Типы клеточной организации реферат

Обновлено: 07.07.2024

Содержание

Введение. Клеточная теория……………………………… 3
Основные положения клеточной теории …………………4
Типы клеточной организации ……………………………..5
Прокариотические клетки……………………………….…. 6
Эукариотические клетки…………………………………. 8
Список использванной литературы…………………………13

Прикрепленные файлы: 1 файл

БИОЛОГИЯ.docx

Кафедра региональной экономики и природопользования

Введение. Клеточная теория……………………………… 3

Основные положения клеточной теории …………………4

Типы клеточной организации ……………………………..5

Прокариотические клетки……………………………….…. 6

Эукариотические клетки…………………………………. 8

Список использванной литературы…………………………13

Основные положения клеточной теории

Основные положения клеточной теории Т. Шванна можно сформулировать следующим образом.

  1. Клетка — элементарная структурная единица строения всех живых существ.
  2. Клетки растений и животных самостоятельны, гомологичны друг другу по происхождению и структуре.

М. Шдейден и Т. Шванн ошибочно считали, что главная роль в клетке принадлежит оболочке и новые клетки образуются из межклеточного бесструктурного вещества. В дальнейшем в клеточную теорию были внесены уточнения и дополнения, сделанные другими учеными.

Еще в 1827 г. академик Российской АН К.М. Бэр, открыв яйцеклетки млекопитающих, установил, что все организмы начинают свое развитие с одной клетки, представляющей собой оплодотворенное яйцо. Это открытие показало, что клетка является не только единицей строения, но и единицей развития всех живых организмов.

В 1855 г. немецкий врач Р. Вирхов приходит к выводу, что клетка может возникнуть только из предшествующей клетки путем ее деления.

На современном уровне развития биологии основные положения клеточной теории можно представить следующим образом.

  1. Клетка — элементарная живая система, единица строения, жизнедеятельности, размножения и индивидуального развития организмов.
  2. Клетки всех живых организмов сходны по строению и химическому составу.
  3. Новые клетки возникают только путем деления ранее существовавших клеток.
  4. Клеточное строение организмов — доказательство единства происхождения всего живого.

Типы клеточной организации

Выделяют два типа клеточной организации:

Общим для клеток обоих типов является то, что клетки ограничены оболочкой, внутреннее содержимое представлено цитоплазмой. В цитоплазме находятся органоиды и включения.

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции. Органоиды могут быть ограничены одной или двумя мембранами (мембранные органоиды) или не ограничены мембранами (немембранные органоиды).

Включения — непостоянные компоненты клетки, представляющие собой отложения веществ, временно выведенных из обмена или конечных его продуктов.

Прокариотические клетки - это наиболее примитивные, очень просто устроенные, сохраняющие черты глубокой древности организмы. К прокариотическим (или доядерным) организмам относят бактерии и синезеленые водоросли (цианобактерии). На основании общности строения и резких отличий от других клеток прокариотические выделяют в самостоятельное царство дробянки.

Рассмотрим строение прокариотической клетки на примере бактерий. Генетический аппарат прокариотической клетки представлен ДНКединственной кольцевой хромосомы, находится в цитоплазме и не отграничен от нее оболочкой. Такой аналог ядра называют нуклеоидом. ДНК не образует комплексов с белками и поэтому все гены, входящие в состав хромосомы, "работают", т.е. с них непрерывно считывается информация.

Прокариотическая клетка окружена мембраной, отделяющей цитоплазму от клеточной стенки, образованной из сложного, высокополимерного вещества. В цитоплазме органелл мало, но присутствуют многочисленные мелкие рибосомы (бактериальные клетки содержат от 5000 до 50 000 рибосом).

Строение прокариотической клетки

Цитоплазма прокариотической клетки пронизана мембранами, образующими эндоплазматическую сеть, в ней и находятся рибосомы, осуществляющие синтез белков.

Внутренняя часть клеточной стенки прокариотической клетки представлена плазматической мембраной, выпячивания которой в цитоплазму образуют мезосомы, участвующие в построении клеточных перегородок, репродукции, и являются местом прикрепления ДНК. Дыхание у бактерий осуществляется в мезосомах, у сине-зеленых водорослей в цитоплазматических мембранах.

У многих бактерий внутри клетки откладываются запасные вещества: полисахариды, жиры, полифосфаты. Резервные вещества, включаясь в обмен веществ, могут продлевать жизнь клетки в отсутствие внешних источников энергии.

Как правило, бактерии размножаются делением надвое. После удлинения клетки постепенно образуется поперечная перегородка, закладывающаяся в направлении снаружи внутрь, затем дочерние клетки расходятся или остаются связанными в характерные группы - цепочки, пакеты и т.д. Бактерия - кишечная палочка каждые 20 минут удваивает свою численность.

Для бактерий характерно спорообразование. Оно начинается с отшнуровывания части цитоплазмы от материнской клетки. Отшнуровавшаяся часть содержит один геном и окружена цитоплазматической мембраной. Затем вокруг споры вырастает клеточная стенка, нередко многослойная. У бактерий наблюдается половой процесс в форме обмена генетической информацией между двумя клетками. Половой процесс повышает наследственную изменчивость микроорганизмов.

Эукариотические клетки от простейших организмов до клеток высших растений и млекопитающих, отличаются сложностью и разнообразием структуры. Типичной эукариотической клетки не существует, но из тысяч типов клеток можно выделить общие черты. Каждая эукариотическая клетка состоит из цитоплазмы и ядра.

Строение эукариотической клетки

Плазмалемма(клеточная оболочка) животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10-20 нм. Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости плазмалемма регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение. Изнутри к мембране примыкает кортикальный (корковый) слой цитоплазмы толщиной 0,1—0,5 мкм.

Цитоплазма. В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили название органеллы, или органоиды. В цитоплазме откладываются различные вещества - включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранами эндоплазматической сети.

Эндоплазматическая сеть (ЭДС). Эндоплазматическая сеть - это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС - гладкие и шероховатые. На мембранах гладкой эндоплазматической сети находятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функция шероховатой эндоплазматической сети - синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам.

Эндоплазматическая сеть - это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.

Рибосомы осуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков и РНК. Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы - полирибосомы. Рибосомы присутствуют во всех типах клеток.

Комплекс Гольджи. Основным структурным элементом комплекса Гольджиявляется гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и "упаковываются" в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.

Митохондрии. Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль,которую митохондрии играю т в клетке.

Митохондрии имеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран - наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки - гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене. Основная функция митохондрий – синтез АТФ.

Лизосомы - небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называется лизисом, поэтому и органоид назван лизосомой. Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети.Функции лизосом: внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.

Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называются центриолями. Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.

Ядро - важнейшая составная часть клетки. Оно содержит молекулы ДНК и поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившая ядро, не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму. Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Хроматином называю т глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.

Клетки остальных живых организмов (растения, животные) относят к эукариотическому типу клеточной организации, у которого наследственный аппарат отделен от цитоплазмы специализированной ядерной мембраной. Таким образом, эукариотические клетки имеют оформленное ядро, где кроме ядерной оболочки (кариолеммы) обнаруживаются ядрышки, хроматин и ядерный сок (кариоплазма). Различают два подтипа… Читать ещё >

  • молекулярная структура и функции основных компонентов клетки

Типы клеточной организации ( реферат , курсовая , диплом , контрольная )

Различают 2 типа организации клеток: прокариотический и эукариотический.

Прокариотические клетки не имеют оформленного ядра; генетический материал не отделен от цитоплазмы (рис.). Генетическая информация хранится в кольцевой двунитчатой ДНК, не содержащей гистонов и называемой нуклеоидом. Отсутствует система мембран. Из органелл имеются рибосомы и мезосомы — сферические мембранные структуры, закрученные в завиток. Функционально они эквивалентны митохондриям эукариотических клеток; участвуют в окислительно-восстановительных реакциях бактерий и процессах деления. Цитоплазмапрокариот ограничена оболочкой, состоящей из биомембран, клеточной стенки, содержащей полисахариды сложного строения, а у бактерий, так же и капсулы, состоящие из слизи. Аппарат клеточного деления — клеточный центр — отсутствует.

К прокариотам относятся микоплазмы, бактерии и сине-зеленые водоросли. Размеры прокариотических клеток ограничены 0,5 — 3,0 мкм.

Клетки остальных живых организмов (растения, животные) относят к эукариотическому типу клеточной организации, у которого наследственный аппарат отделен от цитоплазмы специализированной ядерной мембраной. Таким образом, эукариотические клетки имеют оформленное ядро, где кроме ядерной оболочки (кариолеммы) обнаруживаются ядрышки, хроматин и ядерный сок (кариоплазма). Различают два подтипа организации эукариотических клеток: 1 — клетки простейших организмов, которые являются в структурном отношении клеткой, а в физиологическом — полноценной особью, в связи с чем, они имеют ряд образований, функционирующих как органы и системы органов многоклеточного организма. Это цитостом, цитофаринг, порошица инфузорий, выполняющих функцию пищеварительной системы; сократительные вакуоли являющимися структурами, аналогичными выделительной системе, а также жгутики и реснички, участвующие в движении; 2 — клетки многоклеточных организмов, имеющих общий план строения, но будучи только частью многоклеточного организма, выполняют разнообразные функции и имеют особенности строения. Эукариотическая клетка состоит из следующих компонентов: клеточной оболочки, цитоплазмы и ядра (табл.1).

Клеточная оболочка животной клетки образована гликокаликсом, цитоплазматической мембраной (плазмолемма) и подмембранным слоем опорно-сократительных структур.

Ядро построено из ядерной оболочки (кариолеммы), ядрышка, хроматина и ядерного сока (кариоплазмы).

Размеры эукариотических клеток варьируют от нескольких мкм до десятков сантиметров.

Клетки растительных и животных тканей имеют типичный план строения, обеспечивающий выполнение функций определенной ткани, в состав которой они входят.

Организм взрослого человека состоит из примерно 10 13 клеток, которые, за исключением мутантных клеток, содержат абсолютно одинаковый набор генов. Широкое разнообразие фенотипов этих клеток обусловлено различной комбинацией экспрессируемых генов в различных типах клеток. Репрессия и активация генов происходит в процессе развития организма; часто оба процесса продолжаются в течении всей жизни уже дифференцированной клетки. Часть генов в такой клетке необратимо выключается и никогда не экспрессируются в клетке данного типа. Другие гены транскрибируются постоянно. Такое различие по степени и скорости экспрессии генов в клетке в процессе ее развития приводит к приобретению клеткой специфической дифференциации и специализации. У человека различают около 200 типов клеток, имеющих несомненно общие черты строения, но различающихся по строению и функциям, которые сведены в сводную таблицу «Типы клеток взрослого человека"(табл.). Все разнообразие клеток образует 4 типа основных клеток и соответственно 4 типа тканей человека:

Среди живых организмов только вирусы не имеют клеточного строения. Все остальные организмы представлены клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический. К прокариотам относятся бактерии и синезеленые, к эукариотам – растения, грибы и животные.

Прокариотические клетки устроены сравнительно просто. Они не имеют ядра, область расположения ДНК в цитоплазме называется нуклеоид, единственная молекула ДНК кольцевая и не связана с белками, клетки меньше эукариотических, в состав клеточной стенки входит гликопептид – муреин, мембральные органоиды отсутствуют, их функции выполняют впячивания плазматической мембраны, рибосомы мелкие, микротрубочки отсутствуют, поэтому цитоплазма неподвижна, а реснички и жгутики имеют особую структуру.

Эукариотические клеткиимеют ядро, в котором находятся хромосомы – линейные молекулы ДНК, связанные с белками, в цитоплазме расположены различные мембральные органоиды.

Растительные клетки отличаются наличием толстой целлюлозной клеточной стенки, пластид, крупной центральной вакуоли, смещающей ядро к периферии. Клеточный центр высших растений не содержит центриоли. Запасным углеводом является крахмал.

Клетки грибов имеют клеточную стенку, содержащую хитин, в цитоплазме имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречаются центриоль. Главным резервным углеводом является гликоген.

Животные клетки не имеют клеточной стенки, не содержат пластид и центральной вакуоли, для клеточного центра характерна центриоль. Запасным углеводом является гликоген.

В зависимости от количества клеток, из которых состоят организмы, их делят на одноклеточные и многоклеточные. Одноклеточные организмы состоят из одной-единственной клетки, выполняющей функции целостного организма. Одноклеточными являются все водоросли и грибы. Тело многоклеточных организмов состоит из множества клеток, объединенных в ткани, органы и системы органов. Клетки многоклеточного организма специализированы для выполнения определенной функции и могут существовать вне организма лишь в микросреде, близкой к физиологической (например, в условиях культуры тканей). Клетки в составе многоклеточного организма различаются по размерам, форме, структуре и выполняемым функциям. Несмотря на индивидуальные особенности, все клетки построены по единому плану и имеют много общих черт.

Распространение антибиотиков в природе

Подавляющее большинство природных антибиотиков образуется микроорганизмами, в основном, бактериями (главным образом актиномицетами из родов Streptomyces, Micrimonospora, Nocardia — 65%) и макроскопическими мицелиальными грибами (20%) родов Penicillium, Acremonium, Fusidium и др.

По химической природе антибиотики принадлежат к различным классам химических соединений. Среди них есть углеводы, белки, пептиды, микроциклические лактоны, терпеноиды, хиноны, гетероциклические соединения и др. В зависимости от объектов, против которых направлено их действие, среди антибиотиков различают: антибактериальные, способные подавлять развитие бактерий (бактериостатическое действие) или убивать их (бактерицидное действие); противогрибковые, подавляющие рост микроскопических грибов (нистатин, гризеофульвин, леворин); противоопухолевые, которые задерживают размножение клеток злокачественных опухолей (оливомицины, актиномицины, антрациклины); противовирусные (производные рифамицина) и антибиотики, активные в отношении простейших (трихомицин, парамомицин).

По механизму действия на молекулярном уровне выделяют: антибиотики, подавляющие синтез пептидогликана — опорного полимера клеточной стенки бактерий (пенициллины, циклосерин и др.); антибиотики, нарушающие молекулярную структуру клеточной мембраны (полиены, новобиоцин); ингибиторы синтеза белка и функций рибосом (тетрациклины, макролидные антибиотики и др.), ингибиторы метаболизма РНК (в том числе актиномицины, антрациклины) и ДНК (митомицин С, стрептонигрин).

Проблема резистентности микроорганизмов

Длительное применение того или иного антибиотика приводит к появлению устойчивых (резистентных) к нему фopм микроорганизмов, и они становятся невосприимчивыми к его действию. Резистентность контролируется генами, локализованными как на бактериальной хромосоме, так и на внехромосомных генетических элементах — плазмидах, причем детерминанты устойчивости могут передаваться от хромосомы к плазмиде и наоборот. Широкому распространению резистентности способствовала способность бактерий к обмену генетическим материалом (в процессе конъюгации, трансфекции, трансформации). Более того, благодаря этому появилась полирезистентность, обусловленная наличием нескольких генов, каждый из которых при экспрессии обеспечивает резистентность к определенному антибиотику.

В основе механизма внехромосомной, или плазмидной, резистентности (связанной с экспрессией плазмидных генов, ответственных за устойчивость к антибиотику), лежит способность к образованию инактивирующих антибиотики ферментов, или преобразующих (модифицирующих) молекулы, с которыми антибиотик взаимодействует. Кроме того, устойчивость может быть обусловлена синтезом специфических белков цитоплазматической мембраны, благодаря которым снижается ее проницаемость для антибиотика, или образованием в цитоплазматической мембране систем быстрого активного выведения антибиотика из клетки. Возможны и другие механизмы.

Хромосомная резистентность возникает при различных мутациях, нарушающих нуклеотидную последовательность в генах белков и рибосомных рибонуклеиновых кислот (pРНK), являющихся мишенями действия антибиотиков. Изменение структуры белков или рРНК может значительно ослабить их связь с антибиотиком или вообще сделать ее невозможной. Например, устойчивость к рифомицинам обусловлена мутациями, приводящими к изменению структуры одной из субъединиц фермента РНК-полимеразы, а к новобиоцину — b-субъединицы другого фермента — ДНК-гиразы.

Часто устойчивость к одному и тому же антибиотику определяется разными механизмами. Например, в цитоплазматической мембране грамотрицательных бактерий, устойчивых к тетрациклину, обнаружено пять белков, кодируемых плазмидными генами и препятствующих накоплению антибиотика в клетке. Кроме того, устойчивость к тетрациклину возникает также вследствие мутации в генах, контролирующих синтез компонентов рибосом. Знание биохимических и генетических механизмов, обеспечивающих устойчивость бактерий к антибиотикам, позволяет рационально их использовать, вести направленный поиск новых лекарственных препаратов. Изучение причин устойчивости микроорганизмов к антибиотикам привело к существенному прогрессу в молекулярной генетике. Благодаря им были открыты плазмиды и предложены методы по их использованию в генетической инженерии.

Получение и применение

Большинство антибиотиков получают, выращивая продуцирующие их микроорганизмы в ферментерах (специальных емкостях, используемых в микробиологическом синтезе) на специальных питательных средах. Синтезированные микроорганизмами антибиотики извлекают и подвергают очистке. Всего описано более 4500 природных антибиотиков, но только около 60 из них нашли применение в борьбе с различными заболеваниями человека, животных и растений. Так как не все природные антибиотики пригодны для использования в лечебных целях, разработаны способы иx химической и микробиологической модификации — получения полусинтетических антибиотиков. Однако из примерно 100 тысяч известных полусинтетических антибиотиков только некоторые обладают ценными для медицины качествами. Для ряда антибиотиков разработаны методы полного химического синтеза, но, как правило, такой синтез очень сложен и дорогостоящ (только левомицетин и циклосерин получают таким путем). Наряду с развитием традиционных способов получения новых антибиотиков (поиск микроорганизмов-продуцентов, модификация природных антибиотиков) большое значение приобретают методы генетической инженерии.

При длительном применении некоторые антибиотики могут оказывать токсическое действие на центральную нервную систему человека, подавлять его иммунитет, вызывать аллергические реакции. Однако по выраженности побочных явлений они не превосходят другие лекарственные средства. Многие антибиотики широко использует при исследованиях в области биохимии и молекулярной биологии в качестве специфических ингибиторов определенных процессов, протекающих в клетках. Антибиотики используются в животноводстве для улучшения роста и развития молодняка (антибиотики добавляются в корма), в пищевой промышленности (консервирующие средства).

КУЛЬТУРА ТКАНИ (эксплантация), длительное сохранение и выращивание в специальных питатательных средах клеток, тканей, небольших органов или их частей, выделенных из организма человека, животных или растений. Применяется в биологии для изучения тканей, онтогенеза; лежит в основе клеточной инженерии — одного из важнейших методов современной биотехнологии.

КУЛЬТУРА ТКАНИ (эксплантация), метод длительного сохранения и выращивания в специальных питательных средах клеток, тканей, небольших органов или их частей, выделенных из организма человека, животных и растений. Основан на методах выращивания культуры микроорганизмов, обеспечивающих асептику, питание, газообмен и удаление продуктов обмена культивируемых объектов. Одно из преимуществ метода тканевых культур — возможность наблюдения за жизнедеятельностью клеток с помощью микроскопа.

Первые опыты по культуре животных тканей были проведены немецким биологом В. Ру, которому удалось в 1885 в течение нескольких дней поддерживать развитие нервной пластинки (зачатка центральной нервной системы) куриного эмбриона в теплом солевом растворе. Однако лишь предложенная американским биологом Р. Гаррисоном в 1907 воспроизводимая техника послужила основой для развития этого метода. Культивируя в сгустках лимфы небольшие кусочки нервной трубки эмбриона лягушки, он через несколько недель наблюдал образование нервных волокон. Французский хирург и патофизиолог А. Каррель, сумевший в течение 34 лет сохранять у штамма клеток сердца куриного эмбриона способность к активным делениям, доказал таким образом, что животные клетки могут неограниченно долго расти в культуре in vitro (то есть в пробирке, в искусственных условиях).

Животные клетки выращивают in vitro либо прикрепленными к подходящей подложке, либо суспендированными в жидких питательных средах. Для масштабного выращивания клеток используют реакторы для промышленного культивирования микроорганизмов. Различают 3 типа культуры клеток: первичные культуры, получаемые практически из любого органа и существующие лишь до первого пересева; диплоидные культуры (см. диплоид), чаще получаемые из эмбриональных тканей и сохраняющие до 50 пересевов диплоидный набор хромосом, которые затем трансформируются в постоянные (перевиваемые) гетероплоидные культуры, существующие вне организма десятки лет. В отличие от культуры клеток, задачей культуры органов, осуществляемой с применением жидких или твердых сред в стеклянных капиллярах, на покровных стеклах и нитроцеллюлозных фильтрах, на агаре и т. п., является сохранение нормальной структуры тканей и нормального их развития.

Культуру животных тканей применяют для изучения механизмов роста и дифференцировки клеток, гистогенеза, межтканевых и межклеточных взаимодействий, обмена веществ и т. п. Культуры животных клеток являются важными продуцентами многих клеточных продуктов, например, противовирусного агента интерферона. На них выращивают вирусы для их идентификации и получения вакцин. Клеточные культуры часто применяют при тестировании и изучении механизма действия лекарственных и косметических средств, пестицидов, консервантов и т. п. Методы культуры клеток нашли широкое применение для реконструкции различных тканей и органов. Так, культура клеток кожи используется для заместительной терапии при ожогах, культура клеток эндотелия — для реконструкции стенок сосудов. Способность клеток к росту в культуре привела к развитию методов клонирования (см. клон), хранения и слияния клеток (см. клеточная инженерия), что, в свою очередь, вызвало становление новой области науки — генетики соматических клеток (см. сома). Органные культуры используются при изучении закономерностей развития органов, для изучения способов сохранения жизнеспособности изолированных органов, предназначенных для трансплантации.

Идея о возможности культивирования растительных клеток была высказана еще в конце 19 — начале 20 вв. немецкими учеными Х. Фехтингом (1892), С. Рехингером (1893) и Г. Габерландтом (1902). Однако лишь в 1922 американскому исследователю В. Роббинсу удалось в течение нескольких недель культивировать корневые меристемы томатов. Начало же успешному развитию метода культуры клеток и тканей растений положили работы Р. Готре (Франция) и Ф. Уайта (США), показавших в 30-е годы способность каллюсных культур (см. каллюс) к неограниченному росту. Американский ученый Ф. Стюард, работая с культурой изолированной флоэмы моркови, получил из нее в 1958 целые растения. Значительный вклад в развитие культуры клеток и тканей растений в нашей стране внесли исследования Р. Г. Бутенко и ее сотрудников, использовавших эти методы для изучения физиологии растительных клеток и морфогенеза растений.

Культура клеток, тканей и органов растений используется для выращивания клеточной биомассы растений, прежде всего лекарственных, с целью получения из нее ценных соединений, в генетико-селекционной работе, а также для изучения фундаментальных проблем физиологии и генетики растений, фитопатологии, онтогенеза растений и др. Для сохранения генофонда растений созданы банки меристемных тканей, хранящихся в условиях криоконсервации.

Содержание
Работа содержит 1 файл

Строение клетки живых организмов.doc

ФЕДЕРАЛЬНОЕ АГЕНТСВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

по дисциплине: Естествознание

3. История открытия клетки………………………………………………….6

4. Типы клеточной организации………………………………………………8

5. Строение клетки живых организмов:

5.1 Клеточные мембраны………………………………………………. 10

5.2. Цитоплазма и ее органеллы………………………………………..11

5.3 Строение и функции основных органелл клетки………………………….12

7. Список использованных источников……………………………………..18

Исследования клетки, её строение имеют большое значение для разгадки заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний. Чтобы понять роль клеток в развитии заболеваний, приведем несколько примеров. Одно из серьезных заболеваний человека - сахарный диабет. Причина этого заболевания - недостаточная деятельность группы клеток поджелудочной железы, вырабатывающих гормон инсулин, который участвует в регуляции сахарного обмена организма. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают также на уровне клеток. Вот почему изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо не только в биологии, но также в медицине и ветеринарии.

Именно поэтому столь актуально изучение строения клетки– возможно, это поможет разгадать их тайны, пока скрытые от нашего разума.

Наука о клетке называется цитологией (от греч. cytos — клетка и logos — наука). Цитология относится к числу биологических наук, она изучает структуру (строение) и функции (жизнедеятельность) клетки.

Клетка – это ограниченная активной мембраной, упорядоченная структурированная система биополимеров (белков, нуклеиновых кислот) и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Клетка элементарная живая система и основная форма организации живой материи: она усваивает пищу, способна существовать и расти, может разделиться на две, каждая из которых содержит генетический материал, идентичный исходной клетке. Клетка — это один из основных структурных, функциональных и воспроизводящих элементов живого.

Между клетками растений и животных нет принципиальной разницы по строению и функциям, некоторые отличия лишь в строении мембран и некоторых органелл. За 3 млрд. лет существования на Земле живое вещество развилось до нескольких миллионов видов, но все они — от бактерий до высших животных — состоят из клеток. Среди живого есть одно- и многоклеточные организмы. Вирусы — неклеточные организмы, они размножаются в чужих клетках.

Клетки могут быть различной формы в зависимости от исполняемой

функции; они объединяются в ткани, органы, целые структуры (мозг,

печень, кости, кожу и т.д.). Размеры клеток варьируют от 3-10 до 100 мкм (1 мкм = 0,001 м). Реже встречаются клетки размером менее 1–3 мкм.
В организме клетки связаны друг с другом для выполнения различных функций и задач: одни синтезируют ферменты, другие накапливают сахар или жир, составляют скелет или отвечают за связь (например, нервные клетки), на каких-то клетках лежит ответственность за защиту организма. Чтобы быть полноценной частичкой целого организма, большинство клеток обладают одинаковой наследственной информацией, сходными ресурсами и сходным внутриклеточным аппаратом.

История открытия клетки

Значительный вклад в изучение клетки внес голландский микроскопист А. Левенгук, открывший в 1674 г. одноклеточные организмы - инфузории, амебы, бактерии. Он также впервые наблюдал животные клетки - эритроциты крови и сперматозоиды.

Дальнейшее усовершенствование микроскопа и интенсивные микроскопические исследования привели к установлению французским ученым Ш. Бриссо-Мирбе (1802,1808) того факта, что все растительные организмы образованы тканями, которые состоят из клеток. Еще дальше в обобщениях пошел французский ученый Ж. Б. Ламарк (1809), который распространил идею Бриссо-Мирбе о клеточном строении и на животные организмы. В начале XIX в. предпринимаются попытки изучения внутреннего содержимого клетки. В 1825 г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. В 1831 г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833 г. он пришел к выводу, что ядро является обязательной частью растительной клетки. Таким образом, в это время меняется представление о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а ее содержимое.

Многочисленные наблюдения по строению клетки, обобщение накопленных данных позволили немецкому зоологу Т. Шванну в 1839 г. сделать ряд обобщений, которые впоследствии назвали клеточной теорией. Он показал, что клетки растений и животных принципиально сходны между собой.

Дальнейшее развитие клеточной теории получило в работах Р. Вирхова (1858), который предположил, что клетки образуются из предшествующих материнских клеток. В 1874 г. Русским ботаником И. Д. Чистяковым, а в 1875 г. польским ботаником Э. Страсбургером было открыто деление клетки - митоз и, таким образом, подтвердилось предположение Р. Вирхова.

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужила фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основы для понимания жизни, индивидуального развития, для объяснения эволюционной связи между организмами.

Клеточная теория включает следующие основные положения:

•1. Клетка - элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению, является единицей строения, функционирования и развития всех живых организмов.

•2. Клетки всех живых организмов гомологичны по строению, сходны по химическому составу и основным проявлениям жизнедеятельности.

•3. Размножение клеток происходит путем деления исходной материнской клетки.

•4. В многоклеточном организме клетки специализируются по функциям и образуют ткани, из которых построены органы и системы органов, связанные между собой межклеточными, гуморальными и нервными формами регуляции.

Типы клеточной организации

Все клетки живых организмов подразделяются на два вида с учетом их строения и функций в живых организмах: прокариоты (лат. pro перед и греч. karyon — ядро), или предъядерные клетки, и эукариоты (греч. еу полностью, хорошо и karyon — ядро).

Простейшие организмы, представленные одной или небольшим числом клеток, состоят из клеток прокариотов. Прокариоты (доядерные) - это мелкие (около 1 мкм) клетки гораздо меньше эукариотных. В клетках прокариотов нет оформленного ядра и ядерной оболочки. Генетический материал ДНК - лежит свободно в цитоплазме. Прочие функциональные блоки тоже представлены небольшими макромолекулярными комплексами без оболочек. К прокариотам относятся все бактерии и так называемые сине-зеленые водоросли. Клетки бактерий и сине-зеленых водорослей не имеют мембранных органелл, присущих эукариотам (ЭР, комплекса Гольджи, митохондрий, пластид, дисозом). Единственной внутренней мембранной структурой является мезосома, о функциональном значении которой нет единого мнения. Полагают, что она участвует в процессах дыхания.

Большинство клеток прокариотов имеют размер около 1 —5 мкм. Средний размер эукариотической клетки имеет диаметр около 25 мкм (1 мм—103 мкм или 109 нм). Таким образом, в эукариотическую клетку может поместиться более 10 тысяч бактерий.

Эукариоты (с настоящим ядром) - крупные (10-50 и более мкм) клетки, в которых ДНК в форме хромосом заключена в ядре и большинство рабочих структур, ферментов организовано в изолированных органоидах (или органеллах). Все эукариотические клетки имеют одинаковое строение: ядро с оболочкой, цитоплазма с органоидами и оболочка.

Изолирующую роль для ядра и органоидов (органелл) выполняют такие же липидно-белковые мембраны, как и мембрана клеточной поверхности. Эукариотную организацию имеют одноклеточные простейшие (амеба, инфузория и другие) и клетки многоклеточных организмов: грибов, растений, животных, включая человека.

Строение клетки живых организмов

Клетка любого организма представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра.

• цитоплазма – представляет собой коллоидную систему, содержащую, наряду с органическими ионами, продукты пластического и энергетического обмена, органеллы, а также запасные вещества и различные включения;

• клеточная или плазматическая мембрана – отделяет цитоплазму от окружающей среды,

• клеточное ядро, в котором находится генетический материал клетки.

Клеткам присуще мембранное строение — это одно из положений клеточной теории. Среди мембранных органоидов — наружная цитоплазматическая мембрана, эндоплазматическая сеть, аппарат Гольджи, лизосомы, митохондрии, пластиды. В основе всех этих органелл лежит биологическая мембрана, все они имеют единый план строения. Мембранные структуры — арена важнейших жизненных процессов.

Биологическая мембрана (клеточная или плазматическая) — пленка, покрывающая клетку, и настолько тонкая, что ее удалось обнаружить лишь с помощью трансмиссионного электронного микроскопа. Все мембраны построены по одному плану, всегда слоистые. Клеточная мембрана, помимо барьерной функции, обеспечивает обмен между цитоплазмой и внешней средой, из которой в клетку поступают вода, ионы, различные молекулы, а выводятся продукты обмена веществ и синтезированные в клетке вещества.

Читайте также: