пуряев Д.Т., Знаменская М.А. Практика оптической измерительной лаборатории. Машиностроение, 2004. - 333 с.

Малов А.Н., Детали оптических приборов. Машиностроение, 2005. - 285 с.

Если Вам нужна помощь с академической работой (курсовая, контрольная, диплом, реферат и т.д.), обратитесь к нашим специалистам. Более 90000 специалистов готовы Вам помочь.

Читайте также: