Термодинамика химического равновесия реферат

Обновлено: 03.07.2024

Чем глубже проникают исследователи в тайны природы, тем больше стираются границы между отдельными областями науки и тем труднее дать точное определение и разграничение отдельных дисциплин. Это в полной мере относится к предмету термодинамики. Рассматривая взаимные превращения тепла и различных видов энергии, термодинамика представляет собой дисциплину, или скорее даже метод, который очень широко используется физиками, химиками и исследователями в других областях науки для установления внутренней связи между различными явлениями природы и обобщения накопленного экспериментального материала.

Работа содержит 1 файл

реферат термодинамика.doc

Федеральное агентство по образованию

Кафедра автоматизации и технологии литейных процессов

Реферат на тему:

“Химическая термодинамика”

Выполнил: студент гр. ЗМП-202с

Екатеринбург 2010г

Чем глубже проникают исследователи в тайны природы, тем больше стираются границы между отдельными областями науки и тем труднее дать точное определение и разграничение отдельных дисциплин. Это в полной мере относится к предмету термодинамики. Рассматривая взаимные превращения тепла и различных видов энергии, термодинамика представляет собой дисциплину, или скорее даже метод, который очень широко используется физиками, химиками и исследователями в других областях науки для установления внутренней связи между различными явлениями природы и обобщения накопленного экспериментального материала. Поскольку энергетические превращения сопутствуют всем материальным изменениям и энергия характеризует меру движения материи, а движение представляет собой неотъемлемое свойство материи и основную форму ее существования, то область приложения термодинамики охватывает огромное количество физических и химических явлений.

Заметим, что термодинамика является дедуктивной наукой. Она рассматривает различные проблемы с помощью математического аппарата и опирается при этом на три исходных положения—основные начала (или законы) термодинамики, которые в свою очередь основаны на многочисленных наблюдениях различных исследователей. Термодинамический метод применяется для решения самых разнообразных проблем различных областей науки. Обычно при рассмотрении содержания термодинамики и ее приложений выделяют общую, техническую и химическую термодинамику. Общая термодинамика излагает основные начала термодинамики и непосредственно вытекающие из них следствия. При этом наиболее широко используются дифференциальные уравнения и
частные производные. Техническая термодинамика включает применение тех же законов и их следствий к тепловым двигателям. Наконец, содержание химической термодинамики состоит в применении термодинамического метода к изучению химических процессов. Она изучает превращения тепла, связанные с химическими реакциями и агрегатными превращениями. При этом формулируются закономерности, позволяющие определять направление и предел протекания этих процессов. Химическая термодинамика оказывается весьма плодотворной при решении
вопроса об устойчивости химических продуктов, а также при отыскании способов, предотвращающих образование нежелательных веществ; она же позволяет указать рациональные значения температуры, давления и прочих параметров для осуществления химических процессов, определить пределы фракционной дистилляции и кристаллизации, а также полезна при решении многих других металлургических и технологических задач.

Химическая термодинамика.

Термодинамика — наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений.

Как самостоятельная дисциплина термодинамика возникла в середине XIX в. на основе изучения работы паровых машин.

В дальнейшем круг вопросов, изучаемых термодинамикой, значительно расширился. В настоящее время термодинамика рассматривает большое количество физических и химических явлений, сопровождающихся энергетическими эффектами. Исследования методами термодинамики позволяют не только подводить энергетические балансы, но также определять, в каком направлении и до какого предела могут протекать процессы при заданных условиях. Термодинамика, таким образом, дает возможность сознательно управлять различными физико-химическими процессами производства.

Применение термодинамики к химическим процессам составляет предмет химической термодинамики.

Химическая термодинамика изучает изменения энергии в результате процессов в материальных системах, приводящих к изменению состава и свойств физических тел, из которых построена данная система. Также она исследует возможности направления и предел самопроизвольного протекания химического процесса в данных условиях и устанавливает условия равновесия химических реакций.

Основные понятия и величины

Термодинамической системой называется комплекс взаимодействующих между собой физических тел, мысленно обособленный от окружающей среды.

Системы бывают изолированные, в которых энергообмен и массообмен с окружающей средой отсутствуют, и замкнутые, в которых возможен энергообмен с окружающей средой, но не возможен обмен веществом. Незамкнутые системы рассматриваются в термодинамике необратимых процессов.

Системы можно разделить на гомогенные или однородные, не имеющие физических границ раздела между отдельными частями, так как во всех частях системы свойства одинаковы(например, ненасыщенный раствор), и системы гетерогенные, или неоднородные, разделяющиеся на отдельные части физическими границами раздела, на которых свойства системы резко изменяются.

Фаза – это гомогенная часть гетерогенной системы, имеющая одинаковый состав, физические и химические свойства, отделённая от других частей системы поверхностью, при переходе через которую свойства системы меняются скачком. Фазы бывают твёрдые, жидкие и газообразные. Гомогенная система всегда состоит из одной фазы, гетерогенная – из нескольких. По числу фаз системы классифицируются на однофазные, двухфазные, трёхфазные и т.д.

Компонент – всякое вещество, входящее в систему, которое из неё можно выделить и которое может существовать отдельно от системы. По числу компонентов системы классифицируются на однокомпонентные, двухкомпонентные, трёхкомпонентные и т.д.

Свойства системы в физической химии могут быть описаны заданием параметров системы. В качестве параметров чаще всего выступают температура (Т), давление (Р), объём (V), количество вещества (н) и другие.

Если параметры системы постоянны, говорят, что система находится в состоянии равновесия.

Если параметры системы меняются, то в системе протекает термодинамический процесс. Процесс называют равновесным, если его можно представить как ряд последовательных равновесных состояний системы. В противном случае говорят о неравновесном процессе. Различают обратимые и необратимые процессы. Обратимым называют равновесный процесс, который может в одних и тех же условиях самопроизвольно протекать как в прямом, так и в обратном направлениях. К необратимым процессам относятся неравновесные и несамопроизвольные процессы.

Изменение параметров системы вызывает процесс. Если процесс заключается в последовательном изменении параметров, приводящих в конечном итоге систему в исходное состояние, то такой процесс называется циклом.

Физико-химическая система – это совокупность взаимодействующих тел или частиц, которые выделены из окружающей среды мысленно или фактически.

Макро-система – состоит из тел, и микро-система – состоит из частиц.

Основные величины

Теплота (Q) – энергия, которая передаётся одной системой другой при их взаимодействии, зависящая только от температур этих систем.

Работа (A) – энергия, передаваемая одной системой другой, зависящая от наличия силового поля или внешнего давления, под действием которого система меняет свой объём. В последнем случае говорят о работе сил расширения.

Правило знаков для теплоты и работы: теплота считается положительной, если она подводится к системе из окружающей среды (поглощённая теплота) и отрицательной в противоположном случае (отданная теплота); работа считается положительной, если она совершается системой над окружающей средой, и отрицательной, если работу совершает окружающая среда над системой.

Внутренняя энергия (U) – запас энергии системы. Включает в себя все виды энергии, связанные со строением системы, и не включает кинетическую и потенциальную энергии системы как целого. Так как абсолютных знаний о строении вещества не существует, абсолютное значение внутренней энергии найти нельзя.

Энтальпия – запас энергии системы в виде теплоты. Связана с внутренней энергией уравнением H = U + PV. Внутренняя энергия, энтальпия, теплота и работа измеряются в Дж/моль. Внутренняя энергия и энтальпия являются, а теплота и работа не являются функцией состояния системы.

Химическая термодинамика, так же как и общая термодинамика, основана главным образом на двух законах (началах).

Первое начало термодинамики

Первое начало термодинамики, окончательно сформулированное Джоулем в середине XIXв., представляет собой закон сохранения энергии. Для замкнутых систем, обменивающихся энергией с окружающей средой, уравнение первого закона термодинамики имеет вид:

где Q — энергия, сообщенная системе; ΔU— приращение внутренней энергии системы; А — работа, совершенная системой.

Внутренняя энергия системы (U) включает все виды энергии, заключенные в веществах, составляющих систему, кроме энергии, созданной гравитационными, электрическими или магнитными нолями, а также кроме кинетической энергии системы в целом (для движущейся системы). Таким образом, U ѕ сумма всех видов тепловой энергии движения элементарных частиц, энергии связи и энергии агрегатных состояний. Это сложная термодинамическая функция, полностью определяемая состоянием системы или соответствующим сочетанием параметров (р и Т). Если система поглощает энергию, то запас внутренней энергии растет (ΔU>0).

Если работа совершается системой, то А — положительная величина; если же работа совершается над системой, то А отрицательна (например, сжатие газа).

Как Q, так и А в уравнении (1) характеризуют процесс и от состояний системы (начального и конечного) зависят неоднозначно, так как из начального состояния подойти к конечному состоянию можно разными путями и с различным поглощением энергии и различной величиной работы. Поэтому уравнение (1) мы не можем записать в дифференциальной форме, так как только одно приращение ΔU однозначно определяется параметрами состояния р, v, Т.

Если известен закон изменения параметров в данном процессе, то уравнение первого закона термодинамики можно записать в дифференциальной форме и исследовать математически. В области применения химических реакций наиболее часто встречаются процессы, протекающие при постоянном объеме (изохорический) и при постоянном давлении (изобарический).

1.Изохорический процесс: v = const. В этом случае параметры р и Т связаны между собой уравнением Гей-Люссака, р/Т = const. Уравнение (1) записывается в дифференциальной форме:

Но если объем постоянен, значит работа расширения или сжатия газа совершаться не может: dA = pdv = 0. Следовательно, dQ = - dU; приравниваем частные производные по температуре:

где Сv — теплоемкость при постоянном объеме. Уравнение (3) позволяет вычислять изменение внутренней энергии системы при изменении температуры, если не происходит каких-либо изменений агрегатного или полиморфного состояния.

Как известно, при химической реакции внутренняя энергия изменяется: если энергия выделяется, то это соответствует уменьшению запаса внутренней энергии, и наоборот. Поэтому тепловой эффект и изменение внутренний энергии имеют обратные знаки:

2. Изобарический процесс: р = const. В этом случае по закону Гей-Люссака v/T= const. Кроме того, из уравнения (3) не выпадают отдельные члены, так как при постоянном давлении расширение и сжатие газа возможно, как и нагревание и охлаждение. В этом случае dQ=dU+pdv. После интегрирования в пределах 1—2 получим:

Выражение в скобках (U + pv) представляет собой термодинамическую функцию, которую назовем энтальпией Н:

Энтальпия — это энергосодержание системы, включающее внутреннюю энергию и работу. Тогда

Если система поглощает энергию Q1-2, то ΔН больше нуля, и если в этой системе происходит химическая реакция, то она будет эндотермической:

Читайте также: