Теория шмидта о происхождении солнечной системы реферат

Обновлено: 04.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Кабардино-Балкарская Сельско- Хозяйственная Академия.

Контрольная работа на тему:

Происхождение Солнечной системы (гипотеза О. Ю. Шмидта).

Вселенная настолько грандиозна,что в ней почетно играть даже скромную роль.

Выполнил: студент 1 курса ЗО Андреюк Г.М.

Нальчик 1999г.

Часть 1: Космогония

Часть 2: Туманность.

Часть 3: Рождение Солнца.

Часть 4: Образование планет:

а) Этап первый - слипание частиц. б) Этап второй-разогревание. в) Этап третий-вулканическая деятельность.

Часть 1: Космогония.

Космогония - наука, изучающая происхождение и развитие небесных тел, например планет и их спутников, Солнца, звёзд, галактик. Астрономы наблюдают космические тела на различной стадии развития, образовавшиеся недавно и в далёком прошлом, быстро "стареющие" или почти "застывшие" в своём развитии. Сопоставляя многочисленные данные наблюдений физическими процессами, которые могут происходить при различных условиях в космическом пространстве, учёные пытаются объяснить, как возникают небесные тела. Единой, завершённой теории образования звёзд, планет или галактик пока не существует. Проблемы, с которыми столкнулись учёные, подчас трудно разрешимы. Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобных систем мы пока не наблюдаем. Нашу солнечную систему не с чем пока ещё сравнивать, хотя системы, подобные ей, должны быть достаточно распространены и их возникновение должно быть не случайным, а закономерным явлением.

В настоящее время при проверке той или иной гипотезы о происхождении Солнечной системы в значительной мере основывается на данных о химическом составе и возрасте пород Земли и других тел Солнечной системы. Наиболее точный метод определения возраста пород состоит в подсчёте отношения количества радиоактивного урана к количеству свинца, находящегося в данной породе. Скорость этого процесса известна точно, и её нельзя изменить никакими способами. Самые древние горные породы имеют возраст несколько миллиардов лет. Земля в целом, очевидно, возникла несколько раньше, чем земная кора.

В середине XVIII века немецкий философ И. Кант предложил свою теорию образования Солнечной системы, основанную на законе всемирного тяготения. Она предполагала возникновение Солнечной системы из облака холодных пылинок, находящихся в беспорядочном хаотическом движении. В 1796 году французский учёный П. Лаплас подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности. Лаплас учёл основные характерные черты Солнечной системы, которые должна была объяснить любая гипотеза о её происхождении. В данный период наиболее разработанной является гипотеза О. Ю. Шмидта, разработанная в середине века.

Часть 2: Туманность.

Давайте перенесемся в далекое прошлое, примерно на 7 миллиардов лет назад. Современная наука, как говорят ученые, с достаточной степенью

Похожие работы

2014-2022 © "РефератКо"
электронная библиотека студента.
Банк рефератов, все рефераты скачать бесплатно и без регистрации.

"РефератКо" - электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю

Современная наука располагает богатым материалом о физико-химической основе жизни, о путях, которые могли несколько миллиардов лет привести к возникновению примитивных организмов. Можно сравнивать друг с другом планеты в их современном состоянии и пытаться судить по ним об эволюции Земли. Но нашу Солнечную систему нам сравнивать не с чем, ибо других, подобных ей, мы не знаем, хотя и уверены, что они должны быть.

Содержание работы

Введение……………………………………………………………………………………….. 3
1.Происхождение Солнечной системы ………………………………………………………4
2. Подход Лапласа к космогонической проблеме……………………………………………. 7
3. Дальнейшее развитие космогонии Солнечной системы………………………………….11
4. Гипотеза О.Ю. Шмидта…………………………………………………………………….. 17
5.Развитие представлений о возникновении Солнечной системы после Шмидта……………………………………………………………………………………..….. 21
Заключение………………………………………………………………………………. ….. 27
Литература……………………………………………………………………………………..

Содержимое работы - 1 файл

теории происхождения солнечной системы.docx

Этап второй-разогревание. Внутри планет, в смеси с другими оказываются зажатыми, "запертыми" радиоактивные вещества, постоянно выделяющие тепло, которому некуда выйти в недрах планеты. Тепло накапливается, и от этого радиоактивного разогрева начинается размягчение всей толщи планеты. В размягченном виде вещества, в свое время хаотично, бессистемно слепившие её, начинают теперь распределятся по весу. Тяжелые постепенно опускаются, тонут к центру, легкие выдавливаются ими, поднимаются выше, всплывают все ближе к поверхности. Постепенно планеты приобретают строение, подобное теперешней нашей Земле, - в центре, сжатой чудовищным весом навалившихся сверху слоев, тяжелое ядро, окруженное "мантией" - толстым слоем вещества полегче весом. И, наконец, снаружи - совсем тонкая, толщиной всего в несколько десятков километров, "кора", состоящая из наиболее легких горных пород. Радиоактивные вещества в основном содержатся в легких породах. Поэтому теперь они скопились в "коре", греют её. Основное тепло с поверхности планеты уходит в космос, - от планеты "чуть повеяло теплом". А на глубине десятков километров тепло сохраняется, разогревая горные породы.

Этап третий - вулканическая деятельность. В некоторых местах недра планеты накаляются докрасна. Потом даже больше. Камни плавятся, превращаются в раскаленную, светящуюся оранжево-белым светом огненную кашу - "магму". В толще коры ей тесно. В ней полно сжатых газов, которые готовы были бы взорвать, разбросать всю эту магму во все стороны огненными брызгами. Но сил для этого не хватает. Слишком крепка и тяжела окружающая и придавившая сверху кора планеты. И огненная магма, пытаясь хоть как-нибудь вырваться наверх, на свободу, нащупывает между сжимающими её глыбами слабые места, протискивается в щели, подплавляя их стенки своим жаром. И понемногу с годами, столетиями набирая силу, поднимается из глубин к поверхности планеты. И вот победа! "Канал" пробит! Сотрясая скалы, с грохотом вырывается из недр столб огня. Клубы дыма и пара вздымаются к небу. Летят вверх камни и пепел. Огненная магма, которая называется теперь "лава", выливается на поверхности планеты, растекается в стороны. Происходит извержение вулкана. Таких "пробитых изнутри дырок" на планете много. Они помогают молодой планете "бороться с перегревом". Через них она освобождается от накопившейся огненной магмы, "выдыхает" распирающие её горячие газы - в основном углекислый газ и водяной пар, а с ними - разные примеси, такие, как метан, аммиак. Постепенно в атмосфере почти исчезли водород и гелий, и она стала состоять в основном из вулканических газов. Кислорода в ней пока нет и в помине. Для жизни эта атмосфера совершенно непригодна. Очень важно, что вулканы выбрасывают на поверхность большое количество водяного пара. Он собирается в облака. Из них на поверхность планеты льются дожди. Вода стекает в низины, накапливается. И понемногу на планете образуются озера, моря, океаны, в которых может развиться жизнь.

5. Развитие представлений о возникновении Солнечной системы после Шмидта.

1. Гипотеза Вайцзеркера.

Газовые диффузные туманности - "типичные" места для рождения звезд, имеют, по наблюдениям, турбулентные скорости 5-10км/с. Если ячейка такой туманности, содержащая столько же вещества, как и Солнце, сожмется от первоначальной плотности, равной 10-22 г/см3, до плотности Солнца (1,4 г/см3), хаотические движения никогда полностью не прекратятся; некоторый угловой момент больше того, который имеет Солнечная система сейчас, останется.

2. Гипотезы В. Г. Фесенкова

В 1918 г. впервые в советской науке с космогонической гипотезой выступил молодой тогда ученый, будущий академик-астрофизик В. Г. Фесенков. Эта его ранняя гипотеза возникла на основе вихревой небулярной гипотезы Фая. И хотя от подобных гипотез вскоре отказались, гипотеза Фесенкова была интересна тем, что он впервые ввел в космогонию идею необходимости учета астрофизических процессов. Так он обратил внимание на возможную роль в формировании первичных вихрей - зародышей планет конвекционных токов вещества в протопланетной туманности. Представим себе быстро вращающееся Солнце, только что выделившееся из газовой среды. Вначале оно будет разреженным гигантом низкой температуры. Солнце должно сжиматься, так как пока не имеет источников энергии. При этом будет происходить ускорение его вращения, и в недрах его начнутся ядерные реакции с участием углерода, требующие температуры в десятки миллионов градусов. Равновесное состояние вещества в Солнце нарушается, и от него вдоль экватора начнет отделяться в основном водород. Так Солнце окружалось газовой туманностью, постепенно рассеивающейся в пространстве. При быстром вращении на Солнце образуется с одной стороны выступ. Этот выступ, участвуя во вращении Солнца, отделившись, унесет с собой часть его энергии. Механизм возникновения прямого вращения в подобном случае был рассмотрен еще Лапласом. В образовавшейся подобным образом Солнечной системе планеты вначале должны были быть близки одна к другой. Планеты, как известно, состоят главным образом из тяжелых элементов, которые в Солнце представлены в ничтожной пропорции. Следовательно, из отделившейся первоначальной массы только ничтожная часть могла пойти на образование планет, все же остальное должно было образовать межпланетную среду, в дальнейшем рассеявшуюся из Солнечной системы.

Дальнейшая история Солнечной системы в первый период ее существования, по Фесенкову, состояла главным образом в том, что в результате приливного трения в самое первое время, а затем уменьшения массы Солнца, т. е. ослабления гравитационных связей между Солнцем и планетами, последние все более и более увеличивали размеры своих орбит, пока, наконец, Солнечная система не пришла в современное состояние.

Гипотеза В.Г. Фесенкова хотя и использует общую идею Рессела о Солнце как двойной звезде, но совершенно по-новому, эволюционно представляет эту ситуацию: планеты возникают в процессе самого формирования двойной звездной системы. Гипотеза остроумна, нова в своих физических основах и является, по-видимому, первой, связывающей образование планет с внутренним развитием уже образовавшегося Солнца. Но и в этой - гипотезе имеются явные недостатки. Существование длинного выступа у Солнца (который можно сравнить с иглой, воткнутой в арбуз), да еще вращающегося вместе с ним, выглядит неправдоподобно. Ничего не говорится об образовании систем крупных спутников. Нет четкости в объяснении различного состава планет земной группы, которые состоят из тяжелых элементов, и внешних планет-гигантов, в основном газовых.

Английский астрофизик- теоретик Ф. Хойл предложил две противоположные планетные космогонические гипотезы: сначала о формировании планет из горячего звездного (1944г.) , позднее - из холодного межзвездного (1960 г.) вещества. Он известен в космогонии как автор идеи о возможности переноса момента количества движения от Солнца к планетам электромагнитным путем.

Американский астроном, известный исследователь планет и новых звезд, спектроскопист Дж.П. Койпер является автором, одной из наиболее разработанных в ряде отношений космогонических гипотез. Его гипотезу называют еще теорией приливной устойчивости.

В 1951 г. он подробно изложил свою гипотезу с математической аргументацией. Койпер предполагает, что Солнце образовалось в очень плотном межзвездном облаке и что при этом осталась туманность в форме диска радиусом в несколько десятков астрономических единиц, которая вращалась вокруг Солнца. Наклонение, плоскостей планетных орбит показывает, что койперовская солнечная туманность должна была иметь значительную толщину в направлениях, перпендикулярных плоскости ее первоначальной симметрии. Последнюю можно уподобить так называемой "неизменяемой плоскости" Солнечной системы. Она представляет собой среднюю плоскость системы и может измениться только под действием внешних сил. Если наклонение любой планетной орбиты изменилось в результате возмущения, то наклонение другой или нескольких других орбит должно измениться в противоположном направлении. В современной космогонии, однако, основная идея Койпера о большой начальной массе планет считается весьма сомнительной.

5.Гипотеза Мак-Кри

Мак-Кри, известный английский астрофизик-теоретик, изучал звездные атмосферы и внутреннее строение звезд. Рассматривая процессы гравитационной конденсации околозвездной туманности размером до двух световых лет (2*1018 см), он проанализировал ее возможную эволюцию при неоднородной плотности на основе своей идеи о случайных перемещениях ее элементов - сгустков. Эту идею он использовал сначала для объяснения происхождения Солнечной системы. Примем, что конденсирующаяся туманность состоит из N сгустков, имеющих (каждый) среднюю скорость хаотических движений порядка 5 км/с (наблюдаемые турбулентные скорости) и массу 2*1033/Arг, т. е. по массе туманность близка к Солнцу. В этом случае к ней применима статистическая теория случайных перемещений. Если вначале облако состояло из очень малого числа сгустков, скорости которых были одинаковы, а направления движения распределены случайным образом, то угловой момент сгустков относительно их центра масс никогда не мог быть близок к нулю. Если сейчас у Солнечной системы наблюдаемый угловой момент такой же, что и в период, предшествующий конденсации облака, то в нем должно было существовать примерно 1014 сгустков. Подчеркивается, что статистическая теория дает только наиболее вероятное значение момента вращения N сгустков, но не говорит прямо, насколько различна эта величина у разных облаков. Однако можно показать, что угловые моменты, отличающиеся, скажем, в 10 раз от наиболее вероятной величины, будут встречаться крайне редко. Значение N=1014 неожиданно велико. Оно не согласуется с известными размерами турбулентных вихрей в туманности Ориона ив других подобных ей газовых галактических туманностях. В процессе конденсации такого облака наблюдаемый угловой момент порядка 3*1050 г*см*с-1 почти наверняка достался гораздо меньшему числу сгустков. Более того, в первоначальной туманности облачные сгустки рассматриваемого здесь размера будут сталкиваться с другими облаками и, следовательно, обмениваться энергией и угловым моментом. Мак-Кри рассмотрел ту же самую проблему в другой работе. Он не интересовался ранней стадией конденсации и начал с изучения очень плотного облака радиусом примерно 40 а.е., в котором между планетами и Солнцем в конце концов устанавливается распределение угловых моментов в отношении 50:1. Изучение турбулентных движений в газовых туманностях показывает, что звезда не может сформироваться посредством процесса сжатия по Кельвину (или Гельмгольцу) - процесса, описанного в гипотезе, выдвинутой в XIX в. для объяснения поддержания солнечного излучения в течение многих тысячелетий. При этом сжатии потенциальная энергия тяготения звёзды переходит в тепловую. Сейчас считают, что такой процесс может происходить лишь на ранних стадиях звездной эволюции. Выражение, полученное Мак-Кри для ожидаемой величины углового момента системы, состоящей из N сгустков, может стремиться к нулю, лишь если N очень велико. На пути космогонических теорий, основанных на гипотезе сжатия по Кельвину, стоят следующие две трудности:

1. Конденсирующееся облако должно сохранить свою цельность, несмотря на действие приливных сил, оказываемое на него основной массой Млечного Пути и соседними звездами.

2. Конденсация должна также преодолеть так называемый критерий устойчивости Джинса, который гласит, что звезды могут образоваться только из очень холодных облаков, в которых скорости отдельных частиц составляют примерно 0,2 км/с.

6. Гипотезы Камерона и Шацмана

Эти гипотезы родственны гипотезе Хойла. А. Камерон (1962 г., США) изучал сжатие массивного однородного протосолнца. Скорость его вращения предполагалась такой, что отделение вещества начинается при радиусе большем, чем радиус орбиты Плутона. Оно продолжается в ходе дальнейшего сжатия. Никакого центрального сгущения не образуется, и все вещество протосолнца переходит в диск, внутренняя зона которого очень массивна.

Камерон рассматривает образование планет из готового диска, пренебрегая тем, что без наличия центрального массивного тела диск является неустойчивым. По его мнению, в ходе дальнейшей эволюции большая доля вещества из зоны планет земной группы в результате какого-то непонятного перераспределения момента количества движения выпадает к центру протосолнца, образуя отсутствовавшее Солнце. Медленность вращения современного Солнца остается необъясненной. Кроме того, такое позднее образование Солнца едва ли может быть согласовано с данными о составе планет.

Несмотря на то, что представление Камерона о массивной внутренней зоне протопланетного облака остается необоснованным, многие космохимики используют вытекающее из него представление о высокой температуре вещества в этой зоне, связанной с выделением гравитационной энергии при стягивании вещества к центральной области диска, и о медленном остывании этой зоны. Близкую к этой гипотезу развил в 1967 г. французский астрофизик- теоретик Э.Шацман. Он рассмотрел модель протосолнца, обладающего такой скоростью вращения, что отделение вещества от него, т. е. образование протопланетного облака, начинается, когда его радиус сокращается до радиуса орбиты Плутона. Для получения протопланетного облака малой массы Шацман предполагает, что значительная часть вещества протосолнца концентрируется к его центру и что такое распределение сохраняется в ходе сжатия и дальнейшего отделения вещества с поверхности, происходившего уже после преобразования протосолнца в Солнце. Улетающее ионизованное вещество вплоть до больших расстояний сохраняет взаимодействие с магнитным полем вращающегося Солнца и приобретает большой момент количества движения, который и уносит с собой. Это объяснение медленности вращения Солнца и доныне остается наиболее вероятным. В то же время гипотеза Шацмана об образовании протопланетного облака не получила признания из-за нереальности предположения о том, что высокая концентрация массы к центру протосолнца и его вращение как твердого тела сохраняются в ходе отделения протоплаиетного облака.

Отто Юльевич Шмидт (1891—1956)


Отто Юльевич Шмидт (1891—1956)

Но в отличие от Эджворта, Шмидт сумел обосновать гипотезу захвата, впервые доказав возможность захвата в задаче трех тел, вопреки теореме Шази. Это было выдающимся самостоятельным вкладом в небесную механику. В самой космогонической концепции Шмидта и его школы идея захвата в дальнейшем не использовалась, так как расчеты показали, что масса захваченного облака будет слишком малой для образования планет. Шмидт объяснил различия в массе и химическом составе между группой близких к Солнцу планет (планет земной группы) и более далеких планет-гигантов тем, что они образовались из двух частей единого околосолнечного газопылевого облака: более близкой к Солнцу части, где облако прогрелось его лучами, и более далекой, холодной части. В отличие от прежних представлений об образовании планет из раскаленных газовых сгустков, Шмидт утверждал, что Земля и другие планеты сперва были сравнительно холодными, и использовал, таким образом, другую плодотворную идею — холодной аккреции.

По мнению Шмидта и его последователей, планетная система образовалась из огромного уплощенного газопылевого протопланетного облака, некогда окружавшего Солнце (вопрос о происхождении самого облака не рассматривался более). Земля и родственные ей планеты, от Меркурия до Марса, аккумулировались из твердых тел и частиц, а при аккумуляции планет-гигантов (по крайней мере Юпитера и Сатурна), содержащих в основном водород, участвовал, следовательно, наряду с твердыми телами, также и газ. Особенно детально была разработана Шмидтом теория дальнейшей эволюции Земли (на основе идеи В.И. Вернадского о радиоактивном разогреве ее недр). Выводы космогонической теории Шмидта хорошо согласовались с новыми данными геологии и геофизики о строении Земли. Гипотеза впервые объясняла и закон распределения планет в Солнечной системе (закон Тициуса — Воде).

Рис. 14. Происхождение планетной системы по О.Ю. Шмидту


Рис. 14. Происхождение планетной системы по О.Ю. Шмидту

Вместе с тем, в рамках теории Шмидта не удалось найти удовлетворительного ответа на старые вопросы: почему Солнце так медленно вращается вокруг своей оси; почему некоторые спутники и малые планеты движутся почти перпендикулярно к плоскости эклиптики.

Рис. 15. Эволюция протонланетного облака по О.Ю. Шмидту


Рис. 15. Эволюция протонланетного облака по О.Ю. Шмидту

Концепция О.Ю. Шмидта, как не профессионального астронома, многими астрономами, в особенности небесными механиками, была встречена вначале очень недоброжелательно. Некоторые ИЗ НИХ ДОХОДИЛИ до того, что, не входя в суть дела, утверждали, будто Шмидт лишь повторяет гипотезу Канта. Позднее, однако, гипотеза О.Ю. Шмидта широко популяризировалась в СССР. В ее разработке активно и долго участвовали Г.Ф. Хильми, Б.Ю. Левин, В.С. Сафронов, развивающий ее и сейчас, и некоторые другие. Но за рубежом о ней знали тогда мало, в основном из-за того, что изложение ее можно было найти преимущественно на русском языке. Сказалось и пренебрежительное отношение в капиталистических странах к науке в СССР. Но постепенно найденное О.Ю. Шмидтом плодотворное направление развития космогонии как решения комплексной широкой проблемы с учетом данных большого круга наук и с использованием ценных идей прошлого — т. е. исторического опыта космогонии — все это завоевало высокий авторитет и признание как руководство к действию среди космогонистов всего мира.

В это же десятилетие между 40-ми и 50-ми годами XX в. космогония идейно обогащалась с другой стороны: осознанием необходимости и появлением (ростом) возможности учитывать многочисленные данные астрофизики, как и достижения самой физики. Но главное, планетная космогония все более осознавалась как часть общей звездно-космогонической проблемы. Пионерами на этом направлении выступили немецкий физик К. Вайцзеккер и выдающийся советский астрофизик академик В.Г. Фесенков.

Гипотезу первого мы изложим здесь по книге Струве и Зебергс 2 .

Примечания

1. См. также книги: Левин Б.Ю. Происхождение Земли и планет. — 4-е изд. — М.: Наука, 1964; Сафронов В.С. Эволюция допланетного облака и образование Земли и планет. — М.: Наука, 1969.

Шмидт.jpg

Наш соотечественник, известный учёный Отто Юльевич Шмидт в \(1944\) г. предложил свою гипотезу образования планет. Он полагал, что миллиарды лет назад Солнце было окружено гигантским облаком, которое состояло из частичек холодной пыли и замёрзшего газа. Все они обращались вокруг Солнца. Находясь в постоянном движении, сталкиваясь, взаимно притягивая друг друга, они как бы слипались, образуя сгустки. Постепенно газово - пылевое облако сплющивалось , а сгустки стали двигаться по круговым орбитам . Со временем из этих сгустков и образовались планеты нашей Солнечной системы.

Гипотеза Шмидта.jpg

Гипотезы Канта, Лапласа, Шмидта во многом близки. Мысли этих учёных легли в основу современного представления о происхождении Земли и всей Солнечной системы.

Сегодня учёные предполагают, что Солнце и планеты возникли одновременно из межзвёздного вещества — частиц пыли и газа . Это холодное вещество постепенно уплотнялось, сжималось, а затем распалось на несколько неравных сгустков. Один из них, самый большой, дал начало Солнцу. Его вещество, продолжая сжиматься, разогревалось. Вокруг него образовалось вращающееся газово - пылевое облако , которое имело форму диска. Из плотных сгустков этого облака возникли планеты, в том числе и наша Земля.


Как видите, представления учёных о возникновении Земли, других планет и всей Солнечной системы менялись, развивались. Да и сейчас остаётся много неясного, спорного. Учёным предстоит разрешить немало вопросов, прежде чем мы достоверно узнаем, как возникла Земля.

Баринова И.И. и др. География. Начальный курс. 5 кл. : учеб. для общеобразоват. учреждений/Баринова И.И., Плешаков А. А., Сонин Н. И. — М. : Дрофа, 2012. —140 с.

Читайте также: