Темы рефератов по теории игр

Обновлено: 04.07.2024

Проблема выполнения различных вычислений была актуальна во все времена. По мере развития общественно-экономических отношений усложнялись поставленные задачи, которые для своего решения требовали разработки новых методов вычислений. На смену простейшим арифметическим и геометрическим вычислениям пришли алгебраические и тригонометрические вычисления. Организация современного производства требует не только наличия современных станков и оборудования, но и разработки новых технологических процессов и современных методов управления производством. Для решения каждой из поставленных задач разрабатываются математические модели, анализируя которые удается найти наилучшее решение поставленной задачи. Создание математической модели – сложная кропотливая работа, которая в современных условиях под силу коллективам разработчиков. Для создания математической модели одного и того же объекта различные коллективы могут использовать различный математический аппарат. После создания математической модели специалистами-аналитиками за дело принимаются специалисты-программисты, которые реализуют созданную модель в виде программных кодов. Далее с математической моделью работают специалисты-практики. Целенаправленно воздействуя на модель, они изучают ее поведение и подбирают оптимальный режим работы для реального объекта. Одной из таких моделей является игровая модель и поиск стратегий поведений в условиях полной или частичной неопределенности. В очень редких (исключительных) случаях для игровых моделей можно определить количественную оценку или указать оптимальное решение. В игровых моделях не ставится задача найти какое-то числовое решение, а требуется лишь или очертить область возможных решений, или предоставить некоторые дополнительные сведения о возможном развитии событий и рекомендовать правила поведения.

Обзор литературы

1. Основные понятия теории игр

Игры с противодействием часто называют конфликтными ситуациями, которые широко распространены в обществе. Например, конкурентная борьба в экономике, в спортивных соревнованиях, состязание сторон в ходе судебного заседания и т.д. Игровая модель, в отличии от конфликтной ситуации, строится по определенным законам, а игроки придерживаются определенных правил.

Конфликтная же ситуация, строго говоря, развивается спонтанно.

Участниками игры (конфликтной ситуации) могут быть минимум два человека (парная игра) или несколько человек (множественная игра). Игра развивается по оговоренным правилами. Игроки по очереди делают свои ходы. Естественно, перед каждым ходом игрок может или сохранить предыдущую стратегию или применить новую стратегию. Если игрок при выборе очередного хода придерживаются каких-либо правил, то такая игра носит название стратегической. Однако игрок во время игры может менять вариант своего поведения (но не правил), т.е. сменить стратегию.

Возможные варианты (исходы) игры сводятся в прямоугольную таблицу (табл. 1.1) – платежную матрицу, в которой строки соответствуют различным стратегиям игрока А, столбцы – стратегиям игрока В, ai j называется выигрыш первого игрока.

Теория игр, раздел математики, изучающий формальные модели принятия оптимальных решений в условиях конфликта. В условиях конфликта стремление противника скрыть свои предстоящие действия порождает неопределённость. Наоборот, неопределённость при принятии решений (например, на основе недостаточных данных) можно интерпретировать как конфликт принимающего решения субъекта с природой. Поэтому Теория игр рассматривается также как теория принятия оптимальных решений в условиях неопределённости. Она позволяет математизировать некоторые важные аспекты принятия решений в технике, сельском хозяйстве, медицине и социологии. Перспективен подход с позиций Теории игр к проблемам управления, планирования и прогнозирования.

Основным в Теории игр является понятие игры, являющееся формализованным представлением о конфликте. Точное описание конфликта в виде игры состоит поэтому в указании того, кто и как участвует в конфликте, каковы возможные исходы конфликта, а также кто и в какой форме заинтересован в этих исходах. Участвующие в конфликте стороны называются коалициями действия; доступные для них действия -- их стратегиями; возможные исходы конфликта -- ситуациями (обычно каждая ситуация понимается как результат выбора каждой из коалиций действия некоторой своей стратегии); стороны, заинтересованные в исходах конфликта, -- коалициями интересов; их интересы описываются предпочтениями тех или иных ситуаций (эти предпочтения часто выражаются численными выигрышами). Конкретизация перечисленных объектов и связей между ними порождает разнообразные частные классы игр.

2. Кооперативная теория игр

Если в игре имеется единственная коалиция действия, то стратегии этой коалиции можно отождествить с ситуациями и далее больше уже о стратегиях не упоминать. Такие игры называются нестратегическими. Класс нестратегических игр весьма обширен. К их числу относятся, в частности, кооперативные игры.

Примером нестратегической (кооперативной) игры может служить простая игра, состоящая в следующем. Множеством ситуаций являются в ней всевозможные распределения (дележи) между игроками некоторого количества однородной полезности (например, денег). Каждый делёж описывается теми суммами, которые при этом получают отдельные игроки. Коалиция интересов называется выигрывающей, если она может даже в условиях противодействия со стороны всех остальных игроков присвоить и разделить между своими членами всю имеющуюся полезность. Все коалиции, не являющиеся выигрывающими, совсем не могут присвоить какой-либо доли полезности. Такие коалиции называются проигрывающими. Естественно считать, что выигрывающая коалиция предпочитает один делёж другому, если доля каждого из её членов в условиях первого дележа больше, чем в условиях второго. Проигрывающие же коалиции не могут сравнивать дележи по предпочтительности (это условие также вполне естественно: коалиция интересов, которая сама не в состоянии добиться ничего, вынуждена соглашаться на любой делёж и лишена возможности выбора между дележами).

Если в игре имеется более одной коалиции действия, то игра называется стратегической. Важный класс стратегических игр составляют бескоалиционные игры, в которых коалиции действия совпадают с коалициями интересов (они называются игроками), а предпочтения для игроков описываются их функциями выигрыша: игрок предпочитает одну ситуацию другой, если в первой ситуации он получает больший выигрыш, чем во второй.

3. Антагонистические и позиционные игры

Если в бескоалиционной игре участвуют два игрока, а значения их функций выигрыша в любой ситуации отличаются только знаками, то игра называется антагонистической игрой; в ней выигрыш одного из игроков в точности равен проигрышу другого. Если в антагонистической игре множества стратегий обоих игроков конечны, то игра называется матричной игрой ввиду некоторой специфической возможности её описания.

Антагонистические игры (матем.), понятие теории игр. Антагонистические игры -- игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В -- множества стратегий игроков, а Н (а, b) -- вещественная функция (функция выигрыша) от пар (а, b), где а ? A, b ? В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, -- минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми.

Матричные игры - игры, в которых участвуют два игрока (I и II) с противоположными интересами, причём каждый игрок имеет конечное число чистых стратегий. Если игрок I имеет m стратегий, а игрок II -- n стратегий, то игра может быть задана (m ? n)-maтрицей А = ||aij||, где aij есть выигрыш игрока I, если он выберет стратегию i (i = -1. m), а игрок II -- стратегию j (j = 1. n).

В качестве другого примера бескоалиционной игры можно привести шахматы. В этой игре участвуют два игрока (белые и чёрные). Стратегия каждого из игроков есть мыслимое (хотя практически и не поддающееся детальному описанию) правило выбора в каждой возможной позиции некоторого хода, допускаемого движениями фигур. Пара таких правил (за белых и за чёрных) составляет ситуацию, которая полностью определяет протекание шахматной партии и в том числе её исход. Функция выигрыша белых имеет значение 1 на выигрываемых партиях, 0 на ничейных и -- 1 на проигрываемых (такой способ начисления очков практически ничем не отличается от принятого в турнирной и матчевой практике). Функция выигрыша чёрных отличается от функции выигрыша белых лишь знаком. Из сказанного видно, что шахматы относятся к числу антагонистических и притом матричных игр. В шахматах стратегии не выбираются игроками до начала игры, а реализуются постепенно, ход за ходом. Это значит, что шахматы принадлежат к позиционным играм.

Позиционные игры, класс бескоалиционных игр, в которых принятие игроками решений (т. е. выбор ими стратегий) рассматривается как многошаговый или даже непрерывный процесс. Другими словами, в П. и. в ходе процесса принятия решений субъект проходит последовательность состояний, в каждом из которых ему приходится принимать некоторое частичное решение. Поэтому в П. и. стратегии игроков можно понимать как функции, ставящие в соответствие каждому информационному состоянию игрока (т. е. состоянию, характеризуемому информацией игрока о положении дел в игре в данный момент) выбор некоторой возможной в этом состоянии альтернативы.

И. т. является нормативной теорией, тоесть предметом её изучения являются не столько сами модели конфликтов (игры), как таковые, сколько содержание принимаемых в играх принципов оптимальности, существования ситуаций, на которых эти принципы оптимальности реализуются (такие ситуации или множества ситуаций называются решениями в смысле соответствующего принципа оптимальности), и, наконец, способы нахождения таких ситуаций. Рассматриваемые в И. т. объекты -- игры -- весьма разнообразны, и пока не удалось установить принципов оптимальности, общих для всех классов игр. Практически это означает, что единого для всех игр истолкования понятия оптимальности ещё не выработано. Поэтому прежде чем говорить, например, о наивыгоднейшем поведении игрока в игре, необходимо установить, в каком смысле эта выгодность понимается. Все применяемые в И. т. принципы оптимальности при всём их внешнем разнообразии отражают прямо или косвенно идею устойчивости ситуаций или множеств ситуаций, составляющих решения. В бескоалиционных играх основным принципом оптимальности считается принцип осуществимости цели, приводящий к ситуациям равновесия. Эти ситуации характеризуются тем свойством, что любой игрок, который отклонится от ситуации равновесия (при условии, что остальные игроки не изменят своих стратегий), не увеличит этим своего выигрыша.

В частном случае антагонистических игр принцип осуществимости цели превращается в так называемый принцип максимина (отражающий стремление максимизировать минимальный выигрыш).

Принципы оптимальности (первоначально выбиравшиеся интуитивно) выводятся на основании некоторых заранее задаваемых их свойств, имеющих характер аксиом. Существенно, что различные применяемые в И. т. принципы оптимальности могут противоречить друг другу.

Теоремы существования в И. т. доказываются преимущественно теми же неконструктивными средствами, что и в других разделах математики: при помощи теорем о неподвижной точке, о выделении из бесконечной последовательности сходящейся подпоследовательности и т. п., или же, в весьма узких случаях, путём интуитивного указания вида решения и последующего нахождения решения в этом виде.

Фактическое решение некоторых классов антагонистических игр сводится к решению дифференциальных и интегральных уравнений, а матричных игр -- к решению стандартной задачи линейного программирования. Разрабатываются приближённые и численные методы решения игр. Для многих игр оптимальными оказываются так называемые смешанные стратегии, то есть стратегии, выбираемые случайно (например, по жребию).

4. Задача

Предприятие может выпускать два вида продукции, используя один набор компонентов, причем количество выпускаемой продукции определяется целыми числами. Прибыль, получаемая предприятием от продажи единицы продукции каждого вида, расход каждого из компонентов на производство единицы продукции каждого вида и лимиты по каждому из компонентов представлены в Таблице 1.

Необходимо определить количество продукции каждого вида, которое необходимо выпустить для получения максимальной прибыли при условии не перерасходования лимитов по компонентам. Данная задача решается

Математическая формулировка задачи:

х, х - выпускаемое количество продукции.

1. Вводим исходные данные (Таблица 1).

2. Вводим формулы в ячейки, значения которых нам неизвестны.

3. Выполнить команду Сервис > Поиск решения. Откроется диалоговое окно Поиск решения.(Рисунок 2).

· Установить курсор в поле Установить целевую ячейку диалогового окна и щелкнуть мышкой на целевой ячейке В8.

· Устанавить максимальное значание.

· Установить курсор в поле Изменяя ячейки и выделить диапазон изменяемых ячеек В6:С6.

· Установить курсор в поле Ограничения, щелкнуть кнопку Добавить и вводить в появившееся диалоговое окно (Рисунок 1) поочередно все необходимые ограничения.

· Щелкнуть на кнопке Выполнить диалогового окна Поиск решения.

Результаты поиска решения представлены в Таблице 2, Рисунок 3.

Решив задачу, я определила, что количество выпускаемой продукции первого типа равно 2 ед., второго - 0 ед., т.е. производство продукции второго типа будет нерентабельным и поэтому будет лучше отказаться от выпуска этой продукции. Общая прибыль равна 10. При этом соблюдены все введенные мною ограничения.

Заключение

И. т., созданная для математического решения задач экономического и социального происхождения, не может в целом сводиться к классическим математическим теориям, созданным для решения физических и технических задач. Однако в различных конкретных вопросах И. т. широко используются весьма разнообразные классические математические методы. Кроме этого, И. т. связана с рядом математических дисциплин внутренним образом. В И. т. систематически и по существу употребляются понятия теории вероятностей. На языке И. т. можно сформулировать большинство задач математической статистики.

И. т. применяется в экономике, технике, военном деле и даже в антропологии. Основные трудности практического применения И. т. связаны с экономической и социальной природой моделируемых ею явлений и недостаточным умением составлять такие модели на количественном уровне.

Список использованной литературы

1. Шикин Е.В., Чхартишвили А.Г. Математические методы и модели в управлении: Учеб.пособие. - 2-е изд., испр. - М.: Дело, 2002.

2. Трояновский В.М. Математическое моделирование в менеджменте. Учебное пособие. 2-е изд., испр. и доп. - М.: Издательство РДЛ. 2003.

Проблема выполнения различных вычислений была актуальна во все времена. По мере развития общественно-экономических отношений усложнялись поставленные задачи, которые для своего решения требовали разработки новых методов вычислений. На смену простейшим арифметическим и геометрическим вычислениям пришли алгебраические и тригонометрические вычисления. Организация современного производства требует не только наличия современных станков и оборудования, но и разработки новых технологических процессов и современных методов управления производством. Для решения каждой из поставленных задач разрабатываются математические модели, анализируя которые удается найти наилучшее решение поставленной задачи. Создание математической модели – сложная кропотливая работа, которая в современных условиях под силу коллективам разработчиков. Для создания математической модели одного и того же объекта различные коллективы могут использовать различный математический аппарат. После создания математической модели специалистами-аналитиками за дело принимаются специалисты-программисты, которые реализуют созданную модель в виде программных кодов. Далее с математической моделью работают специалисты-практики. Целенаправленно воздействуя на модель, они изучают ее поведение и подбирают оптимальный режим работы для реального объекта. Одной из таких моделей является игровая модель и поиск стратегий поведений в условиях полной или частичной неопределенности. В очень редких (исключительных) случаях для игровых моделей можно определить количественную оценку или указать оптимальное решение. В игровых моделях не ставится задача найти какое-то числовое решение, а требуется лишь или очертить область возможных решений, или предоставить некоторые дополнительные сведения о возможном развитии событий и рекомендовать правила поведения.

Обзор литературы

1. Основные понятия теории игр

Игры с противодействием часто называют конфликтными ситуациями, которые широко распространены в обществе. Например, конкурентная борьба в экономике, в спортивных соревнованиях, состязание сторон в ходе судебного заседания и т.д. Игровая модель, в отличии от конфликтной ситуации, строится по определенным законам, а игроки придерживаются определенных правил.

Конфликтная же ситуация, строго говоря, развивается спонтанно.

Участниками игры (конфликтной ситуации) могут быть минимум два человека (парная игра) или несколько человек (множественная игра). Игра развивается по оговоренным правилами. Игроки по очереди делают свои ходы. Естественно, перед каждым ходом игрок может или сохранить предыдущую стратегию или применить новую стратегию. Если игрок при выборе очередного хода придерживаются каких-либо правил, то такая игра носит название стратегической. Однако игрок во время игры может менять вариант своего поведения (но не правил), т.е. сменить стратегию.

Возможные варианты (исходы) игры сводятся в прямоугольную таблицу (табл. 1.1) – платежную матрицу, в которой строки соответствуют различным стратегиям игрока А, столбцы – стратегиям игрока В, ai j называется выигрыш первого игрока.

Нажмите, чтобы узнать подробности

Актуальность данной темы обусловлена тем, что математика соприкасается с обыденной жизнью гораздо теснее, чем этому учат традиционно в школе. Мир промышленности, страховые компании в большей степени являются должниками вероятностных законов. Между тем, несмотря на эту важность, универсальный характер данной теории всё еще не стал общепринятым. Лотереи, азартные игры, выборные кампании, страховые компании и т.п.

Муниципальное казенное общеобразовательное учреждение

Научно-исследовательская работа

Руководитель: Алабина Галина Юрьевна

7.5 Равновесие Нэша.100$. …..…………………………………. ……. 29

Гипотеза: большинство считают, что предугадать результат азартных игр, в которых властвует случай, невозможно. Это не так. Математическое ожидание выигрыша - величина, которая поможет нам определить, справедлива ли та или иная игра, и выгодно ли нам в нее играть.

Цель работы: привести примеры использования теории игр в различных играх; продемонстрировать возможности теории игр при решении определенных жизненных задач.

1. Подобрать необходимую литературу

2.Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

3.Проанализировать и систематизировать полученную информацию

4. Выяснить, можно ли с помощью теории игр предсказать исход ряда игр

5.Рассчитать вероятность наступления выигрыша

6. Исследовать методику решения различных видов игр

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ

Моя тема актуальна, так как математика соприкасается с обыденной жизнью гораздо теснее, чем этому учат традиционно в школе. Мир промышленности, страховые компании в большей степени являются должниками вероятностных законов. Между тем, несмотря на эту важность, универсальный характер данной теории всё еще не стал общепринятым. Лотереи, азартные игры, выборные кампании, страховые компании и т.п.

Игры сопровождают нас всю жизнь. Едва родившись, ребёнок начинает познавать окружающий мир с помощью игр. Сначала он пытается дотянуться до игрушки, висящей у него на кроватке.

Став старше, малыш с удовольствием играет в мяч.

Проходит время, ребёнок растёт, и игры его тоже меняются. Кто то

играет в спортивные игры, кто-то открывает для себя мир компьютерных

Став взрослым, человек не оставляет игры.

Кто-то играет в карточные игры, кто-то в рулетку, а кто-то пытается ухватить за хвост сказочную жар-птицу, пытая счастье игрой разного рода лотереи.

В своей исследовательской работе я хотела бы изучить историю

возникновения и развития теории игр, понять основные

определения, а также выяснить можно ли с помощью теории игр предсказать исход ряда игр, рассчитать вероятность наступления выигрыша и ответить на главный вопрос: можно ли заработать игрой в данные игры.

Теория игр - это логико-математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более стороны, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж. Бертраном. Вначале XX в. Э. Ласкер, Э. Цермело, Э. Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна “Теория игр и экономическое поведение” (англ. Theory of Games and Economic Behavior).

Американский математик Дж. Нэш в 1949 году написал диссертацию по теории игр, а через 45 лет получил Нобелевскую премию по экономике. Дж. Нэш после окончания Политехнического института Карнеги с двумя дипломами — бакалавра и магистра — поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Дж. Нэш разработал принципы “управленческой динамики”. Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия “равновесие по Нэшу”, или “некооперативное равновесие”, в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Дж. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Дж. Нэш показывает, что классический подход к конкуренции Адама Смита, когда каждый сам за себя, не оптимален. Более оптимальными являются такие стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Хотя теория игр первоначально и рассматривала экономические модели, вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960—1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 — 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. “Стратегия конфликта”. Т. Шеллинг рассматривает различные “стратегии” поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии (это психологическая дисциплина) и в управлении конфликтами в организации (теория менеджмента). В психологии и других науках используют слово “игра” в других смыслах, нежели чем в математике. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Культурологическое понятие игры было дано в работе Йохана Хёйзинги “Homo Ludens” (статьи по истории культуры), автор говорит об использовании игр в правосудии, культуре, этике; говорит о том, что игра старше самого человека, так как животные тоже играют. Понятие игры встречается в концепции Эрика Бёрна “Игры, в которые играют люди, люди, которые играют в игры”. Это сугубо психологические игры, основанные на транзакционном анализе. Понятие игры у Й. Хёйзинга отличается от интерпретации игры в теории конфликтов и математической теории игр.

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако математический аппарат теории игр является предельно затратным и на самом деле субъективным. Математики применяют его для оправданных задач: политика, экономика монополий и распределения рыночной власти и т. п., часто скрывая реально используемые совсем не математические механизмы принятия решений. Ряд известных ученых стали Нобелевскими лауреатами по экономике за вклад в развитие теории игр, которая описывает социально-экономические процессы. Дж. Нэш, благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения “холодной войны”, что подтверждает масштабность задач, которыми занимается теория игр.

Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали: Роберт Ауманн, Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Уильям Викри, Джеймс Миррлис, Томас Шеллинг, Джордж Акерлоф, Майкл Спенс, Джозеф Стиглиц, Леонид Гурвиц, Эрик Мэскин, Роджер Майерсон, Ллойд Шепли, Элвин Рот.

Читайте также: