Теоремы теории вероятности реферат

Обновлено: 04.07.2024

Вероятность суммы двух несовместных событий А и В равна сумме их вероятностей:

Если А12, …, Аn- попарно несовместные события, то вероятность их суммы равна сумме вероятностей этих событий.

Вероятность суммы попарно несовместных событий А12, …, Аn, образующих полную группу, равна 1.

События А и `А несовместны и образуют полную группу событий, поэтому

Р(А +`А) = Р(А) + Р(`А) = 1. Отсюда Р (`А) = 1 – Р(А).

Вероятность суммы двух совместных событий А и В равна сумме вероятностей этих событий без вероятности их произведения:

Р (А+В) = Р(А)+Р(В) – Р (А*В).

Два события А и В называются независимыми, если появление одного из них не влияет на вероятность появления другого (в противном случае события зависимы).

Вероятность произведения двух независимых событий равна произведению их вероятностей Р(А*В)=Р(А)*Р(В).

Вероятность произведения n независимых событий А12, …, Аn равна произведению их вероятностей.

Условной вероятностью события В при условии, что событие А уже произошло, называется число Р(АВ)/Р(А)=Р(В/А)РА(В).

Вероятность произведения двух зависимых событий А и В равна произведению вероятности наступления события А на условную вероятность события В при условии что событие А уже произошло:

Если события А и В независимы, то из теоремы 4 следует теорема 3.

Событие В не зависит от события А, если Р(В/А) = Р(В). Теорему 4 можно обобщить на n событий.

Вероятность произведения n зависимых событий А12, …, Аnравна произведению последовательных условных вероятностей:

Вероятность наступления хотя бы одного из событий А12, …, Аnравна разности между единицей и вероятностью произведении отрицаний событий А12, …, Аn:

Вероятность наступления хотя бы одного из событий А12, …, Аnнезависимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий:

Если события А12, …, Аnнезависимы и имеют одинаковую вероятность появиться (Р(А1)=Р(А2)=…Р(Аn)= р, Р(Аi)= 1-р=q ), то вероятность появления хотя бы одного из них равна Р(А)=1-q n .

5. Формулы полной вероятности и вероятности гипотез

Пусть событие А может наступать только одновременно с одним из попарно несовместных событий Н1, Н2, . Нn, образующих полную группу. Тогда вероятность события А определятся по формуле полной вероятности:

где события Н12, . Нn, - гипотезы, a P(A/Hi) - условная вероятность наступления события А при наступлении i-ой гипотезы (i=1, 2. n).

Условная вероятность гипотезы Нi при условии того, что событие А произошло, определяется по формуле вероятности гипотез или формуле Байеса (она позволяет пересмотреть вероятности гипотез после наступления события А):

6. Формула Бернулли

Пусть некоторый опыт повторяется в неизменных условиях n раз, причём каждый раз может либо наступить (успех), либо не наступить (неудача) некоторое событие А, где Р(А) = р - вероятность успеха, Р(А)=1-р= q - вероятность неудачи. Тогда вероятность того, что в к случаях из n произойдёт событие А вычисляется по формуле Бернулли

Условия, приводящие к формуле Бернулли, называются схемой повторных независимых испытаний или схемой Бернулли. Так как вероятности Рn(к) для раз личных значений к представляют собой слагаемые в разложении бинома Ньютона

(p+q) n =C 0 n*p 0 *q n +C 1 n*p 1 *q n -1 +…+C k n*p k *q n - k +…+C n n*p n *q 0 ,

то распределение вероятностей Pn(k), где 0≤k≤n, называется биноминальным.

Если в каждом из независимых испытаний вероятности наступления события А разные, то вероятность наступления события А к раз в n опытах определяется как коэффициент, при к-ой степени полинома

Невероятнейшее число наступивших событий в схеме Бернулли - ко0 c К) определяется из следующего неравенства: np-q≤k0≤np+p.

Раздел: Математика
Количество знаков с пробелами: 70295
Количество таблиц: 2
Количество изображений: 1

В настоящее время трудно представить исследование и прогнозирование экономических процессов без использования методов, опирающихся на теорию вероятностей. При принятии решений в области бизнеса, финансов, менеджмента основой корректности и, в конечном счете, успеха является правильный учет и анализ больших объемов статистической информации, а также грамотная оценка вероятностей происхождения тех или иных событий. Теоретической основой существующих специальных приемов и методов решения задач экономики являются теория вероятностей и математическая статистика.

Для того чтобы количественно сравнивать между собой события по степени их возможности, очевидно необходимо с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число назовем вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности происхождения этого события в некоторых условиях. Будем говорить, что при выполнении комплекса условий G событие А происходит с вероятностью P(A).

Сравнивая между собой различные события по степени их возможности, мы должны установить какую-либо единицу измерения. В качестве такой единицы измерения естественно принять вероятность достоверного события, т. е. такого, которое в результате опыта непременно должно произойти. Если приписать достоверному событию вероятность, равную единице, то все другие события – возможные, но не достоверные – будут характеризоваться вероятностями, меньшими единицы, составляющими какую-то долю единицы.

Противоположностью по отношению к достоверному событию является невозможное событие, т. е. такое, которое в данном опыте не может произойти.

Естественно приписать невозможному событию вероятность, равную нулю. Таким образом, P(Ø)= 0, 0 $140. Надо смириться со своеобразностью теоретического вывода - утверждается не тот факт, что выручка составит от 90 до 140 (с вероятностью 95%), а только то, что сказано выше.

Если у нас нет теоретических оснований принять какое либо классическое распределение в качестве подходящего для нашей СВ, то и здесь теория окажет нам услугу - позволит проверить гипотезу о таком распределении на основании имеющихся у нас данных. Правда - исчерпывающего ответа "Да" или "Нет" ждать нечего. Можно лишь получить вероятность ошибиться, отбросив верную гипотезу (ошибка 1 рода) или вероятность ошибиться приняв ложную (ошибка 2 рода).

Даже такие "обтекаемые" теоретические выводы в сильной степени зависят от объема выборки (количества наблюдений), а также от "чистоты эксперимента" - условий его проведения.

Теория вероятностей – это математическая наука, изучающая математические модели массовых случайных явлений. В теории вероятностей используются результаты и методы многих областей математики (комбинаторики, математического анализа, алгебры, логики и т. п.). Однако теория вероятностей обладает некоторым своеобразием, поскольку она очень тесно связана с различными приложениями, причем приложения эти не столь привычны, как, например, приложения алгебры или дифференциальных уравнений. Задачи теории вероятностей также необычны и часто имеют нематематическую постановку. Это в первую очередь объясняется тем, что зарождение теории вероятностей связано с комбинаторными задачами азартных игр. Азартные игры трудно считать серьезным занятием. Но именно они привели к задачам, которые не укладывались в рамки существовавших математических соотношений и стимулировали тем самым поиск новых понятий, подходов и идей.

Подобно другим математическим наукам, теория вероятностей развивалась из потребностей практики и представляла собой прикладную дисциплину. В связи с этим ее понятия и выводы имели характерные черты тех областей знаний, в которых они были получены. Лишь постепенно выкристаллизовалось то общее, что присуще вероятностным схемам, независимо от области их приложения и что позволило превратить теорию вероятностей в надежный, точный и эффективный метод познания.

1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 1998.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1972, 1977.

3. Ежова Л.Н. Теория вероятностей и математическая статистика: Основы математики для экономистов. Вып. 9: Учеб. Пособие. – Иркутск: Изд-во ИГЭА, 2000.

4. Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1991.

5. Теория вероятностей: Учебное пособие / Ежова Л.Н., Абдуллин Р.З., Калашникова Л.С., Никулина С.И., Леонова О.В.. – Иркутск: изд-во ИГЭА. – 1996.

6. Анализ и диагностика финансово-хозяйственной деятельности предприятия. Табурчак П.П., Викуленко А.Е., Овчинникова Л.А. и др.: Учеб. пособие для вузов / Под ред. П.П. Табурчака, В.М. Туина и М.С Сапрыкина. - Ростов н/Д: Феникс, 2002.

7. Баканов М.И., Шеремет А.Д. Теория экономического анализа: Учебник. - 4- изд., доп. и перераб. - М.: Финансы и статистика, 2001.

8. Бамина О.Э., Спирин А.А. Общая теория статистики. Изд-во Финансы и статистика, 2005. ― 440 с.

9. Бочаров.В.Б. Финансовый анализ. - СПб: Питер, 2004. - 240 с.

10. Гинсбург А.И. Экономический анализ. - Спб.: Питер, 2003. - 480 с.

11. Ефимова М.Р., Румянцев В.Н., Петрова Е.В. Общая теория статистики. Учебник. ― М.: Инфра-М, 2005, с. 94.

12. Завьялова З.М. Теория экономического анализа. Курс лекций. - М.: Финансы и статистика, 2002.

Определение содержания и сущности вероятности события, как численной меры степени объективной возможности этого события. Рассмотрение и анализ главных свойств вероятности. Исследование и характеристика основных теорем нахождения вероятности событий.

Рубрика Математика
Вид доклад
Язык русский
Дата добавления 17.12.2015
Размер файла 19,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ученица 2 курса ВО

СМУ им. Шаталова

Содержание

1. Теоретическая часть

2. Практическая часть

3. Свойства вероятности

Введение

Каждая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, линии; в механике - понятия силы, массы, скорости, ускорения и т.д. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие - это значит свести его к другим, более известным. Очевидно, процесс определения одних понятий через другие должен где-то заканчиваться, дойдя до самых первичных понятий, к которым сводятся все остальные и которые сами строго не определяются, а только поясняются.

Такие основные понятия существуют и в теории вероятностей. В качестве первого из них введем понятие события.

1. Теоретическая часть

Приведем несколько примеров событий:

А - появление герба при бросании монеты;

В - появление трех гербов при трехкратном бросании монеты;

С - попадание в цель при выстреле;

D - появление туза при вынимании карты из колоды;

Е - обнаружение объекта при одном цикле обзора радиолокационной станции;

F - обрыв нити в течение часа работы ткацкого станка.

Рассматривая вышеперечисленные события, мы видим, что каждое из них обладает какой-то степенью возможности: одни - большей, другие - меньшей, причем для некоторых из этих событий мы сразу же можем решить, какое из них более, а какое менее возможно. Например, сразу видно, что событие А более возможно, чем В и D. Относительно событий С, Е и F аналогичных выводов сразу сделать нельзя; для этого следовало бы уточнить условия опыта. Так или иначе, ясно, что каждое из таких событий обладает той или иной степенью возможности. Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число мы назовем вероятностью события.

Таким образом, мы ввели в рассмотрение второе основное понятие теории вероятностей - понятие вероятности события. Вероятность события есть численная мера степени объективной возможности этого события.

Заметим, что уже при самом введении понятия вероятности события мы связываем с этим понятием определенный практический смысл, а именно: на основании опыта мы считаем более вероятными те события, которые происходят чаще; мало вероятными - те, которые почти никогда не происходят. Таким образом, понятие вероятности события в самой своей основе связано с опытным, практическим понятием частоты события.

Сравнивая между собой различные события по степени их возможности, мы должны установить какую-то единицу измерения. В качестве такой единицы измерения естественно принять вероятность достоверного события, т.е. такого события, которое в результате опыта непременно должно произойти. Пример достоверного события - выпадение не более 6 очков при бросании одной игральной кости.

Если приписать достоверному событию вероятность, равную единице, то все другие события - возможные, но не достоверные - будут характеризоваться вероятностями, меньшими единицы, составляющими какую-то долю единицы.

Противоположностью по отношению к достоверному событию является невозможное событие, т.е. такое событие, которое в данном опыте не может произойти. Пример невозможного события - появление 12 очков при бросании одной игральной кости. Естественно приписать невозможному событию вероятность, равную нулю.

Таким образом, установлены единица измерения вероятностей - вероятность достоверного события - и диапазон изменения вероятностей любых событий - числа от 0 до 1.

2. Практическая часть

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Поставим перед собой задачу дать количественную оценку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Элементарные исходы обозначим через w1, w2, w3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w1 - появился белый шар; w2, w3 - появился красный шар; w4, w5, w6 - появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию A (появлению цветного шара) следующие 5 исходов: w2, w3, w4, w5, w6.

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих A; в нашем примере А наблюдается, если наступит w2, или w3, или w4, или w5, или w6. В этом смысле событие А подразделяется на несколько элементарных событий (w2, w3, w4, w5, w6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (A) = 5 / 6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

где m - число элементарных исходов, благоприятствующих A; n - число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу. Из определения вероятности вытекают следующие ее свойства:

3. Свойства вероятности

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m = n, следовательно,

Р (A) = m / n = n / n = 1.

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно: вероятность численный теорема

Р (А) = m / n = 0 / n = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0

Введение

Каждый эксперимент заканчивается каким-то определенным результатом, который не всегда возможно заранее предугадать. Для того, чтобы формально описать некоторый эксперимент, нужно указать все возможные варианты результатов, которыми этот эксперимент может закончиться. В теории вероятностей такие результаты называются исходами. Множество всех возможных исходов эксперимента называется пространством элементарных исходов. Предполагается, что эксперимент может закончиться одним и только одним элементарным исходом. В наиболее простом случае все эти исходы можно перечислить:

= 1 , 2, . n, или = 1, 2 , .

Такое пространство элементарных исходов называется дискретным.

Простейшим пространством элементарных исходов является такое пространство, в котором все указанные исходы рассматриваемого эксперимента:

1) равновозможны;

2) взаимно несовместны (т.е. в результате эксперимента может произойти один и только один из указанных исходов),

3) все исходы образуют полную группу событий (т.е. никакие другие исходы, кроме перечисленных, не могут произойти).

Такое пространство конечно и называется пространством равновозможных исходов (или симметричным пространством).

ПРИМЕР 1. При бросании симметричной монеты возможны два исхода - выпадение решки или герба. Они удовлетворяют всем трем указанным выше условиям и потому в этом случае пространство элементарных исходов представляется так (здесь буквами Р и Г обозначены решка и герб соответственно):

ПРИМЕР 2. При одновременном бросании двух монет исходы представляют собой упорядоченные пары, состоящих из символов Р и Г. Первый элемент этой пары - результат, выпавший на первой монете, второй элемент - результат на второй монете. Очевидно, что таких пар - четыре:

ПРИМЕР 3. В случае бросания игральной кости может выпасть любое из чисел 1, 2, 3, 4, 5, 6. Поэтому пространство элементарных исходов

ПРИМЕР 4. При одновременном бросании двух игральных костей элементарные исходы представляют собой пары (x, y), где x - число очков, выпавшее на первой кости, а y - число очков на второй кости. Всего таких пар - 36:

1. Вероятность как событие

В дискретном пространстве вероятность каждого элементарного исхода считается заданной и обозначается Р(i), или просто рi , причем всегда

т.е. сумма (конечная или бесконечная) вероятностей всех элементарных исходов равна единице. Элементарные исходы мы называем элементарным событием.

Вероятностью события А называется сумма вероятностей всех элементарных исходов, входящих в А, то есть Р(А)=. Из этого определения вероятности события следует, что всегда 0 Р(А) 1.

В случае равновозможных исходов вероятность элементарного события А определяется формулой

Событие А, состоящее из всех элементарных исходов, не входящих в А, называется противоположным событием к событию А. Оно происходит тогда и только тогда, когда событие A не произошло. Очевидно что Р(А) + Р(А) = 1. Это равенство используется для вычисления вероятности события А в случае, когда вероятность противоположного события известна или легко может быть найдена, тогда Р(А) = 1 - Р(А).

Таким образом, для вычисления вероятности в каждой задаче важно определить, в чем состоит эксперимент, правильно построить соответствующее пространство элементарных событий и выделить в нем требуемое событие A. Затем, используя методы комбинаторики, подсчитать число элементов в и A.

Задача 1. В ящике 5 апельсинов и 4 яблока. Наудачу выбираются 3 фрукта. Какова вероятность, что все три фрукта - апельсины?

Решение. Элементарными исходами здесь являются выборки, включающие 3 фрукта.

Решение. Так как порядок здесь безразличен, будем считать выборки неупорядоченными (и, разумеется, бесповторными). Общее число элементарных исходов равно числу способов выбрать 3 элемента из 9, т.е. числу сочетаний n=. Число благоприятных исходов m= будет равно числу способов выбора трех апельсинов из имеющихся 5, т.е. числу сочетаний трех элементов из 5, т.е. . Тогда вероятность

Задача 2. Преподаватель предлагает каждому из трех студентов задумать любое число от 1 до 10. Считая, что выбор каждым из студентов любого числа из заданных равновозможен, найти вероятность того, что у кого-то из них задуманы числа совпадут.

Решение. Подсчитаем сначала общее количество исходов. Элементарными исходами будем считать упорядоченные совокупности задуманных чисел: N1, N2, N3, где N1 - число, задуманное первым студентом, N2 - вторым и N3 - третьим Первый из них выбирает одно из 10 чисел -- 10 возможностей, второй делает то же самое -- 10 возможностей, наконец, выбор третьего также 10 возможностей. Согласно основной теоремы комбинаторики общее число способов будет равно:

n= N1N2N3=10 3 = 1000 элементарных исходов.

Подсчет количества благоприятных исходов более сложен. Заметим, что совпадение задуманных чисел может произойти у любой пары студентов (или даже одновременно у всех троих). Чтобы не разбирать отдельно все эти случаи, удобно перейти к противоположному событию, т.е. подсчитать количество тех случаев, когда все три студента задумывают разные числа. Первый из них по-прежнему имеет 10 способов выбора числа. Второй студент теперь имеет лишь 9 возможностей (поскольку ему приходится заботиться о том, чтобы его число не совпало с задуманным числом первого студента N2 N1. Третий студент еще более ограничен в выборе -- у него всего 8 возможностей (из 10 возможных для N3 исключаются два числа: N3 N1 , N3 N2). Поэтому общее число комбинаций задуманных чисел, в которых нет совпадений, равно в силу той же основной теоремы m=10 9 8 = 720. Остальные случаи 1000 - 720 = 280 характеризуются наличием хотя бы одного совпадения. Следовательно, искомая вероятность совпадения равна Р=280/1000= 0,28.

Задача 4. Шесть клиентов случайным образом обращаются в 5 фирм. Найти вероятность того, что хотя бы в одну фирму никто не обратится.

Решение. Рассмотрим обратное событие , состоящее в том, что в каждую из 5 фирм обратился клиент, тогда в какую-то из них обратились два человека, а в остальные 4 фирмы - по одному клиенту. Таких возможностей . А всего способов распределить 6 клиентов по 5 фирмам . Отсюда , следовательно .

здесь все элементарные исходы равновероятны. Событие А= имеет вид

а событие В= имеет вид:

Каждое из событий А и В содержит элементов, а все пространство содержит элементов. Следовательно, Р(А)=Р(В)=1/5.

2. Вероятность и информация

где и - n-мерные объемы областей и соответственно. Здесь элементарными исходами называются точки множества (которое играет роль пространства элементарных исходов), а благоприятствующими исходами - точки множества .

Задача 6. Точку наудачу бросили на отрезок . Какова вероятность попадания этой точки на интервал ?

Решение. Здесь пространство элементарных исходов весь отрезок , а множество благоприятствующих исходов , при этом длины этих интервалов равны и . Поэтому вероятность попадания брошенной точки в указанный интервал равна .

Задача 7. На отрезок бросили наудачу и поочередно две точки. Какова вероятность, что первая точка лежит правее второй точки?

Решение. Обозначим получившиеся координаты точек через x и y. Элементарным исходом в таком бросании двух точек будет пара , а пространством элементарных исходов - квадрат . Событие A= равносильно условию x>y, следовательно,

, т.е. представляет собой треугольник (см. рисунок). Площади квадрата и треугольника равны соответственно и , а потому вероятность .

3. Аксиомы теории вероятности

Суммой двух событий А и В называется событие АВ (А+В), заключающееся в том, что произойдет хотя бы одно из событий А или В (либо событие А, либо событие В либо А и В одновременно).

Произведением (или пересечением) двух событий А и В называется событие АВ (АВ), состоящее в одновременном появлении и события А и события В.

Вероятность суммы двух событий вычисляется по формуле (теорема сложения)

.

События А12. Ак образуют полную группу событий, если в результате испытания непременно произойдет одно из них , т.е. .

События А и В называются несовместными (непересекающимися), если они не могут произойти одновременно АВ=. Если события несовместны, то

Р(АВ) = 0 и Р(А + В) = Р(А) + Р(В).

Задача 1. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?

Решение. Событие A= можно представить в виде суммы , где события и означают выборку пуговиц красного и синего цвета соответственно. Вероятность вытащить две красные пуговицы равна, а вероятность вытащить две синие пуговицы . Так как события и не могут произойти одновременно, то в силу теоремы сложения

Помимо обычной (безусловной) вероятности можно рассматривать так называемую условную вероятность, вычисляемую при условии, что событие B произошло. Такую вероятность (вероятность А при условии В) обозначают Р(А|В) и вычисляют с помощью одной из двух формул:

Из этой формулы вытекает формула для вероятности произведения двух событий (теорема умножения)

Формула умножения для трех событий:

Задача 2. В семье - двое детей. Какова вероятность, что старший ребенок - мальчик, если известно, что в семье есть дети обоего пола?

Решение. Пусть А=, B=. Будем считать, что рождения мальчика и рождение девочки - равновероятные события. Если рождение мальчика обозначить буквой М, а рождение девочки - Д, то пространство всех элементарных исходов состоит из четырех пар: . В этом пространстве лишь два исхода (МД и ДМ) отвечают событию B. Событие AB означает, что в семье есть дети обоего пола и старший ребенок - мальчик, это значит, что второй (младший) ребенок - девочка. Этому событию AB отвечает один исход - МД. Таким образом, |AB|=1, |B|=2 и

Задача 3. Мастер, имея 10 деталей, из которых 3 - нестандартных, берет и проверяет детали одну за другой, пока нему не попадется стандартная. Какова вероятность, что он проверит ровно две детали.

Решение. Событие А= означает, что при такой проверке первая деталь оказалась нестандартной, а вторая - стандартная. Значит, , где = < первая деталь оказалась нестандартной >и =. Очевидно, что вероятность кроме того, (так как перед взятием второй детали у мастера осталось 9 деталей, из которых только 2 нестандартные и 7 стандартных). По теореме умножения

Событие А не зависит от В, если появление события В не меняет значения вероятности события А, т.е. условная вероятность равна безусловной: Р(А/В) = Р(А). Аналогично определяется независимость события B от A. Оказывается, что свойство независимости на самом деле симметрично относительно событий A и B, и потому определение независимости двух событий принимает более простой вид:

два события A и B независимы, если справедливо равенство

Р(АВ) = Р(А) Р(В).

Это равенство можно использовать также как удобный критерий независимости при практической проверке независимости двух событий.

Задача 4. В одном ящике 3 белых и 5 черных шаров, в другом ящике - 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут один белый шар, если из каждого ящика вынуто по одному шару.

Решение. Событие A= можно представить в виде суммы , где события и означают выборку одного белого шара из первого и второго ящика соответственно. Вероятность вытащить белый шар из первого ящика равна, а вероятность вытащить белый шар из второго ящика . Кроме того, в силу независимости и имеем: . По теореме сложения получаем:

Пусть событие А может быть реализовано только при условии появления одного из событий Hi, i = 1. n. Предположим, что события Hi несовместны, образуют полную группу (т.е. в результате испытания непременно произойдет одно из них) и вероятности их до опыта известны.. Такие события Hi называются гипотезами. Тогда вероятность события А можно вычислить с помощью формулы полной вероятности:

Задача 5. Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй -- 3 студента, а третий -- 21 студентов (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго -- только 10%, зато у третьего -- 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.

Решение. Обозначим через - гипотезы, состоящие в том, что слабо подготовившийся студент отвечал первому, второму и третьему экзаменатору соответственно. По условию задачи

Пусть событие A=. Тогда снова в силу условия задачи

Заключение

Итак, в работе были рассмотрены вероятность как событие, классическая вероятностная модель, аксиомы теории вероятности.

Опыт, эксперимент, наблюдение явления называются испытанием. Испытаниями, например, являются: бросание монеты, выстрел из винтовки, бросание игральной кости (кубика с нанесенным на каждую грань числом очков -- от одного до шести).

Результат (исход) испытания называется событием. Событиями являются: выпадение герба или выпадение цифры, попадание в цель или промах, появление того или иного числа очков на брошенной игральной кости.

Можно ли как-то измерить возможность появления некоторого случайного события? Другими словами, можно ли охарактеризовать эту возможность некоторым числом?

Всякое испытание влечет за собой некоторую совокупность исходов -- результатов испытания, т. е. событий. Во многих случаях возможно перечислить все события, которые могут быть исходами данного испытания.

Определение 1. Говорят, что совокупность событий образует полную группу событий для данного испытания, если его результатом обязательно становится хотя бы одно из них.

Определение 2. События U1, U2, . U, образующие полную группу попарно несовместимых и равновозможных событий, будем называть элементарными событиями.

Определение 3. Событие А называется благоприятствующим событию Б, если наступление события А влечет за собой наступление события В.

Определение 4 (классическое определение вероятности). Вероятностью Р(А) события А называется отношение m/n числа элементарных событий, благоприятствующих событию А, к числу всех элементарных событий, т. е. Р(А) = m/n.

Из приведенного классического определения вероятности вытекают следующие ее свойства.

1. Вероятность достоверного события равна единице.

Действительно, достоверному событию должны благоприятствовать все n элементарных событий, т.е. m = n, и, следовательно,

2. Вероятность невозможного события равна нулю. В самом деле, невозможному событию не может благоприятствовать ни одно из элементарных событий, т.е. m = 0, откуда

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Список литературы

1. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965.

2. Боровков А.А. Математическая статистика. М.: Наука, 1984.

3. Коршунов Д.А., Чернова Н.И. Сборник задач и упражнений по математической статистике. Новосибирск: Изд-во Института математики им. С.Л.Соболева СО РАН, 2001.

4. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, Т.2, 1984.

Читайте также: