Темы рефератов по водоподготовке

Обновлено: 05.07.2024

Характеристика источников пресной воды. Основные методы водоподготовки. Особенность предварительной очистки, фильтрования, обезжелезивания и деманганации. Использование ультрафиолетового излучения и обеззараживания ультразвуком при очистке воды.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 20.12.2018
Размер файла 1,5 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное государственное автономное

Хакасский технический институт

Водоснабжение и водоотведение с элементами гидравлики наименование дисциплины

Подготовка питьевой воды

Реферат

ПИТЬЕВОЕ ВОДОСНАБЖЕНИЕ, ОРГАНИЧЕСКИЕ ВЕЩЕСТВА, ИСТОЧНИКИ ПРЕСНОЙ ВОДЫ, МЕТОДЫ ВОДОПОДГОТОВКИ, ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ МЕТОДЫ ОЧИСТКИ ВОДЫ.

Объект - Подготовка питьевой воды.

В данной работе в связи с поставленными целями стоят задачи:

- познакомится с методами водоподготовки;

- ознакомиться с методами очистки воды;

- рассмотреть рациональное использование водных ресурсов;

- рассмотреть природные источники водоснабжения и требования, предъявляемые к ним.

Рассмотрены: проблемы питьевой воды, показаны методы водоочистки, их бытовая и промышленная эффективность

Введение

Питьевое водоснабжение является важнейшим элементом жизнеобеспечения городов и фактором национальной безопасности в области охраны здоровья населения. Многие поверхностные и подземные водоисточники загрязнены; химическими веществами, в отношении которых барьерная роль существующих водоочистных сооружений чрезвычайно мала. По данным Программы ООН по окружающей среде (ЮНЕП) в России ежегодно регистрируется около 30 инфекционных вспышек дизентерии, брюшного тифа, гепатита, менингита и др., связанных с употреблением некачественной питьевой воды. Материальный ущерб от потери здоровья населения оценивается почти в 34 млрд. рублей в год.

Более трети поверхностных источников России характеризуются высоким содержанием органических, веществ, интегрально оцениваемым окисляемостью и цветностью воды, достигающими 3 ПДК и более. Кроме того, воды имеют малую мутность (до 50 мг/л).

Органические вещества, поступающие в открытые водоемы в результате вымывания гумусовых веществ из почв, торфяников, а также отмирания и разложения водных организмов в самих водоемах, являются главной причиной появления в воде привкусов и запахов. Природный гумус, представлен гуминовыми и фульвокислотами, которые придают воде желто-коричневую окраску и образуют с металлами (в первую очередь с железом и марганцем) растворимые в воде, устойчивые к окислению комплексные соединения. Образование комплексных соединений алюминия в процессе коагуляционной очистки и защитное действие гуминовых кислот увеличивает концентрацию остаточного алюминия в очищенной воде. В результате хлорирования воды образуются токсичные галогенорганические соединения: хлороформ, дихлорбромметан, хлорфенол и др.

Многие подземные водоисточники также имеют повышенное содержание природных органических соединений связанных с интенсивным отбором подземных вод и притоком в них загрязненных аллювиальных и поверхностных вод. В ряде источников поверхностных и подземных вод отмечено присутствие специфических органических примесей - фенолов, нефтепродуктов и др.

Наиболее широко используемые двухступенчатые реагентные технологии очистки, соответствующие СНиП 2.04.02-84 на первой ступени очистки предусматривают осветление в отстойниках, осветлителях со взвешенным ч . осадком и контактных префильтрах, на второй ступени - очистку на скорых фильтрах. Отстойники и осветлители со взвешенным осадком при очистке маломутных вод с высоким содержанием органических веществ работают неудовлетворительно. В первую очередь это обусловлено неэффективным протеканием процесса коагуляции из-за невысокой концентрации твердой фазы в исходной воде. В маломутной воде отсутствуют центры конденсации продуктов гидролиза коагулянта, поэтому не создаются условия для возникновения зародышей твердой фазы и осадок не образуется. Нагрузка по взвешенным веществам приходится на скорые фильтры, барьерная роль которых оказывается недостаточной. Применение контактных префильтров перед скорыми фильтрами требует большого расхода промывной воды (до 15% и более от расхода очищаемой воды), что снижает их производительность, увеличивает стоимость эксплуатации. Рациональное функционирование станций очистки природных вод связано с комплексным решением проблем ресурсосбережения и охраны водоемов от загрязнения очисткой, повторным использованием промывных вод фильтров и утилизацией водопроводных осадков. Таким образом, проблема разработки эффективных технологий очистки маломутных природных вод с высоким содержанием органических соединений для питьевого водоснабжения и с решением экологических вопросов требует глубокого изучения и проведения специальных исследований.

1. Источники пресной воды

Пресные водные ресурсы существуют благодаря вечному круговороту воды. В результате испарения образуется гигантский объем воды, дости-гающий 525 тыс. км3 в год. 86% этого количества приходится на соленые воды Мирового океана и внутренних морей - Каспийского. Аральского и др.; остальное испаряет-ся на суше, причем половина благодаря транспирации влаги растениями. Каждый год испаряется слой воды толщиной примерно 1250 мм. Часть ее вновь выпадает с осадками в океан, а часть переносится ветрами на сушу и здесь питает реки и озера, ледники и подземные воды. Природный дис-тиллятор питается энергией Солнца и отбирает примерно 20% этой энер-гии. Всего 2% гидросферы приходится на пресные воды, но они постоянно возобновляются. Скорость возобновления и определяет доступные человечеству ресурсы. Большая часть пресных вод - 85% - сосредоточена во льдах полярных зон и ледников. Скорость водообмена здесь меньше, чем в океане, и составляет 8000 лет. Поверхностные воды суши обновляются примерно в 500 раз быстрее, чем в океане. Еще быстрее, примерно за 10 - 12 суток, обновляются воды рек. Наибольшее практическое значение для человечества имеют пресные воды рек. Реки всегда были источником пресной воды. Но в современную эпоху они стали транспортировать отходы. Отходы на водосборной территории по руслам рек стекают в моря и океаны. Большая часть использованной реч-ной воды возвращается в реки и водоемы в виде сточных вод. До сих пор рост очистных сооружений отставал от роста потребления воды. И на пер-вый взгляд в этом заключается корень зла. На самом деле все обстоит гораздо серьезнее. Даже при самой совершенной очистке, включая биоло-гическую, все растворенные неорганические вещества и до 10% органичес-ких загрязняющих веществ остаются в очищенных сточных водах. Такая во-да вновь может стать пригодной для потребления только после многократ-ного разбавления чистой природной водой. И здесь для человека важно соотношение абсолютного количества сточных вод, хотя бы и очищенных, и водного стока рек. Мировой водохозяйственный баланс показал, что на все виды водопользования тратится 2200 км воды в год. На разбавление стоков уходит почти 20% ресурсов пресных вод мира. Расчеты на 2000 г. в предположении, что нормы водопотребления уменьшатся, а очистка охватит все сточ-ные воды, показали, что все равно ежегодно потребуется 30 - 35 тыс. км3 пресной воды на разбавление сточных вод. Это означает, что ресурсы полного мирового речного стока будут близки к исчерпанию, а во многих районах мира они уже исчерпаны. Количество пресной воды не уменьшается, но ее качество резко падает, она становится не пригодной для потребления. Человечеству придется изменить стратегию водопользования. Необхо-димость заставляет изолировать антропогенный водный цикл от природно-го. Практически это означает переход на замкнутое водоснабжение, на маловодную или малоотходную, а затем на "сухую" или безотходную технологию, сопровождающуюся резким уменьшением объемов потребления воды и очищенных сточных вод. Запасы пресной воды потенциально велики. Однако в любом районе мира они могут истощиться из-за нерационального водопользования или загрязнения. Число таких мест растет, охватывая целые географические районы. Потребность в воде не удовлетворяется у 20% городского и 75% сельского населения мира. Объем потребляемой воды зависят от региона и уровня жизни и составляет от 3 до 700 л в сутки на одного человека. Потребление воды промышленностью также зависит от экономического развития данного района. Например, в Канаде промышленность потребляет 84% всего водозабора, а в Индии - 1%. Наиболее водоемкие отрасли промыш-ленности: сталелитейная, химическая, нефтехимическая, целлюлозно-бу-мажная и пищевая. На них уходит почти 70% всей воды, затрачиваемой в промышленности. В среднем в мире на промышленность уходит примерно 20% всей потребляемой воды. Главный же потребитель пресной воды - сельское хозяйство: на его нужды уходит 70-80% всей пресной воды. Орошае-мое земледелие занимает лишь 15-17% площади сельскохозяйственных угодий, а дает половину всей продукции. Почти 70% посевов хлопчатника в мире существует благодаря орошению. Суммарный сток рек СНГ (СССР) за год составляет 4720 км3. Но распределены водные ресурсы крайне неравномерно. В наиболее обжитых регио-нах, где проживает до 80% промышленной продукции и находится 90% при-годных для сельского хозяйства земель, доля водных ресурсов составляет всего 20%. Многие районы страны недостаточно обеспечены водой. Это юг и юго-восток европейской части СНГ, Прикаспийская низменность, юг Западной Сибири и Казахстана, и некоторые другие районы Средней Азии, юг Забайкалья, Центральная Якутия. Наиболее обеспечены водой северные районы СНГ, Прибалтика, горные районы Кавказа, Средней Азии, Саян и Дальнего Востока. Сток рек изменяется в зависимости от колебаний климата. Вмешательство человека в естественные процессы затронуло уже и речной сток. В сельском хозяйстве большая часть воды не возвращается в реки, а рас-ходуется на испарение и образование растительной массы, так как при фотосинтезе водород из молекул воды переходит в органические соедине-ния. Для регулирования стока рек, не равномерного в течение года, построено 1500 водохранилищ (они регулируют до 9% всего стока). На сток рек Дальнего Востока, Сибири и Севера европейской части страны хозяйственная деятельность человека пока почти не повлияла. Однако в наиболее обжитых районах он сократился на 8%, а у таких рек, как Те-рек, Дон, Днестр и Урал - на 11 - 20%. Заметно уменьшился водный сток в Волге, Сырдарье и Амударье. В итоге сократился приток воды к Азовс-кому морю - на 23%, к Аральскому - на 33%. Уровень Арала упал на 12,5 м. При получении питьевой воды различают две основные группы по ее происхождению: подземные воды и поверхностные воды. Группа подземных вод подразделяется на:

2. Инфильтрационная вода. Эта вода добывается насосами из скважин, глубина которых соответствует отметкам дна ручья, реки или озера. Качество такой воды в значительной мере определяется поверхностной водой в самом водотоке, т. е. вода, добытая при помощи инфильтрационного водозабора, является тем более пригодной для питьевых целей, чем чище вода в ручье, реке или озере. При этом могут иметь место колебания ее температуры, состава и запаха.

3. Родниковая вода. Речь идет о подземной воде, самоизливающейся естественным путем на поверхность земли. Будучи подземной водой, она в биологическом отношении безупречна и по своему качеству приравнивается к артезианским водам. Вместе с тем родниковая вода по своему составу испытывает сильные колебания не только в кратковременные периоды времени (дождь, засуха), но и по временам года (например, таяние снега).

Поверхностные воды, в свою очередь, подразделяют таким образом:

2. Озерная вода. Эта вода, даже добытая из больших глубин, крайне редко является безупречной в биологическом отношении и поэтому должна проходить специальную очистку до питьевых кондиций.

4. Морская вода. Морская вода не может без обессоливания подаваться в сеть питьевого водоснабжения. Она добывается и проходит водоподготовку только у морского побережья и на островах, если нет возможности использовать другой источник водоснабжения.

Вопросы водоподготовки и организации водно-химичского режима электростанции имеют большое значение для обеспечения работы электростанции и предприятий тепловых сетей без повреждений и снижения экономичности, вызываемых коррозией внутренних поверхностей водоподготовительного, теплоэнергетического и сетевого оборудования, а также без образования накипи и отложений на теплопередающих поверхностях, отложений в проточной части турбин, шлама в оборудовании и трубопроводах электростанций и тепловых сетей.

Тепловые электростанции потребляют большое количество воды. Основными потребителями являются конденсаторы турбин где вода (циркуляционная) используется для конденсации отработавшего пара и поддержания вакуума. Кроме того, вода расходуется для охлаждения водорода генераторов и охлаждающего воздуха крупных электродвигателей, для охлаждения масла турбогенераторов и питательных турбонасосов , для охлаждения подшипников вспомогательных механизмов -техническая вода, для гидрощлакозолоудаления, для восполнения потерь пара и конденсата в цикле станции.

Использование воды в теплоэнергетике

Оборудование современных электростанций эксплуатируется при высоких тепловых нагрузках, что требует жесткого ограничения толщины отложений на поверхностях нагрева по условиям температурного режима их металла в течение рабочей компании. Такие отложения образуются из примесей, поступающих в циклы электростанций, в том числе и с добавочной водой, поэтому обеспечение высокого качества водных теплоносителей электростанции является важнейшей задачей. Использование водного теплоносителя высокого качества упрощает также решение задач получения чистого пара, минимизации скоростей коррозии конструктивных материалов котлов, турбин и оборудования конденсатно-питательного тракта.

Химически подготовленная вода является, по существу, исходным сырьем, которое после надлежащей обработки (отчистки) используется для следующих целей: а) в качестве исходного вещества для получения пара в котлах, парогенераторах, испарителях, паропреобразователях; б) для конденсации отработавшего в паровых турбинах пара; в) для охлаждения различных аппаратов и агрегатов станции; г) в качестве теплоносителя в тепловых сетях и системах горячего водоснабжения.

Одновременно с отчисткой природной воды на электростанциях необходимо решать комплексно вопросы, связанные с утилизацией различными методами образующихся при этом сточных вод. Такое решение является мерой защиты от загрязнения природных источников питьевого и промышленного водоснабжения [1].

Выбор метода обработки воды, составление общей схемы технологического процесса при применении различных методов, определение требований, предъявляемых к качеству ее, существенно зависят от состава исходных вод, типа электростанции, параметров ее, применяемого основного оборудования (паровых котлов, турбин), система теплофикации и горячего водоснабжения. При применении термических методов обработки воды экономичность их зависит также от того, как включена обессоливающая установка в схему станции, и от характеристик и параметров оборудования. Поэтому до того как перейти к рассмотрению методов обработки воды необходимо хотя бы в самом общем виде познакомиться с типами и схемами тепловых электростанций.

Типичные схемы обращения воды в циклах электростанций и теплоэлектростанций



Рис.1. Питательная схема обращения Рис. 2. Питательная схема обращения

воды в тракте КЭС: воды в цикле ТЭЦ:

1 – котел, реактор кипящего типа, 1 – котел; 2 – турбина с отборами пара для парогенератор; 2 – конденсационная нужд производства и теплофикации; 3 - турбина; 3 – электрогенератор; 4 – электрогенератор; 4 – конденсатор; 5 – конводоподготовительная установка (ВПУ); денсатный насос; 6 – установка очистки 5 – конденсатор турбины; 6 – конденсат- возвратного загрязненного производственноный насос; 7 – блочная обессоливающая го конденсата; 7– деаэратор; 8 - питательный установка (БОУ); 8 – ПНД; 9 – деаэратор; насос; 9 – подогреватель добавочной воды;

10 – питательный насос; 11 – ПВД 10 – ВПУ; 11 – насос возвратного конденсата; 12 – баки возвратного конденсата; 13 –

теплофикационный потребитель пара; 14 –

производственный потребитель пара

Природная (техническая) вода используется в качестве исходного сырья на водоподготовительной установке, а также для других целей на станциях.

Добавочная вода направляется на контур для восполнения потерь пара и конденсата после обработки с применением физико-химических методов отчистки.

Турбинный конденсат содержащий незначительное количество растворенных и взвешенных примесей, - основная составляющая питательной воды.

Возвратный конденсат от внешних потребителей пара используется после очистки от внесенных загрязнений. Он является основной частью питательной воды.

Питательная вода, подаваемая в котлы, парогенераторы или реакторы для замещения испарившейся воды в этих агрегатах, представляет собой главным образом смесь турбинного и возвратного конденсата, добавочной воды, а также конденсата регенеративных подогревателей.

Котловая вода, вода парогенератора, реактора - вода, находящаяся в элементах указанных агрегатов.

Продувочная вода – выводимая из котла, парогенератора ил и реактора вода на отчистку или в дренаж для поддержания в испаряемой (котловой) воде заданной концентрации примесей. Состав и концентрация примесей в котловой и продувочной водах одинаковы.

Охлаждающая или циркуляционная вода используется в конденсаторах паровых турбин для конденсации отработавшего пара.

Подпиточная вода подается в тепловые сети для восполнения потерь циркулирующей в них воды [2].

Методы обработки воды

На тепловых электростанциях применяются различные методы обработки воды, однако в основном их можно разделить на безреагентные, или физические методы и методы, в которых используются различные препараты (химические реагенты). Безреагентные (физические) методы применяются и как отдельные этапы в общем технологическом процессе обработки воды, и как самостоятельные методы, обеспечивающие получение воды требуемого качества. Применяя химическую обработку (включая также методы ионного обмена), можно получить как умягченную, так и глубокообессоленную воду; при одном из наиболее распространенных на станции физических методов – термической обработке воды – всегда получают дистиллят, т.е. воду с очень небольшим содержанием примесей. Однако в ряде случаев при термической обработке, проводимой в целях глубокого обессоливания, применяется умягченная вода, т.е. вода, уже прошедшая химическую обработку или ионирование.

Для заполнения контура паротурбинной установки восполнения потерь в нем на современных крупных станций может применяться только глубокообессоленная вода. В настоящее время такую воду получают почти всегда химическим и термическим методами обессоливания. Заполнение тепловых сетей и компенсация потерь в них проводятся обычно водой, умягченной ионированием [2].

Теперь рассмотрим то, что поступает на станцию вместе с водой и каким обработкам подвергается вода.

Добавочная вода, несмотря на то, что она предварительно очищается, вносит в цикл электростанции соли и другие химические соединения. Значительная доля солей поступает также через неплотности конденсаторов с присасываемой циркуляционной водой, не проходящей очистки, кроме грубо механической и иногда хлорирования.

Доля присасываемой охлаждающей воды в конденсаторах паровых турбин не должна превышать 0,015% количества основного конденсата. Для уменьшения присосов конденсаторы турбин оборудуют двойными трубными досками с отводом просачивающейся воды.

На промышленных станциях обратный конденсат с производства в ряде случаев имеет повышенную жесткость и загрязнен продуктами коррозии металлов или производственными примесями. Это вносит в цикл станции дополнительные загрязнения. С течением времени вносимые соли будут накапливаться, если их не отводить, что может привести к отложениям солей в трубах котла, к ухудшению качества вырабатываемого пара и к заносу солями проточной части турбин. Во избежание этого необходимо выводить загрязнения из пароводяного цикла электростанции [3].

Помимо отчистки добавочной воды требуется еще дополнительная внутрикотловая обработка воды. Котловая и питательна вода барабанных котлов подвергается различной коррекционной обработке реагентами (фосфатами, комплексонами и др.), обеспечивающими выпадение накипеобразователей в форме легкоподвижного неприкипающего шлама, выводимого с периодической продувкой.

Методы организации водного режима подразделяются на физико-химические и физико-механические. К первым относится коррекционная обработка питательной и котловой воды реагентами, ко вторым - ступенчатое испарение и промывка пара. Физические методы удаления растворенных О2 и СО2 (деаэрация, отсос газов из теплообменников) сочетаются с коррекционной обработкой питательной воды аммиаком, нейтрализующими аминами и гидразином.

Для поддержания водно-химического режима барабанных котлов в целях предотвращения кальциевого и магниевого накипобразования повсеместное применение получил коррекционный фосфатный режим котловой воды. С его помощью можно предотвратить образование кальциевой накипи на поверхностях нагрева: дозированное введение раствора фосфорнокислых солей натрия в котловую воду переводит остатки ионов, накипеобразователей в шлам, удаляемый с продувкой. Недостатком фосфатного режима обработки котловой воды является неспособност предотвращать образование сложных бескальциевых ферро- и алюмосиликатных накипей в барабанных котлах высокого давления. Чтобы избежать этих отложений, надо снизить концентрацию соединений железа, алюминия и кремния в питательной и котловой воде.

В последние годы в связи с усовершенствованием технологии умягчения воды и пароведением работ по уплотнению конденсаторов соли кальция и магния в котлы практически не попадают и в составе накипи и шлама соединения Са и Мg содержаться в ничтожном количестве. В то же время при создании фосфатного режима иногда наблюдается образование феррофосфатных отложений, подшламовая коррозия парогенерирующих труб. В связи с этим потери на станциях восполняются химобессоленной водой или дистиллятом, а конденсаторы надежно уплотнены.

В прямоточных котлах все примеси, поступающие с питательной водой и образующиеся в котле за счет коррозии, уносятся с паром и образуют отложения в турбинах или проходят транзитом через турбину и загрязняют конденсат. Поэтому такие котлы должны работать на питательной воде с минимальным содержанием примесей, могущих давать отложения в котле и в турбине [1].

При эксплуатации водоподготовительных установок образуются сточные воды в количестве 5-20% расхода обрабатываемой воды, которые обычно содержат шлам, состоящий из карбонатов кальция и магния, гидроксида магния, железа и алюминия, органических веществ, песка, а так же различные соли серной и соляной кислот с концентрацией, достигающей десятков грамм на кубический дециметр, переходящие в стоки при регенерации фильтров. С учетом известных предельно допустимых концентраций вредных веществ в водоемах стоки водоподготовительных установок перед их сбросом должны соответствующим образом очищаться, причем затраты на обезвреживание стоков обычно сопоставимы с затратами на приготовление воды требуемого качества, поэтому задача создания малосточных водоподготовительных установок является актуальной [2].

В данном реферате рассмотрены вопросы водоподготовки на теплоэлектростанции (ТЭС). Отмечены особенности работы собственно ТЭС и их оборудования, организации и контроля водного режима. Представлены методы и выбор обработки воды.

Список литературы

1. Елизаров Д.П. Теплоэнергетические установки электростанций: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Энергоиздат, 1982.

2. Копылов А.С., Лавыгин В.М., Очков В.Ф. Водоподготовка в энергетике: Учебное пособие для вузов.- М.: Издательство МЭИ, 2003.

3. Рыжкин В.Я. Тепловые электрические станции. Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Энергия, 1976.

Без использования подготовленной воды не обходится практически не один современный производственный процесс. В настоящее время производство конкурентоспособной продукции практически невозможно без внедрения передовых технологий водоподготовки и современного водоочистного оборудования. При этом необходимо учитывать, что требования к качеству воды и источники водоснабжения могут различаться и в отдельных случаях могут быть гораздо жестче, к примеру, получение питьевой воды.

Содержание работы

ВВЕДЕНИЕ. 3
I. ИСПОЛЬЗОВАНИЕ ВОДЫ. 4
II. ОСНОВНЫЕ (ТРАДИЦИОННЫЕ) МЕТОДЫ ОБРАБОТКИ ВОДЫ. 8
III. ОСНОВНЫЕ СПОСОБЫ ВОДООЧИСТКИ 10
1. ОСВЕТЛЕНИЕ ВОДЫ 10
2. ОБЕЗЗАРАЖИВАНИЕ ВОДЫ 11
3. ОБЕЗЗАРАЖИВАНИЕ ВОДЫ СИЛЬНЫМИ ОКИСЛИТЕЛЯМИ. 12
4. ОЗОНИРОВАНИЕ 12
5. ОБЕЗЗАРАЖИВАНИЕ ВОДЫ БАКТЕРИЦИДНЫМИ ЛУЧАМИ. 13
IV. СПЕЦИАЛЬНЫЕ (ДОПОЛНИТЕЛЬНЫЕ) МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ВОДЫ. 13
1. УМЯГЧЕНИЕ 14
2. СОРБЦИЯ 14
3. УЛЬТРАЗВУКОВАЯ ОБРАБОТКА ВОДЫ 15
V. НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИОННЫЕ МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ВОДЫ 16
VII. МЕТОДЫ БЕСКОНТАКТНОЙ АКТИВАЦИИ ЖИДКОСТИ (БОЖ). РЕЗОНАНСНЫЕ ТЕХНОЛОГИИ. 18
ЗАКЛЮЧЕНИЕ 19
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА. 20

Файлы: 1 файл

реферат водоподготовка.docx

Выполнила: студентка 3 курса
Факультета ХТ гр. БТ1003
Андреева В.В.

I. Использование воды. 4

II. Основные (традиционные) методы обработки воды. 8

III. Основные способы водоочистки 10

1. Осветление воды 10

2. Обеззараживание воды 11

3. Обеззараживание воды сильными окислителями. 12

4. Озонирование 12

5. Обеззараживание воды бактерицидными лучами. 13

IV. Специальные (дополнительные) методы улучшения качества воды. 13

  1. Умягчение 14
  2. Сорбция 14
  3. Ультразвуковая обработка воды 15

V. Новые технологии и инновационные методы улучшения качества воды 16

VII. Методы бесконтактной активации жидкости (БОЖ). Резонансные технологии. 18

Использованная литература. 20

Введение.

Без использования подготовленной воды не обходится практически не один современный производственный процесс. В настоящее время производство конкурентоспособной продукции практически невозможно без внедрения передовых технологий водоподготовки и современного водоочистного оборудования. При этом необходимо учитывать, что требования к качеству воды и источники водоснабжения могут различаться и в отдельных случаях могут быть гораздо жестче, к примеру, получение питьевой воды.

Основные задачи водоподготовки - это получение на выходе чистой безопасной воды пригодной для различных нужд: хозяйственно-питьевого, технического и промышленного водоснабжения с учётом экономической целесообразности применения необходимых методов водоочистки, водоподготовки. Подход к водоочистке не может быть везде одинаковым. Различия обусловлены составом воды и требованиями к её качеству, которые существенно различаются в зависимости от назначения воды (питьевой, технической и т.д.). Однако существует набор типичных процедур, используемых в системах водоочистки и последовательность, в которой используются эти процедуры.

I. Использование воды.

Химическая промышленность - один из крупных потребителей воды. Вода используется почти во всех химических производствах для разнообразных целей. На отдельных химических предприятиях потребление воды достигает 1млн м3 в сутки. Превращение воды в один из важнейших элементов химического производства объясняется:

• наличием комплекса ценных свойств (высокая теплоемкость, малая вязкость, низкая температура кипения);

• доступностью и дешевизной (затраты исключительно на извлечение и очистку);

• удобством использования в производстве и транспортировке.

В химической промышленности вода используется в следующих направлениях:

1. Для технологических целей в качестве:

- растворителя твердых, жидких и газообразных веществ;

- среды для осуществления физических и механических процессов (флотация, транспортировка твердых материалов в виде пульпы);

- промывной жидкости для газов;

- экстрагента и абсорбента различных веществ.

2. Как теплоноситель (в виде горячей воды и пара) и хладагента для обогрева и охлаждения аппаратуры.

3. В качестве сырья и реагента для производства различной химической продукции (водорода, ацетилена, серной и азотной кислот.).

Воды морей и океанов - источники сырья для добычи многих химических веществ: из них извлекаются NaС1, МgСl, Br, I и др. продукты. Так например, содержание элементов в водах океана составляет: К-3.8 *10-2%, V- 5*10-8%, Аu -4*10-10%, Аg -5*10-9%. Приняв массу воды на планете-1.4 *1018, получим соответственно содержание в ней Аu-5.6 * 106т.

Масштабы потребления воды химической промышленностью зависят от типа производства. Так, расходный коэффициент по воде (м3/т продукции) составляет: для азотной кислоты - 200, аммиака- 1500, синтетического каучука-1600. Например, завод капронового волокна расходует такое же количество воды, как город с населением 400тыс. человек. Общее количество воды на Земле составляет 1.386 *1018м3

Природную воду принято делить на 3 вида, сильно различающихся по наличию примесей:

Атмосферная вода - вода дождевых и снеговых осадков, содержит минимальное количество примесей, главным образом, растворенные газы СО2, О2 а в промышленных районах N0х, SОх. Почти не содержит растворенные соли.

Поверхностная вода - речные, озерные, морские, содержат различные минеральные и органические вещества, природа и концентрация которых зависят от климата, геоморфологических и гидротехнических мероприятий.

Подземная вода — вода артезианских скважин, колодцев, ключей, гейзеров. Для них характерно высокое содержание минеральных солей, выщелачиваемых из почвы и осадочных пород и малое содержание органических веществ.

Морская вода представляет многокомпонентный раствор электролитов и содержит все элементы, входящие в состав литосферы.

Вода, используемая в химической промышленности должна удовлетворять по качеству определенным требованиям. Качество воды определяется совокупностью физических и химических характеристик, к которым относятся: цвет, прозрачность, запах, общее солесодержание, жесткость, рН, окисляемость. Для промышленных вод важнейшими из этих характеристик являются солесодержание, жесткость, рН, содержание взвешенных веществ.

Жесткостью называется свойство воды, обусловленное присутствием в ней солей Са и Мg. В зависимости от природы анионов различают временную жесткость (устранимую, карбонатную), удаляемую при кипячении - Жв и постоянную (некарбонатную) - Жп. Сумма Жв и Жп называется общей жесткостью воды

Принята следующая классификация по жесткости: мягкая (Са и Мg до 3 мгэкв/л), умеренно- жесткая(3-6 мгэкв/л) и жесткая (более 6 мгэкв/л).

В зависимости от солесодержания природные воды делятся на пресные (с/с менее 1г/кг), солоноватые (с/с от 1 до 10 г/кг) и соленые (с/с более 10г/кг.

Окисляемость воды обусловлена наличием в воде органических примесей и определяется количеством мг перманганата калия, израсходованного при кипячении 1л воды.

РН воды характеризует ее кислотность щелочность.

Водооборотные циклы химико-технологических производств являются важным фактором рационального использования водных ресурсов. В этих циклах осуществляется многократное использование воды без выброса загрязненных стоков в водоемы, а потребление свежей воды для ее восполнения ограничено только технологическими превращениями и естественными потерями. В химических производствах используется 3 схемы водооборота в зависимости от технологических изменений, которые вода претерпевает в процессе производства.

Вода только нагревается и д.б. перед возвратом охлаждена в бассейне или градирне.

Вода только загрязнена и д. б. перед возвращением очищена в специальных очистных сооружениях.

Вода нагревается и загрязнена. Это комбинация 1 -го и 2 -го типа ВОЦ.

II. Основные (традиционные) методы обработки воды.

В практике водоснабжения в процессе очистки и обработки вода подвергается осветлению (освобождение от взвешенных частиц), обесцвечиванию (устранение веществ, придающих воде цвет), обеззараживанию (уничтожение находящихся в ней болезнетворных бактерий). При этом в зависимости от качества исходной воды в некоторых случаях дополнительно применяются и специальные методы улучшения качества воды: умягчение воды (понижение жесткости, обусловленной наличием солей кальция и магния); фосфатирование (для более глубокого умягчения воды); опреснение, обессоливание воды (снижение общей минерализации воды); обескремнивание, обезжелезивание воды (освобождение воды от растворимых соединений железа); дегазация воды (удаление из воды растворимых газов: сероводорода H2S, CO2 , O2); дезактивация воды (удаление из воды радиоактивных веществ.); обезвреживание воды (удаление ядовитых веществ из воды), фторирование (добавления в воду фтора) или обесфторирование (удаление соединений фтора); подкисление или подщелачивание (для стабилизации воды). Иногда требуется устранять привкусы и запахи, предотвращать коррозионное действие воды и т.п. Те или иные комбинации указанных процессов применяют в зависимости от категории потребителей и качества воды в источниках.

Качество воды в водном объекте и источнике водоснабжения, определяется целым рядом показателей (физических, химических и санитарно- бактериологических), в соответствии с назначением воды и установленными нормативами качества. Подробно об этом в следующем разделе. Сравнивая данные качества воды природных источников (полученные по результатам анализа) с требованиями потребителей определяют мероприятия для ее обработки.

Проблема очистки воды охватывает вопросы физических, химических и биологических изменений в процессе обработки с целью сделать ее пригодной для питья, т. е. очистки и улучшения ее природных свойств.

Способ обработки воды, состав и расчетные параметры очистных сооружений для технического водоснабжения и расчетные дозы реагентов устанавливают в зависимости от степени загрязнения водного объекта, назначения водопровода, производительности станции и местных условий, а также на основании данных технологических исследований и эксплуатации сооружений, работающих в аналогичных условиях.

Очистка воды производится в несколько этапов. Мусор и песок удаляются на этапе предочистки. Сочетание первичной и вторичной очистки, проводимое на водоочистных сооружениях (ВОС), позволяет избавиться от коллоидного материала (органических веществ). Растворенные биогены устраняются при помощи доочистки. Чтобы очистка была полной, водоочистные сооружения должны устранить все категории загрязнителей. Для этого существует множество способов.

При соответствующей доочистке, при качественной аппаратуре ВОС можно добиться того, что в конечном итоге получится вода, пригодная для питья. Многие люди бледнеют при мысли о вторичном использовании канализационных стоков, но стоит вспомнить о том, что в природе в любом случае вся вода совершает круговорот. Фактически соответствующая доочистка может обеспечить воду лучшего качества, нежели получаемая из рек и озер, не редко принимающих неочищенные канализационные стоки.

III. Основные способы водоочистки

Осветление воды

Осветление - это этап водоочистки, в процессе которого происходит устранение мутности воды путем снижения содержания в ней взвешенных механических примесей природных и сточных вод. Мутность природной воды, особенно поверхностных источников в паводковый период, может достигать 2000-2500 мг/л (при норме для воды хозяйственно-питьевого назначения - не более 1500 мг/л).

Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры, представляющие собой наиболее распространенные водоочистные сооружения. Одним из наиболее широко применяемых на практике способов снижения в воде содержания тонкодисперсных примесей является их коагулирование (осаждение в виде специальных комплексов - коагулянтов) с последующим осаждением и фильтрованием. После осветления вода поступает в резервуары чистой воды.

Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Осветление фильтрованием с предварительным коагулированием способствуют значительному снижению бактериальной загрязненности воды. Однако среди оставшихся после водоочистки в воде микроорганизмов могут оказаться и болезнетворные (бациллы брюшного тифа, туберкулёза и дизентерии; вибрион холеры; вирусы полиомиелита и энцефалита), являющиеся источником инфекционных заболеваний. Для окончательного их уничтожения вода, предназначенная для хозяйственно-бытовых целей, должна быть в обязательном порядке подвергнута обеззараживанию.

Недостатки коагуляции, отстаивания и фильтрации: затратные и недостаточно эффективные методы водоочистки, в связи с чем требуются дополнительные методы улучшения качества.)

Обеззараживание воды

Обеззараживание или дезинфекция - завершающий этап процесса водоочистки. Цель - это подавление жизнедеятельности содержащихся в воде болезнетворных микробов. Так как полного освобождения ни отстаивание, ни фильтрование не дают, с целью дезинфекции воды применяют хлорирование и другие способы, описанные ниже.

В технологии водоподготовки известен ряд методов обеззараживания воды, который можно классифицировать на пять основных групп: термический; сорбция на активном угле; химический (с помощью сильных окислителей); олигодинамия (воздействие ионов благородных металлов); физический (с помощью ультразвука, радиоактивного излучения, ультрафиолетовых лучей). Из перечисленных методов наиболее широко распространены методы третьей группы. В качестве окислителей применяют хлор, диоксид хлора, озон, йод, марганцовокислый калий; пероксид водорода, гипохлорит натрия и кальция. В свою очередь, из перечисленных окислителей на практике отдают предпочтение хлору, хлорной извести, гипохлориду натрия. Выбор метода обеззараживания воды производят, руководствуясь расходом и качеством обрабатываемой воды, эффективностью ее предварительной очистки, условиями поставки, транспорта и хранения реагентов, возможностью автоматизации процессов и механизации трудоемких работ.

Обеззараживанию подлежит вода, прошедшая предшествующие стадии обработки, коагулирование, осветление и обесцвечивание в слое взвешенного осадка или отстаивание, фильтрование, так как в фильтрате отсутствуют частицы, на поверхности или внутри которых могут находиться в адсорбированном состоянии бактерии и вирусы, оставаясь вне воздействия обеззараживающих агентов.

Вода - ценнейший природный ресурс. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Для удовлетворения разнообразных требований к качеству воды, потребляемой при выработке электрической и тепловой энергии, возникает необходимость специальной физико-химической обработки её. Качественная водоподготовка, рациональный водно-химический режим – это:
1. Гарант надёжности, экономичности, безаварийности теплоэнергетического оборудования и тепловых сетей.
2. Обеспеченность предупреждения образования всех видов отложений и коррозионных повреждений на внутренних поверхностях теплоэнергетического оборудования, элементах трассы сетевой воды, включая отопительные приборы;

Содержание

Введение 2
1.Выбор источника и производительности водоподготовки 3
2 Показатели качества воды 4
3 Методы очистки воды 6
3.1 Предочистка 7
3.2 Коагуляция коллоидных примесей воды 8
3.3 Осаждение методами известкования и содоизвесткования 9
3.4 Фильтрование воды на механических фильтрах 12
3.5 Очистка конденсатов на намывных фильтрах 15
4 Обессоливание воды 16
4.1 Умягчение воды методом ионного обмена 17
4.2.Na-катионирование. 18
4.3.Н-катионирование. 19
4.4.Анионирование воды 21
5 Термический метод очистки воды 22
5.1Метод дистилляции 22
6 Безреагентные методы. 24
6.1 Магнитная обработка 24
6.2 Ультразвуковая обработка 25
6.3 Обратный осмос. 26
6.4 Электродиализ – 28
7 Очистка воды от растворенных газов. 29
8 Удаление свободной углекислоты 30
9 Деаэрация в деаэраторах атмосферного и пониженного давления 31
10 Химические методы удаления газов из воды. 33
11 Методы обеззараживания воды. 35
11.1 Хлорирование 35
11.2 Гипохлорит натрия. 36
11.3 Озонирование. 37
11.4 Дезодорация воды. 38
11.5 Обработка воды активным углем. 39
12 Заключение. 40
12 Список литературы 41

Вложенные файлы: 1 файл

Моя водоподготовка.docx

1.Выбор источника и производительности водоподготовки 3

2 Показатели качества воды 4

3 Методы очистки воды 6

3.1 Предочистка 7

3.2 Коагуляция коллоидных примесей воды 8

3.3 Осаждение методами известкования и содоизвесткования 9

3.4 Фильтрование воды на механических фильтрах 12

3.5 Очистка конденсатов на намывных фильтрах 15

4 Обессоливание воды 16

4.1 Умягчение воды методом ионного обмена 17

4.4.Анионирование воды 21

5 Термический метод очистки воды 22

5.1Метод дистилляции 22

6 Безреагентные методы. 24

6.1 Магнитная обработка 24

6.2 Ультразвуковая обработка 25

6.3 Обратный осмос. 26

6.4 Электродиализ – 28

7 Очистка воды от растворенных газов. 29

8 Удаление свободной углекислоты 30

9 Деаэрация в деаэраторах атмосферного и пониженного давления 31

10 Химические методы удаления газов из воды. 33

11 Методы обеззараживания воды. 35

11.1 Хлорирование 35

11.2 Гипохлорит натрия. 36

11.3 Озонирование. 37

11.4 Дезодорация воды. 38

11.5 Обработка воды активным углем. 39

12 Заключение. 40

12 Список литературы 41

Введение

Вода - ценнейший природный ресурс. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве. Для удовлетворения разнообразных требований к качеству воды, потребляемой при выработке электрической и тепловой энергии, возникает необходимость специальной физико-химической обработки её. Качественная водоподготовка, рациональный водно-химический режим – это:

1. Гарант надёжности, экономичности, безаварийности теплоэнергетического оборудования и тепловых сетей.

2. Обеспеченность предупреждения образования всех видов отложений и коррозионных повреждений на внутренних поверхностях теплоэнергетического оборудования, элементах трассы сетевой воды, включая отопительные приборы;

3. Экономия сжигаемого топлива, так как образующиеся отложения на поверхности нагрева обладают высоким термическим сопротивлением, что вызывает большие потери топлива.

4. Уменьшение сбрасываемых экологических загрязнителей от теплоэнергетических объектов в биосферу, отрицательно влияющих на здоровье населения (экологическая безопасность).

Одновременно с очисткой природной воды на электростанциях необходимо решать комплексно вопросы, связанные с утилизацией различными методами образующихся при этом сточных вод. Такое решение является мерой защиты от загрязнения природных источников питьевого и промышленного водоснабжения.

Выбор метода обработки воды, составление общей схемы технологического процесса при применении различных методов, определение требований, предъявляемых к качеству её, существенно зависят от состава исходных вод, типа электростанции, применяемого основного оборудования.

На тепловых электростанциях применяются различные методы обработки воды, однако в основном их можно разделить на безреагентные, или физические методы и методы в которых используются различные препараты (химические реагенты). Безреагентные (физические) методы применяются как отдельные этапы в общем технологическом процессе обработки воды, и как самостоятельные методы, обеспечивающие получение воды требуемого качества. Применяя химическую обработку (включая также методы ионного обмена), можно получить как умягчённую, так и глубокообессоленную воду.

1.Выбор источника и производительности водоподготовки

На ТЭС с производственными отборами наряду с внутренними потерями существуют потери пара и конденсата в технологических процессах у потребителей теплоты. Эти потери должны восполняться добавочной водой, подготавливаемой на ВПУ, по качеству сопоставляемой с качеством питательной воды котлов. ВПУ для подпитки тепловых сетей. Для приготовления добавочной и подпиточной вод на электростанциях применяют:

  • Воды поверхностных источников
  • Воды артезианских скважин
  • Воды прямоточных и циркуляционных систем охлаждения конденсаторов турбин;

Так, если водоисточником является артезианская вода, в которой практически отсутствуют ГДП и органические вещества, то отпадает необходимость в предварительной ее коагуляции. Однако такая вода обычно содержит большое количество ионов двухвалентного железа, что приводит к необходимости применять методы предварительного его удаления из воды перед последующей обработкой. Преимуществом артезианской воды перед поверхностной является ее стабильный состав во все времена года, что в значительной степени облегчает эксплуатацию водоподготовительной установки. При заборе воды из поверхностного источника следует учитывать, что качество воды в нем меняется не только по сезонам, но и по годам. Так, весной и осенью в такой воде возрастают

концентрации ГДП и органических веществ и уменьшается

солесодержание, в летние и зимние месяцы — наоборот. Эти обстоятельства следует учитывать при проектировании схемы обработки воды из поверхностных источников, так как водоподготовительная установка (ВПУ) рассчитывается применительно к максимальным концентрациям того или иного вещества в природной воде. В некоторых случаях при соответствующем технико-экономическом обосновании возможно использование в качестве исходной для ВПУ воды из прямоточных или оборотных систем водоснабжения, а также очищенных сточных вод ТЭС . Место забора воды следует располагать по возможности дальше от места сброса сточных вод соседних предприятий. Производительность ВПУ должна быть достаточной для покрытия потерь воды и пара в схеме ТЭС, а также для расхода воды и пара на различные технологические нужды

2 Показатели качества воды

Качество воды характеризуется прозрачностью (содержанием взвешенных веществ), сухим остатком, жесткостью, щелочностью, окисляемостью.

Сухой остаток содержит общее количество растворенных в воде веществ: кальция, магния, натрия, аммония, железа, алюминия и др., которые остаются после выпаривания воды и высушивания остатка при 110°С. Сухой остаток выражают в миллиграммах на килограмм или в микрограммах на килограмм.

Жесткость воды характеризуется суммарным содержанием в воде солей кальция и магния, являющихся накипеобразователями. Различают жесткость общую, временную (карбонатную) и постоянную (некарбонатную).

Общая жесткость представляет собой сумму величин временной и постоянной жесткости и характеризуется суммой содержания в воде кальциевых и магниевых солей: сернокислых (СаSО4 и МgSО4), хлористых (СаС12 и МgС12), азотнокислых (Са(NО3)2 и Мg(NО3)2), кремнекислых (СаSiO3 и МgSiO3), фосфорнокислых (Са3(РО4)2 и Мg(РО4)2), двууглекислых (Са(НСО3)2 и Мg(НСО3)2).

Временная жесткость характеризуется содержанием в воде бикарбонатов кальция и магния Са(НСО3)2 и Мg(НСО3)2. Постоянная жесткость обусловливается содержанием указанных выше солей кальция и магния, за исключением двууглекислых.

Для определения величины жесткости в настоящее время установлена единица показателя жесткости — миллиграмм-эквивалент на 1 кг раствора (мг-экв/кг) или микрограмм-эквивалент на 1 кг раствора (мкг-экв/кг); 1 мг-экв/кг жесткости соответствует содержанию 20,04 мг/кг иона кальция Са + или 12,16 мг/кг иона магния Мg 2 + .

Щелочность воды характеризуется содержанием в ней щелочных соединений. Сюда относят гидраты, например NаОН — едкий натр, карбонаты Nа2СО3 — кальцинированная сода, бикарбонаты NаНСО3, Na3РО4 и др. Величина щелочности воды равна суммарной концентрации в ней гидроксильных, карбонатных, бикарбонатных, фосфатных и других анионов слабых кислот, выраженной в эквивалентных единицах (мг-экв/кг или мкг-экв/кг). В зависимости от преобладающего наличия в воде анионов тех или иных солей различают щелочность: гидратную (концентрация в воде гидроксильных анионов ОН), карбонатную (концентрация карбонатных анионов CO3²¯) и бикарбонатную (концентрация бикарбонатных анионов НСОз³¯.).

Окисляемость воды характеризуется наличием в воде кислорода и двуокиси углерода, выраженных в миллиграммах или микрограммах на килограмм.

В зависимости от характера использования воды различными потребителями определяются и показатели, необходимые для качественной и количественной характеристики воды.

Важнейшими показателями качества воды для использования ее в теплоэнергетике являются;

– концентрация грубодисперсных веществ (ГДП);

– концентрация истинно-растворимых примесей (ионный состав);

– концентрация коррозионно-активных газов;

– концентрация ионов водорода;

– технологические показатели, в которые входят сухой и прокаленный остаток, окисляемость, жесткость, щелочность, кремнесодержание, удельная электропроводность и т.д.

Рассмотрим воду реки Шексна г.Череповец со следующими показателями

Содержание ионов: Na + +K + = 9.2мг/дм 3 ,=97.62мг/дм 3 , =2 мг/дм 3

=0 мг/дм 3 , SiO2 +=6.9 мг/дм 3

Сухой остаток 288 мг/дм 3

Щёлочность 2мг-экв/дм 3

Жёсткость Ж0=3,9мг-экв/дм 3 , ЖСа=2,7мг-экв/дм 3

Если очистка воды от тяжёлых ГДП может быть принципиально осуществлена обычным отслаиванием, время которого определяется размером и удельной массой частиц, то коллоидные примеси за счёт их особого свойства(агрегативной устойчивости) могут быть выделены из воды только методом коагуляции.

3 Методы очистки воды

Разнообразие примесей, которые должны быть удалены из воды, а также методов, применяемых при ее обработке на котельных и ТЭС, усложняют поиск оптимальных решений при выборе схем и аппаратов в каждом конкретном случае.

Поэтому очевидна необходимость классификации методов очистки и удаляемых примесей. Наиболее известны классификации Л.А. Кульского и М.И. Лапшина. В основе классификации Л.А. Кульского лежит различие характера удаляемых примесей. Загрязненные воды представляют собой гомогенные или гетерогенные системы, которые соответственно подразделяются на ионные, молекулярные, коллоидные растворы и взвеси. К каждой из четырех групп вод (систем) подобраны соответствующие наиболее эффективные методы очистки воды, области их применения, состав очистных сооружений и т.д. Однако в этой классификации не учитывается характер отдельных примесей.

В классификации М.И. Лапшина, наоборот, основным классификационным признаком является характер и состояние удаляемых при очистке примесей; при этом методы очистки подразделяются на следующие группы:

  • методы непосредственного выделения примесей, например отстаивание;
  • методы выделения примесей с изменением фазового состояния воды или примеси, например деаэрация;
  • методы превращения примесей, например образование труднорастворимых соединений (известкование);
  • биохимические методы.

Обе классификации имеют достоинства и недостатки, но дополняя друг друга, помогают выбору оптимального решения схем ВПУ на котельных и ТЭС с точки зрения как повышения эффективности очистки воды, так и возможности утилизации извлеченных из нее при очистке примесей для предотвращения загрязнений окружающей среды. Многообразие примесей в природной воде служит причиной того, что очистка добавочной воды для подпитки котлов организуется в несколько стадий на ВПУ.

На начальном этапе из воды выделяются грубодисперсные и коллоидные вещества, а также снижается бикарбонатная щелочность этой воды. На дальнейших этапах производится очистка воды от истинно-растворимых примесей.

Начальный этап очистки воды.

3.1 Предочистка

Необходима для улучшения технико-экономических показателей последующих этапов очистки воды, а также потому, что при отсутствии предочистки применение многих методов на последующих ступенях очистки встречает значительные затруднения. Так, наличие в воде органических веществ приводит к изменению технологических свойств анионитов, способствует их старению, а следовательно, к резкому (в 4–8 раз) снижению срока службы. Присутствие в воде ионов железа в концентрации свыше 50 мкг/дм 3 вызывает отравление мембран при очистке воды электролизом. Неудовлетворительная очистка воды от грубодисперсных и коллоидных примесей является одной из причин образования накипей на поверхностях нагрева и ухудшению качества пара. Поэтому в настоящее время предочистке воды в схемах подготовки добавочной и подпиточной воды придается важное значение.

Предочистка-воды может быть осуществлена в основном методами осаждения, при применении которых примеси выделяются из воды в виде осадка. Эти методы называются также реагентными, так как для выделения примесей в воду дозируются специальные реагенты. К процессам осаждения, применяемым в настоящее время при предочистке воды, относятся; коагуляция, известкование, магнезиальное обескремнивание. Как правило, эти процессы совмещаются и проводятся одновременно в одном аппарате – осветлителе, что целесообразно как для улучшения суммарного технологического эффекта процесса очистки воды, так и для снижения капитальных и эксплуатационных затрат.

Первичное осветление воды производится в осветлителях, а окончательно очистка от осадка осуществляется при помощи процесса фильтрования, который также относится к предочистке воды, но является безреагентным методом.

3.2 Коагуляция коллоидных примесей воды

Коагуляция – это физико-химический процесс слипания коллоидных частиц под действием сил молекулярного притяжения с образованием грубодисперстной макрофазы(флоккул) и с последующим выделением её из воды. В практике водоподготовки под коагуляцией понимают очистку воды от коллоидных веществ с одновременной очисткой от грубодисперстных примесей и обесцвечивание воды путём дозировки в обрабатываемую воду специального реагента – коагулянта. Который образует новую дисперстную систему со знаком заряда частиц, противоположным знаку заряда каллоидов природных вод (обычно зараженных отрицательно). При этом происходит взаимная коагуляция разноимённых заряженных коллоидов при их взаимодействии с дестабилизированными участками поверхности, называемая гетерокоагуляцией. В дальнейшем микрохлопья сцепляются, захватывая грубодисперстные примеси и воду, и образуют коагуляционную структуру в виде хлопьев (флоккул) размером 0,5-3мм. Макрофаза затем выделяется из воды в аппаратах для коагуляции- осветлителях и далее в пористой загрузке осветлительных фильтров. В качестве коагулянтов применяют ; сульфат алюминия AL2(SO4)2 *18H2O или сульфат двухвалентного железа FeSO4*7H2O , причём последний используют при совмещении процессов коагуляции и известкования в осветлителях. Процесс коагуляции требует для своего завершения время (4-5минут). Хлопья, вначале невидимые, постепенно соединяются в крупные комплексы, вызывая помутнение воды. Затем образуются более крупные рыхлые хлопья, захватывающие ГДП и воду. Режим потока воды влияет на формирование хлопьев. Скорость воды в зоне формирования не должна превышать 1,5мм /сек. Температура 30-40 и перемешивание вызывает более частые и сильные столкновения коагулируемых частиц, приводящие к их слипанию. Дозировка коагулянта определяется составом коллоидных примесей и солесодержанием обрабатываемой воды. Обычно 0,3-0,8мг-экв/дм 3 . Значение рН среды оказывает влияние на скорость гидролиза коагулянта,а также на состояние удаляемых из воды примесей. При коагуляции сернокислым алюминием оптимальное значение рН, устанавливаемое экспериментально находится в пределах 5,5-7,5.

Читайте также: