Теплопроводность плоской стенки реферат

Обновлено: 02.07.2024

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.

Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им часть своей кинетической энергии. Этот процесс постепенно распространяется по всему телу. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размерах, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему.

1. Основной закон теплопроводности

Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.

Связь между количеством теплоты , проходящим за промежуток времени через элементарную площадку dS, расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой


.(2.1)


Минус в правой части показывает, что в направлении теплового потока температура убывает и gradT является величиной отрицательной. Коэффициент пропорциональности называется коэффициентом теплопроводности или более кратко теплопроводностью. Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье.

Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком. Тепловой поток обозначают q и выражают в ваттах (Вт):


. (2.2)

Если относительное изменение температуры Т на расстоянии средней длины свободного пробега частиц l мало, то выполняется основной закон теплопроводности (закон Фурье): плотность теплового потока q пропорциональна градиенту температуры grad T, то есть


(2.3)


(где — коэффициент теплопроводности или просто теплопроводности) Отношение теплового потока dq через малый элемент поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м 2 ):


.(2.4)

Вектор плотности теплового потока направлен по нормали к поверхности в сторону убывания температуры. Векторы j и gradT лежат на одной прямой, но направлены в противоположные стороны.

Тепловой поток q, прошедший сквозь произвольную поверхность S, находят из выражения


.(2.5)

Количество теплоты, прошедшее через эту поверхность в течение времени t, определяется интегралом


.(2.6)

Таким образом, для определения количества теплоты, проходящего через какую-либо произвольную поверхность твердого тела, необходимо знать температурное поле внутри рассматриваемого тела. Нахождение температурного поля и составляет основную задачу аналитической теории теплопроводности.

2. Физический смысл коэффициента теплопроводности

Вспомним ещё раз, что основным законом передачи тепла теплопроводностью является закон Фурье. Согласно этому закону количество тепла dQ, передаваемое посредством теплопроводности через элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямопропорционально температурному градиенту ¶t/¶n, поверхности dF и времени dt:


(3.1)

Коэффициент пропорциональности l называется коэффициентом теплопроводности, при выражении Q в ккал/ч:



Таким образом, коэффициент теплопроводности l показывает, какое количество тепла проходит вследствие теплопроводности в единицу времени



через единицу поверхности теплообмена при падении температуры на 1 град на единицу длины нормали к изотермической поверхности.

Коэффициенты теплопроводности l сплошных однородных сред зависят от физико-химических свойств вещества (структура вещества, его природа). Значения теплопроводности для многих веществ табулированы и могут быть легко найдены в справочной литературе.

Значения коэффициента теплопроводности для некоторых газов, жидкостей и твёрдых тел при атмосферном давлении, зависит от агрегатного состояния вещества (см. табл. ), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора) и т. д.].

3. Теплопроводность жидкостей и газов

Теплопроводность , один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При теплопроводности перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.

Отклонения от закона Фурье могут появиться при очень больших значениях grad T (например, в сильных ударных волнах), при низких температурах (для жидкого гелия Не) и при высоких температурах порядка десятков и сотен тысяч градусов, когда в газах перенос энергии осуществляется не только в результате межатомных столкновений, но в основном за счёт излучения (лучистая теплопроводность). В разреженных газах, когда l сравнимо с расстоянием L между стенками, ограничивающими объём газа, молекулы чаще сталкиваются со стенками, чем между собой. При этом нарушается условие применимости закона Фурье, и само понятие локальной температуры газа теряет смысл. В этом случае рассматривают не процесс теплопроводности в газе, а теплообмен между телами, находящимися в газовой среде.

4. Теплопроводность газов

Для идеального газа, состоящего из твёрдых сферических молекул диаметром d, согласно кинетической теории газов, справедливо следующее выражение


(3.4)

где — плотность газа, cv — теплоёмкость единицы массы газа при постоянном объёме, V — средняя скорость движения молекул. Поскольку J пропорциональна 1/р, а ~ р (р — давление газа), то Т. такого газа не зависит от давления. Кроме того, коэффициент теплопроводности и вязкости связаны соотношением: . В случае газа, состоящего из многоатомных молекул, существенный вклад в дают внутренние степени свободы молекул, что учитывает соотношение:


,

где = ср/cv , ср — теплоёмкость при постоянном давлении. В реальных газах коэффициент теплопроводности — довольно сложная функция температуры и давления, причём с ростом Т и р значение возрастает. Для газовых смесей может быть как больше, так и меньше коэффициента теплопроводности компонентов смеси, то есть теплопроводности - нелинейная функция состава.

Если газ неравномерно нагрет , т. е. температура в одной его части выше или ниже, чем в другой, то наблюдается выравнивание температуры: более нагретая часть охлаждается, тогда, как более холодная нагревается.

Очевидно, что это связано с потоком тепла от более нагретой части газа к более холодной. Это явление возникновения потока тепла в газе называется теплопроводностью, В любом теле, в частности в газе, предоставленном самому себе, теплопроводность приводит к выравниванию температур, и этот процесс, конечно, нестационарный. Но часто встречаются и случаи, когда разность температур искусственно поддерживается постоянной.

Например, в электрической лампе накаливания газ, находящийся непосредственно около накаленной нити, имеет высокую температуру (равную температуре самой нити), тогда как газ, прилегающий к стенкам стеклянного баллона лампы, обладает значительно более низкой температурой. Через некоторое время после включения лампы устанавливается постоянная разность температур между нитью и стенками. Это постоянство обеспечивается, с одной стороны, электрической энергией, подводимой к нити из электрической сети, с другой стороны — отдачей тепла от стенок лампы к окружающему ее воздуху. При этих условиях в газе, находящемся в лампе, устанавливается стационарный, т. е. не изменяющийся со временем, поток тепла. Установившаяся стационарная разность температур зависит от теплопроводности газа (для лампы накаливания надо иметь в виду, что кроме отвода тепла через газ в данном частном случае отвод тепла происходит главным образом в результате излучения).

В приведенном примере лампы расчет потока тепла представляет большие трудности, связанные со сложной формой нити и сосуда, вследствие чего распределение температуры в газе тоже оказывается весьма сложным.

Чтобы найти количественные закономерности, характеризующие процесс теплопроводности, мы рассмотрим более простую задачу

Пусть вдоль какого-нибудь направления в газе, например, вдоль оси X, температура меняется от точки к точке, т. е. является функцией v. в то время как в плоскости, перпендикулярной к этой оси, температура всюду одинакова



Изменение температуры вдоль оси X характеризуется градиентом температуры .

Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

Содержание

Введение ………………………………………………..
3
1
Основные виды передачи тепла……………………….
4
2
Роль теплоты и ее использование………………….
7
3
Теплопроводность плоской стенки……………………
8
3.1
Однородная стенка…………………………………….
8
3.2
Многослойная стенка…………………………………..
11
4
Теплопроводность цилиндрической стенки…………..
15
4.1
Однородная стенка…………………………………….
15
4.2
Многослойная стенка…………………………………..
18
5
Теплопроводность шаровой стенки и тел неправильной формы………………………………….

21
5.1
Однородная шаровая стенка……………………….
21
5.2
Тела неправильной формы……………………………..
23
6
Теплопроводность тел с внутренними источниками теплоты…………………………………………………..

25
6.1
Теплопроводность плоской стенки……………………
26
6.2
Теплопроводность круглого стержня…………………
28
6.3
Теплопроводность цилиндрической стенки………

Прикрепленные файлы: 1 файл

РЕФ ХЛАДОТЕХНИКА контрольный.doc

Хабаровская Государственная Академия

Экономики и Права

Торгово-технологический факуль тет

Реферат

на тему: Теплопроводность

Основные виды передачи тепла……………………….

Роль теплоты и ее использование………………….

Теплопроводность плоской стенки……………………

Теплопроводность цилиндрической стенки…………..

Теплопроводность шаровой стенки и тел неправильной формы………………………………….

Однородная шаровая стенка…………… ………….

Тела неправильной формы……………………………..

Теплопроводность тел с внутренними источниками теплоты…………………………………………………..

Теплопроводность плоской стенки……………………

Теплопроводность круглого стержня…………………

Теплопроводность цилиндрическо й стенки…………..

Теплота, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой.

Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

Теплообмен или теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

Существуют три основных вида теплообмена: теплопроводность, конвекция и лучистый теплообмен или тепловое излучение.

Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное). Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ/Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м 2 ) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(м ·К)].

Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид

где Q, q – тепловой поток и плотность теплового потока, в Вт и Вт/м 2 , – коэффициент теплопроводности, Вт/(м·К), F– площадь поперечного сечения, м 2 .

Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин – коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию.

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества.

Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.

Конвекция. При подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Иными словами перенос теплоты из области с одной температурой в область с другой температурой, сопровождающийся переносом самой среды называется конвекцией. Конвекция в основном встречается только в жидкостях и газах. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха.

Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

где q – тепловой поток, (измеряемый в ваттах), F – площадь поверхности источника тепла (в м 2 ), – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса (коэффициент теплоотдачи) α зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м 2 ·К).

Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения (происходит за счет распространения электромагнитных волн). Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра. Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

2 Роль теплоты и ее использование

Глобальные процессы теплообмена не сводятся к нагреванию Земли солнечным излучением. Массивными конвекционными потоками в атмосфере определяются суточные изменения погодных условий на всем земном шаре. Перепады температуры в атмосфере между экваториальными и полярными областями совместно с кориолисовыми силами, обусловленными вращением Земли, приводят к появлению непрерывно изменяющихся конвекционных потоков, таких, как пассаты, струйные течения, а также теплые и холодные фронты. Перенос тепла (за счет теплопроводности) от расплавленного ядра Земли к ее поверхности приводит к извержению вулканов и появлению гейзеров. В некоторых регионах геотермальная энергия используется для обогрева помещений и выработки электроэнергии. Теплота – непременный участник почти всех производственных процессов. Упомянем такие наиболее важные из них, как выплавка и обработка металлов, работа двигателей, производство пищевых продуктов, химический синтез, переработка нефти, изготовление самых разных предметов – от кирпичей и посуды до автомобилей и электронных устройств. Многие промышленные производства и транспорт, а также теплоэлектростанции не могли бы работать без тепловых машин – устройств, преобразующих теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели. Важным источником теплоты для таких целей, как производство электроэнергии и транспортные перевозки, служат ядерные реакции. В 1905 А.Эйнштейн показал, что масса и энергия связаны соотношением E = mc 2 , т.е. могут переходить друг в друга. Скорость света c очень велика и равна 300 тыс. км/с. Это означает, что даже малое количество вещества может дать огромное количество энергии. Так, из 1 кг делящегося вещества (например, урана) теоретически можно получить энергию, которую за 1000 суток непрерывной работы дает электростанция мощностью 1 МВт.

Учебные: Дать представление о методах решения уравнения теплопроводности при стационарном режиме и граничных условиях первого рода для однородных тел различной формы.

Воспитательные: Воспитывать стремление к углубленному изучению предмета; прививать убежденность в практической значимости получаемых в лекционном курсе знаний.

Развивающие:Развивать способность творчески воспринимать и конспектировать предоставляемый материал; развивать навыки самостоятельной аналитической работы, умение выделять главное, проводить сопоставление и обобщение.

Метод проведения: лекция

Время занятия: 160 минут

Место проведения: аудитория

Материальное обеспечение: раздаточный материал с представлением основных соотношений и графиков

ЛИТЕРАТУРА:

1. Теплотехника: Учебник для вузов / А.П. Баскаков, Б.В. Берг, О.К. Витт и др.; под ред. А.П. Баскакова. 2-е изд., перераб. – М.: Энергоатомиздат, 1991. 224 с.

2. Техническая термодинамика: Учебное пособие / В.Н.Королёв, Е.М.Толмачёв. Екатеринбург: УГТУ, 2001. 180 с.

ПЛАН ЛЕКЦИИ:

1. Введение в методы решения уравнения теплопроводности при стационарном режиме и граничных условиях первого рода.

2. Однослойная плоская стенка..

3. Многослойная плоская стенка.

4. Эквивалентный коэффициент теплопроводности.

5. Однослойная цилиндрическая стенка.

6. Многослойная цилиндрическая стенка.

7. Шаровая стенка.

Теплопроводность через однослойную плоскую стенку.

Дифференциальное уравнение теплопроводности позволяет определить температуру в зависимости от времени и координат в любой точке поля. Для любого конкретного случая к нему надо присоединить не­обходимые краевые условия.

Рассмотрим наиболее распространенный случай — теплопровод­ность через однослойную плоскую стенку, длина и ширина которой бесконечно велики по сравнению с толщиной δ (рис. 2-1). Стенка имеет во всех своих частях оди­наковую толщину, причем температуры поверхно­стей сти t´´ст

являются изотермическими поверхностями. Темпе­ратура меняется только в направлении, перпен­дикулярном к плоскости стенки, которое прини­маем за ось х. Коэффициент теплопроводности λ по­стоянен для всей стенки. При стационарном теп­ловом режиме температура в любой точке тела не­изменна и не зависит от времени, т. е. ∂t / ∂τ = 0. Тог­да дифференциальное уравнение теплопроводности, после сокращения коэффициента температуропроводности, принимает вид

Но при принятых условиях первые и вторые производные от t по у и z также равны нулю:

поэтому уравнение теплопроводности можно написать в следующем виде:

Интегрируя уравнение (2-1), находим

После вторичного интегрирования получаем

При постоянном коэффициенте теплопроводности это есть уравнение прямой линии. Следовательно, закон изменения температуры при прохождении теплоты через плоскую стенку будет линейным.

Найдем постоянные интегрирования А и В. При х = 0температура t = t´ст = B; при х = δ температура t = t´´ст= Аδ + ст,откуда

Плотность теплового потока найдем из уравнения Фурье (1-7)

Зная удельный тепловой поток, можно вычислить общее количество теплоты, которое передается через поверхность стенки F за время τ:

Количество теплоты, которое передается теплопроводностью через плоскую стенку, прямо пропорционально коэффициенту теп­лопроводности стенки λ, ее площади F, промежутку времени τ, раз­ности температур на наружных поверхностях стенки (ст- t´´ст) и обратно пропорционально толщине стенки δ. Тепловой поток за­висит не от абсолютного значения температур, а от их разности tстtст = Δt, называемой температурным напором.

Полученное уравнение (2-2) является справедливым для случая, когда коэффициент теплопроводности является постоянной вели­чиной. В действительности коэффициент теплопроводности реальных тел зависит от температуры и закон изменения температуры в стенке выражается кривой линией. Если коэффициент теплопроводности зависит от температуры монотонно, то закон изменения температуры в стенке считают, в первом приближении, линейным.

Уравнение (2-2) можно получить непосредственно из закона Фурье (1-6), считая, что температура изменяется только в направ­лении оси х:

Разделив переменные, получаем

Интегрируя последнее уравнение при условии Q = const, на­ходим

Постоянную интегрирования С найдем из граничных условий:

при х = 0температура t = t´ст= C;

при x = δ температура t = t´´ст= , откуда

Введем в уравнение (2-2) поправки на зависимость λ от t, считая эту зависимость линейной:

λ = λ0(1 + bt). (а)

В этом случае, подставив в уравнение Фурье вместо λ его зна­чение из формулы (а), получаем

Разделив переменные и интегрируя в пределах от x = 0 до x = δ в интервале температур от стдо t´´ст,получаем

Уравнение (2-4) позволяет определить плотность теплового потока при переменном коэффициенте теплопроводности. В этом уравнении множитель

является среднеинтегральной величиной коэффициента теплопроводности.

В (2-2) было принято λ = const и равным среднему значению λср. Поэтому, сравнивая уравнения (2-2) и (2-4), получаем

Следовательно, если λср определяется при среднеинтегральной температуре tcp.ст.= , то формулы (2-2) и (2-4) равнозначны.

Теплопроводность плоской стенки

Дифференциальное уравнение энергии (2.15) для стационарной одномерной задачи теплопроводности плоской стенки без внутреннего источника тепла、 Если вы интегрируете это уравнение 2 раза, вы можете увидеть: (3.3) (3-4) Итак, температурное поле однородной плоской стенки с постоянной теплопроводностью представлено линейной зависимостью температуры от координат (рис.3.2). Определите константу интегрирования в уравнении температурного поля. Граничные условия вида 1, подлежащего рассмотрению Формула Определите плотность теплового потока через плоскую стенку. В соответствии с правилом Фурье, рассматривая уравнение (3.3), его можно записать следующим образом: Так…

Установление пограничного слоя вокруг передней части осесимметричного тела можно описать некоторыми модификациями, методами, описанными ранее для двухмерных пограничных слоев. Людмила Фирмаль

  • Изолировать температуру Поле и тепловой поток Через многослойную стенку с учетом контактного сопротивления. Толщина каждого слоя 6, и термальный коэффициент Проводимость X | (рисунок 3.3). В установившихся тепловых условиях тепловой поток через каждый слой и зону контакта становится одинаковым、 Потому что температурное поле не меняется только при этом условии Со временем. Уравнения (3.6) и (3.7) используются для представления плотности теплового потока через отдельные слои и контактные поверхности. 9= — ^- Перепишем эти уравнения в виде: Если мы суммируем правую и левую части этих уравнений、 (tG L-ISFP) 7G ’’ ISFP) Здесь — номер слоя.

Эта связь между степенью турбулентности в свободном потоке и критическим числом Рейнольдса, при котором происходит падение лобового сопротивления шара, правильно истолковал Л. Людмила Фирмаль

Используя это правило, мы определяем фактическую форму температурного поля однородной и плоской стенки с учетом температурной зависимости ее теплопроводности. Разделите однородную стенку на несколько слоев так, чтобы в каждом слое теплопроводность считалась постоянной(рис.3.4).Тогда для материалов, значение X которых уменьшается с увеличением температуры (например Зависимость х от / имеет большинство металлов), в высокотемпературной зоне температурная линия идет более резко, а в низкотемпературной зоне она становится полой, чем средний коэффициент теплопроводности. Увеличение числа слоев дает кривую зависимости I в пределах limits.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: