Технология получения трансгенных животных реферат

Обновлено: 02.07.2024


Москва 2013 г.
Содержание


Введение…………………………………………………………………………. 3
1. МЕТОДЫ ТРАНСГЕНЕЗА В ЖИВОТНОВОДСТВЕ……………………….4
1.1 Метод микроинъекции…………………………………………………4
1.2 Использование ретровирусных векторов…………………………….7
1.3 Метод пересадки ядер клеток, культивируемых in vitro…………. 15
1.4 Липосомы как переносчики ДНК……………………………………17
1.5Использование половых клеток семенников (спермии и сперматогонии)…………………………………………………………………..17
2. Факторы повышения экспрессии трансгенов в организме животных…….21
3. Перспективы генно-инженерных работ в животноводстве……………. 25

В настоящее время используются несколько подходов в получении трансгенных животных. Наиболее широко распространен методмикроинъекций чужеродной ДНК (чДНК) в пронуклеусы зигот. Оптимальные условия для проведения микроинъекций в пронуклеусы зигот мышей описаны в работе Бринстера и соавторов (1994).
Величина вводимой ДНК может достигать 30 Mb. Интеграция нескольких копий (от 1 до нескольких сотен) экзогенной ДНК в геном происходит, как правило, в одном сайте в ориентации "голова к хвосту" или "голова к голове". При инъекции несколькихрекомбинантных конструкций, их встраивание в геном, также происходит в одном сайте.
Другой подход в получении трансгенных животных заключается в инфицировании ранних эмбрионов млекопитающих рекомбинантными ретровирусами. Недостатком этого метода является получение трансгенных животных с мультисайтовой интеграцией трансгена и его нестабильной наследуемостью в поколениях.
Еще одним подходом в получениитрансгенных животных является использование трансформированных чужеродной ДНК, эмбриональных стволовых клеток, путем инъекции последних в полость бластоцисты. Основным преимуществом данного метода является возможность проводить направленный мутагенез на уровне целого организма, при помощи гомологичной рекомбинации чужеродной ДНК с геномной ДНК.
Для получения трансгенных животных использовались идругие методы, к которым относятся: применение сперматозоидов, обработанных экзогенной ДНК, для оплодотворения яйцеклеток в условиях in vitro; использование липосом в качестве вектора чужеродной ДНК.
1. МЕТОДЫ ТРАНСГЕНЕЗА В ЖИВОТНОВОДСТВЕ

Трансгенные животные - это индивидуумы, в геном которых искусственно введена дополнительная генетическая информация (трансген). Такая информация представляет собойлибо отдельный участок ДНК с собственными (гомологичными) регуляторными последовательностями (эукариотическая транскрипционная единица), либо сконструированный из различных молекул ДНК гибридный (рекомбинантный) ген. Таким образом, трансген - это искусственно введенный и интегрировавшейся в ДНК животных чужеродный ген. Под трансгенезом понимают процесс переноса и интеграции чужероднойгенетической информации в геном животных.

1.1 Метод микроинъекции

Впервые о получении трансгенных сельскохозяйственных животных сообщили две лаборатории в США и Германии [Hammer et al, 1985; Brem et al., 1985]. В обоих случаях для переноса генных конструкций в эмбриональные линии был использован метод микроинъекции. Этот метод и сегодня остается наиболее широко используемым для трансгенеза в животноводстве.
Сутьметода микроинъекции заключается во введении раствора генных конструкций в мужской пронуклеус зигот. Обычно инъецируют 1-2 пкл раствора ДНК в концентрации, соответствующей 1000 копиям в 1 пкл микроинъекционного раствора. При этом исходят из того, что количество 1000 копий/пкл приблизительно соответствует концентрации X нг/мкл, где X - длина.

Включение чужеродных последовательностей ДНК или трансгенов в геном макроорганизма — реципиента с последующей устойчивой их наследуемостью в ряду поколений обеспечивает получение так называемых трансгенных животных. Следовательно, процесс трансгенеза по своему механизму относится к генетической инженерии и, в частности, к генной и клеточной инженерии.

Файлы: 1 файл

Технология получения трансгенных животных.pptx

Технология получения трансгенных животных

Включение чужеродных последовательностей ДНК или трансгенов в геном макроорганизма — реципиента с последующей устойчивой их наследуемостью в ряду поколений обеспечивает получение так называемых трансгенных животных. Следовательно, процесс трансгенеза по своему механизму относится к генетической инженерии и, в частности, к генной и клеточной инженерии.

Среди большого разнообразия способов внедрения экзогенной ДНК в геном животного можно выделить следующие, которые нашли широкое применение в практике трансгеноза:

    • - метод микроинъекции,
    • - опосредованный ретровирусами перенос генов,
    • - использование модифицированньгх эмбриональных стволовых клеток,
    • - перенос трансформированных ядер генеративных и соматических клеток,
      • Микроинъекции рекомбинантной ДНК в оплодотворенные ооциты многоклеточных животных пока остаются наиболее популярным способом введения чужих генов в организм животных. Первой и наиболее хорошо разработанной экспериментальной системой для получения трансгенных животных явилась мышь. Донорных самок мышей с экспериментальной суперовуляцией скрещивают с самцами-производителями, через 12 ч выделяют оплодотворенные яйцеклетки и помещают их в культуру. Далее в больший их двух пронуклеусов (обычно мужской) инъецируют рекомбинантную ДНК (рис. 1). Пережившие инъекцию яйцеклетки пересаживают самкам-реципиентам. Только часть трансплантированных ооцитов продолжает развиваться до рождения детенышей.
      • На частоту интеграции экзогенной ДНК при использовании метода микроинъекции оказывают влияние такие факторы, как чистота вводимого образца, форма и концентрация ДНК, состав буферного раствора для микроинъекции, качество эмбрионов, а также способ пересадки эмбрионов реципиентам (нехирургический, хирургический, лапароскопический).
      • Трансгенных животных в потомстве идентифицируют различными методами, чаще всего ПЦР, и скрещивают для получения трансгенных линий. Некоторые из трансгенных животных оказываются мозаичными (половые клетки не содержат экзогенной ДНК), поэтому при скрещивании трансгенным оказывается меньшая часть потомства первого поколения, чем расчетные 50 %. В ряде случаев гомозиготные линии получить не удается, поскольку 5-15 % трансгенных инсерций в гомозиготном состоянии летальны, так как инсерция иногда нарушает жизненно-важные части генома.

      Рис. 1. Микроинъекция экзогенной ДНК в пронуклеус оплодотворенной яйцеклетки млекопитающих под микроскопом (а) и схема
      эксперимента (б)

      Опосредованный ретровирусами перенос генов

        • Ретровирусные векторы также используются для получения трансгенных животных. Инфицирование предимплантационных эмбрионов рекомбинантными ретровирусами - относительно несложная эффективная процедура.
        • Восьмиклеточную морулу (рис. 2) освобождают от яйцевой оболочки и помещают в культуральную чашку с фибробластами, продуцирующими рекомбинантный ретровирус. Инфицированные эмбрионы, достигшие стадии бластулы, имплантируют псевдобеременным самкам. В результате формируются трансгенные организмы, мозаичные по числу и локализации встроек рекомбинантной ДНК в геном. Поэтому для получения чистых линий далее необходим масштабный аутбридинг.
        • Недостатком метода является ограничение вставки экзогенной ДНК ~8 тнп, вследствие чего трансген может оказаться лишенным прилегающих регуляторных последовательностей, необходимых для его экспрессии, а в некоторых случаях интеграция в исходный локус нестабильна.
        • Новые лентивирусные векторы (лентивирусы принадлежат семейству ретровирусов) показали свою очень высокую эффективность при доставке ДНК в ооциты и зиготы. Инъекция рекомбинантных лентивирусных конструкций в перивителлиновое пространство свиных зигот и коровьих ооцитов привело к появлению потомства с самой высокой на данный момент долей трансгенных особей. В то же время лентивирусные векторы обладают всеми недостатками ретровирусных: малый размер вставки экзогенной ДНК и множественная интеграция в хозяйский геном, которая может привести к таким нежелательным побочными эффектам, как активация онкогенов и инсерционный мутагенез. Кроме того, для лентивирусных векторов наблюдается высокая степень мозаичности получаемого трансгенного потомства и отдельные факты сайленсинга (инактивации) лентивирусных рекомбинантных последовательностей в полученных трансгенных линиях.

        Рис. 2. Схема получения линии трансгенных мышей с использованием ретровирусных векторов

        Использование модифицированных эмбриональных стволовых клеток.

          • Модифицированные эмбриональные стволовые клетки могут быть использованы для получения трансгенных животных. Клетки, выделенные из мышиных эмбрионов на стадии бластоцисты, могут пролиферировать в культуре, сохраняя способность к дифференцировке в любые типы клеток, в том числе и в клетки зародышевой линии, при введении в другой эмбрион на стадии бластоцисты (рис. 3).
          • Такие клетки называются плюрипотентными эмбриональными стволовыми клетками (ES). В ES-клетки в культуре можно ввести целевой трансген различными методами (трансфекция, электропорация, ретровирусная инфекция и т.д.) без нарушения их плюрипотентности. Практическое достоинство этой схемы заключается в том, что она дает большие возможности для проведения селекции клеток по определенному параметру. Это может быть число копий трансгена, его локализация или характер экспрессии.
          • Отобранные трансгенные ES-клетки можно культивировать и использовать для получения трансгенных животных. Это позволяет избежать случайного встраивания трансгена, характерного для метода микроинъекций и ретровирусных векторных систем.
          • Все получаемые по такой схеме животные являются мозаиками, поэтому необходима селекционная работа по получению чистых линий. Проблему мозаичности первичных трансгенных животных можно преодолеть пересадкой ядер трансформированных ES-клеток в энуклеированные ооциты, которые затем продолжают свое нормальное развитие. В результате в каждой клетке полученного животного будет содержаться трансген.
          • К сожалению, плюрипотентные ES-клетки, аналогичные мышиным, пока не обнаружены у других млекопитающих и птиц, но поиски продолжаются.

          Рис. 3. Получение трансгенных мышей методом реконструкции эмбрионов с помощью генетически модифицированных эмбриональных стволовых клеток (ES-клеток). ES-клетки получают из внутренней клеточной массы бластоцисты мыши

          Перенос ядер трансформированных генеративных и соматических клеток.

            • Перенос ядер трансформированных генеративных и соматических клеток в яйцеклетку, или соматический ядерный перенос (somatic nuclear transfer), еще один способ, используемый в практике трансгеноза. Было показано, что ядра эмбриональных клеток различных животных при переносе в энуклеированную яйцеклетку иногда способны обеспечивать развитие целого нового организма. После непродолжительного культивирования даже ядра из некоторых дифференцированных клеток способны обеспечивать развитие до жизнеспособной особи.
            • Так, например, знаменитая овечка Долли была клонирована в 1997 г. слиянием культивируемых (3-6 пассажей) клеток эпителия молочной железы (вымени) взрослого шестилетнего животного с лишенной ядра яйцеклеткой (рис. 4). Хотя нельзя исключить, что для клонирования случайно была взята недифференцированная клетка, присутствующая в донорском эпителии.
            • Клонирование Долли из ядра дифференцированной клетки и трех других овец из ядер эмбриональных клеток удалось осуществить благодаря переносу ядер из клеток, находящихся в стадии покоя (G0), и, возможно, особенностям эмбриогенеза этого животного. В зиготах овец в течение первых трех делений, занимающих несколько суток, происходит только репликация ДНК, ни один из генов не экспрессируется. Предполагается, что за это время введенная ДНК освобождается от специфичных для клетки регуляторных белков, а соответствующие гены эмбрионального развития связываются с инициаторными эмбриональными белковыми факторами из цитоплазмы яйцеклетки.
            • Основная проблема, которую нужно решить для того, чтобы создание любых трансгенных животных с помощью метода переноса ядер стало реальным, - это сохранение плюрипотентности клеток в непрерывной культуре.

            Рис. 4. Клонирование овцы методом переноса ядра. Эпителиальные клетки молочной железы в культуре индуцируют для перехода в фазу G0 (стадия, на которой находится яйцеклетка). Затем осуществляют слияние такой клетки с энуклеированной яйцеклеткой и выращивают эмбрионы до ранних стадий эмбриогенеза. После чего эмбрионы имплантируют в матку суррогатной матери, где происходит дальнейшее развитие. В эксперименте Я. Уилмута (I. Wilmut) по клонированию Долли было проведено 277 слияний безъядерных яйцеклеток с клетками молочной железы в фазе G0, из 29 выживших эмбрионов только один развился до жизнеспособного организма

            В отличие от растений, где существует возможность получения целого фертильного растения из одной трансформированной соматической клетки и вегетативное размножение, получение трансгенных животных - очень сложный и длительный процесс.

            Используемая стратегия состоит в следующем:
            1. Клонированный ген вводят в ядро оплодотворенной яйцеклетки.
            2. Оплодотворенные яйцеклетки с экзогенной ДНК имплантируют в рецепиентную женскую особь (поскольку успешное завершение развития эмбриона млекопитающих в иных условиях невозможно).
            3. Отбирают потомков, развившихся из имплантированных яйцеклеток, которые содержат клонированный ген во всех клетках.
            4. Скрещивают животных, которые несут клонированный ген в клетках зародышевой линии, и получают новую генетическую линию.

            Использование молока целесообразно потому, что оно образуется в организме животного в большом количестве и его можно надаивать по мере надобности без вреда для животного. Вырабатываемый молочной железой и секретируемый в молоко новый белок не должен при этом оказывать никаких побочных эффектов на нормальные физиологические процессы, протекающие в организме трансгенного животного, и подвергаться посттрансляционным изменениям, которые, по крайней мере, близки к таковым в клетках человека. Кроме того, его выделение из молока, которое содержит и другие белки, не должно составлять большого труда.

            Несмотря на то, что первые трансгенные сельскохозяйственные животные были получены в 1985 г. введением экзогенной ДНК в пронуклеус зигот, до настоящего времени не разработано эффективного метода, который бы мог быть использован для создания генетически модифицированных животных независимо от вида и от целей эксперимента. Разработка новых эффективных методов переноса генов в эмбриональные и соматические клетки животных, а также совершенствование существующих подходов остается актуальной задачей.

            Среди большого разнообразия способов внедрения экзогенной ДНК в геном животного можно выделить следующие, которые нашли широкое применение в практике трансгеноза:
            - метод микроинъекции,
            - опосредованный ретровирусами перенос генов,
            - использование модифицированньгх эмбриональных стволовых клеток,
            - перенос трансформированных ядер генеративных и соматических клеток,
            - использование спермиев и сперматогониев как переносчиков ДНК.

            Среди других способов доставки экзогенной ДНК в организм животных можно отметить использование липосом, аденовирусных векторов, а также метод высокоскоростной инъекции. Однако эти методы не нашли широкого применения вследствие их недостаточной стабильности, а также отсутствия интеграции трансгена в геном.

            Микроинъекции рекомбинантной ДНК в оплодотворенные ооциты многоклеточных животных пока остаются наиболее популярным способом введения чужих генов в организм животных. Несмотря на то, что метод требует высокой квалификации и дорогостоящего оборудования, простота и надежность окупают все его недостатки.

            Первой и наиболее хорошо разработанной экспериментальной системой для получения трансгенных животных явилась мышь. Донорных самок мышей с экспериментальной суперовуляцией скрещивают с самцами-производителями, через 12 ч выделяют оплодотворенные яйцеклетки и помещают их в культуру. Далее в больший их двух пронуклеусов (обычно мужской) инъецируют рекомбинантную ДНК (рис. 2.17). Пережившие инъекцию яйцеклетки пересаживают самкам-реципиентам. Только часть трансплантированных ооцитов продолжает развиваться до рождения детенышей.

            Микроинъекция экзогенной ДНК в пронуклеус оплодотворенной яйцеклетки млекопитающих под микроскопом (а) и схема эксперимента (б)


            Рис. 2.17. Микроинъекция экзогенной ДНК в пронуклеус оплодотворенной яйцеклетки млекопитающих под микроскопом (а) и схема эксперимента (б)

            На частоту интеграции экзогенной ДНК при использовании метода микроинъекции оказывают влияние такие факторы, как чистота вводимого образца, форма и концентрация ДНК, состав буферного раствора для микроинъекции, качество эмбрионов, а также способ пересадки эмбрионов реципиентам (нехирургический, хирургический, лапароскопический).

            Трансгенных животных в потомстве идентифицируют различными методами, чаще всего ПЦР, и скрещивают для получения трансгенных линий. Некоторые из трансгенных животных оказываются мозаичными (половые клетки не содержат экзогенной ДНК), поэтому при скрещивании трансгенным оказывается меньшая часть потомства первого поколения, чем расчетные 50 %. В ряде случаев гомозиготные линии получить не удается, поскольку 5-15 % трансгенных инсерций в гомозиготном состоянии летальны, так как инсерция иногда нарушает жизненно-важные части генома.

            Точный механизм, обеспечивающий интеграцию инъецированной ДНК в хромосомы клетки-мишени, неизвестен, однако анализ структуры встроенной ДНК позволяет выявить некоторые моменты. Интеграция происходит случайным образом в один хромосомный локус, который может содержать от одного до нескольких тысяч тандемных копий интегрированной ДНК. Около 30 % полученных первичных трансгенных животных, как правило, обнаруживают ту или иную степень мозаичности, что может являться следствием интеграции экзогенной ДНК после завершения первого цикла репликации.

            Степень интеграции экзогенной ДНК в геном, т.е. число трансгенных животных от общего числа родившихся животных, при использовании метода микроинъекции в зависимости от вида животных колеблется в незначительных пределах 5-15 % . Наиболее важным с учетом затрат, требующихся для получения одного трансгенного животного, является показатель общей эффективности трансгеноза, который рассчитывается как отношение числа полученных трансгенных животных к общему числу пересаженных эмбрионов, выраженное в процентах. Величина этого показателя для млекопитающих также относительно постоянна и составляет в среднем от ~0,5 % у свиней и коров до ~2 % у мышей.

            Ретровирусные векторы также используются для получения трансгенных животных. Инфицирование предимплантационных эмбрионов рекомбинантными ретровирусами - относительно несложная эффективная процедура.

            Восьмиклеточную морулу (рис. 2.18) освобождают от яйцевой оболочки и помещают в культуральную чашку с фибробластами, продуцирующими рекомбинантный ретровирус. Инфицированные эмбрионы, достигшие стадии бластулы, имплантируют псевдобеременным самкам. В результате формируются трансгенные организмы, мозаичные по числу и локализации встроек рекомбинантной ДНК в геном. Поэтому для получения чистых линий далее необходим масштабный аутбридинг.

            Недостатком метода является ограничение вставки экзогенной ДНК ~8 тнп, вследствие чего трансген может оказаться лишенным прилегающих регуляторных последовательностей, необходимых для его экспрессии, а в некоторых случаях интеграция в исходный локус нестабильна.

            Новые лентивирусные векторы (лентивирусы принадлежат семейству ретровирусов) показали свою очень высокую эффективность при доставке ДНК в ооциты и зиготы. Инъекция рекомбинантных лентивирусных конструкций в перивителлиновое пространство свиных зигот и коровьих ооцитов привело к появлению потомства с самой высокой на данный момент долей трансгенных особей. В то же время лентивирусные векторы обладают всеми недостатками ретровирусных: малый размер вставки экзогенной ДНК и множественная интеграция в хозяйский геном, которая может привести к таким нежелательным побочными эффектам, как активация онкогенов и инсерционный мутагенез. Кроме того, для лентивирусных векторов наблюдается высокая степень мозаичности получаемого трансгенного потомства и отдельные факты сайленсинга (инактивации) лентивирусных рекомбинантных последовательностей в полученных трансгенных линиях.

            Использование ретровирусных векторов имеет и еще один большой недостаток. Хотя эти векторы создаются так, чтобы они были дефектными по репликации, геном штамма ретровируса (вируса-помощника), который необходим для получения большого количества векторной ДНК, может попасть в то же ядро, что и трансген. Несмотря на все принимаемые меры, ретровирусы-помощники могут реплицироваться в организме трансгенного животного, что совершенно недопустимо, если этих животных предполагается использовать в пищу или как инструмент для получения коммерческого продукта. И поскольку существуют альтернативные методы трансгеноза, ретровирусные векторы редко используются для создания трансгенных животных, имеющих коммерческую ценность.

            Схема получения линии трансгенных мышей с использованием ретровирусных векторов


            Рис. 2.18. Схема получения линии трансгенных мышей с использованием ретровирусных векторов

            Модифицированные эмбриональные стволовые клетки могут быть использованы для получения трансгенных животных. Клетки, выделенные из мышиных эмбрионов на стадии бластоцисты, могут пролиферировать в культуре, сохраняя способность к дифференцировке в любые типы клеток, в том числе и в клетки зародышевой линии, при введении в другой эмбрион на стадии бластоцисты (рис. 2.19).

            Такие клетки называются плюрипотентными эмбриональными стволовыми клетками (ES). В ES-клетки в культуре можно ввести целевой трансген различными методами (трансфекция, электропорация, ретровирусная инфекция и т.д.) без нарушения их плюрипотентности. Практическое достоинство этой схемы заключается в том, что она дает большие возможности для проведения селекции клеток по определенному параметру. Это может быть число копий трансгена, его локализация или характер экспрессии.

            Зная последовательности, окружающие конкретный сайт для желаемой интеграции, можно сконструировать вектор для встраивания целевой ДНК путем гомологичной рекомбинации. Например, заменить какой-либо ген, кодирующий легко идентифицируемый признак с целью селекции, убрав или восстановив его функцию в полученной трансгенной клетке.

            Таким же образом получают так называемых нокаутных мышей (knock out) - мышей с направленно инактивированным определенным клеточным геном для исследования его функций. Для осуществления гомологичной рекомбинации вектор конструируют из фрагментов целевого гена, который планируется инактивировать, часть целевого гена при этом заменяется каким-либо селективным маркером для проведения отбора клеток с интегрированной конструкцией.

            Получение трансгенных мышей методом реконструкции эмбрионов с помощью генетически модифицированных эмбриональных стволовых клеток (ES-клеток). ES-клетки получают из внутренней клеточной массы бластоцисты мыши


            Рис. 2.19. Получение трансгенных мышей методом реконструкции эмбрионов с помощью генетически модифицированных эмбриональных стволовых клеток (ES-клеток). ES-клетки получают из внутренней клеточной массы бластоцисты мыши

            Отобранные трансгенные ES-клетки можно культивировать и использовать для получения трансгенных животных. Это позволяет избежать случайного встраивания трансгена, характерного для метода микроинъекций и ретровирусных векторных систем.

            Все получаемые по такой схеме животные являются мозаиками, поэтому необходима селекционная работа по получению чистых линий. Проблему мозаичности первичных трансгенных животных можно преодолеть пересадкой ядер трансформированных ES-клеток в энуклеированные ооциты, которые затем продолжают свое нормальное развитие. В результате в каждой клетке полученного животного будет содержаться трансген.

            К сожалению, плюрипотентные ES-клетки, аналогичные мышиным, пока не обнаружены у других млекопитающих и птиц, но поиски продолжаются.

            Перенос ядер трансформированных генеративных и соматических клеток в яйцеклетку, или соматический ядерный перенос (somatic nuclear transfer), еще один способ, используемый в практике трансгеноза. Было показано, что ядра эмбриональных клеток различных животных при переносе в энуклеированную яйцеклетку иногда способны обеспечивать развитие целого нового организма. После непродолжительного культивирования даже ядра из некоторых дифференцированных клеток способны обеспечивать развитие до жизнеспособной особи.

            Так, например, знаменитая овечка Долли была клонирована в 1997 г. слиянием культивируемых (3-6 пассажей) клеток эпителия молочной железы (вымени) взрослого шестилетнего животного с лишенной ядра яйцеклеткой (рис. 2.20). Хотя нельзя исключить, что для клонирования случайно была взята недифференцированная клетка, присутствующая в донорском эпителии.

            Клонирование овцы методом переноса ядра


            Рис. 2.20. Клонирование овцы методом переноса ядра. Эпителиальные клетки молочной железы в культуре индуцируют для перехода в фазу G0 (стадия, на которой находится яйцеклетка). Затем осуществляют слияние такой клетки с энуклеированной яйцеклеткой и выращивают эмбрионы до ранних стадий эмбриогенеза. После чего эмбрионы имплантируют в матку суррогатной матери, где происходит дальнейшее развитие. В эксперименте Я. Уилмута (I. Wilmut) по клонированию Долли было проведено 277 слияний безъядерных яйцеклеток с клетками молочной железы в фазе G0, из 29 выживших эмбрионов только один развился до жизнеспособного организма

            Клонирование Долли из ядра дифференцированной клетки и трех других овец из ядер эмбриональных клеток удалось осуществить благодаря переносу ядер из клеток, находящихся в стадии покоя (G0), и, возможно, особенностям эмбриогенеза этого животного. В зиготах овец в течение первых трех делений, занимающих несколько суток, происходит только репликация ДНК, ни один из генов не экспрессируется. Предполагается, что за это время введенная ДНК освобождается от специфичных для клетки регуляторных белков, а соответствующие гены эмбрионального развития связываются с инициаторными эмбриональными белковыми факторами из цитоплазмы яйцеклетки.

            Основная проблема, которую нужно решить для того, чтобы создание любых трансгенных животных с помощью метода переноса ядер стало реальным, - это сохранение плюрипотентности клеток в непрерывной культуре. В настоящее время ведутся активные поиски факторов репрограммирования дифференцированных клеток для индукции плюрипотентности. Если это удастся, то генетическое изменение таких клеток и создание трансгенных организмов путем соматического ядерного переноса станет почти рутинной процедурой, а пока это единичные удачные эксперименты.

            Искусственные хромосомы как трансгенный вектор. Большинство трансгенов представляют собой кДНК, небольшие гены ( 100 тнп) слишком велики для встраивания в обычные векторы.

            Учитывая все это, для трансгеноза стали использовать искусственные дрожжевые хромосомы (YAC), вмещающие фрагменты геномной ДНК длиной от 100 до > 1 000 тнп и искусственные хромосомы человека еще большей емкости (об искусственных хромосомах). Данные эписомальные векторы имеют еще одно преимущество - позволяют избежать эффект положения гена при экспрессии экзогенной ДНК. Уровень экспрессии встроенного гена очень зависит от его хромосомной позиции, например, встраивание в неактивный хроматин (гетерохроматин) интактной хромосомы приводит к инактивации гена.

            С помощью искусственных дрожжевых хромосом (YAC), несущих несколько родственных генов или один большой ген, были получены трансгенные мыши путем микроинъекции в пронуклеус оплодотворенной яйцеклетки или трансфекцией ES-клеток. Трансгенные мыши, несущие кластер из пяти функциональных геновв -глобина человека суммарной длиной примерно 250 тнп, экспрессировали все эти гены тканеспецифично и в нужное время -точно так же, как это происходит у человека. Такое соответствие обеспечивалось фланкирующими их последовательностями, которые содержат промотор и другие важные регуляторные элементы. С помощью YAC-трансгеноза были получены мыши, которые синтезировали только человеческие антитела, являющиеся сложной тетрамерной конструкцией из двух пар разных полипептидных цепей.

            Искусственные хромосомы человека (human artificial chromosome -HAC), содержащие целиком иммуноглобулиновый локус человека с тяжелыми и легкими цепями, были внедрены в бычьи фибробласты, которые затем использовали для соматического ядерного переноса. Полученные трансхромосомальные телята экспрессировали иммуноглобулины человека в своей крови. Эта система стала важным шагом в направлении животной продукции терапевтических поликлональных антител человека.

            Дальнейшие наблюдения за трансгенными животными показали, что рекомбинантные HACs поддерживались в большинстве особей первого поколения в течение нескольких лет. Будут ли полученные искусственные хромосомы соответствующим образом разделяться в процессе мейоза и наследоваться, еще только предстоит выяснить.

            Совсем недавно возникла новая перспективная технология для получения животных с выключенными генами - малые интерферирующие РНК (миРНК, siRNA), которые используют для прицельного выключения генов (сайленсинга). РНК-интерференция - консервативный посттранскрипционный регуляторный процесс. Двухцепочечные малые интерферирующие миРНК в 19-23 нуклеотида специфически связываются с комплементарной последовательностью своей матричной мРНК-мишени, направляя ее по пути деградации.

            РНК-интерференция является составной частью системы генной регуляции, а именно контролирует/супрессирует трансляцию мРНК из эндогенных и экзогенных вирусных элементов и может быть использована для терапевтических целей. Для транзиентного выключения гена синтетические миРНК трансфецируют в клетки или ранние эмбрионы. Для стабильной генной репрессии последовательность миРНК должна быть инкорпорирована в геном в составе экспрессионной генной конструкции.

            Очень эффективна комбинация лентивирусных векторов с миРНК для интеграции в геном. В противоположность классической нокаут-стратегии, которая требует длительного скрещивания для получения чистой линии с инактивированным геном в обоих локусах диплоидного генома, миРНК при интеграции могут легко выключить целевой ген в любой имеющейся линии животных.

            Несмотря на разработанный широкий спектр методик получения трансгенных животных, в настоящее время пока отсутствует надежная и эффективная технология трансгеноза животных. Самые большие проблемы связаны с беспорядочным встраиванием экзогенной ДНК в геном при использовании большинства существующих методов. Так что дальнейшие качественные улучшения технологии необходимы в области разработки прицельной модификации клеточных генов и точного встраивания экзогенной ДНК в геном.

            Тем более что геномы большинства хозяйственно важных организмов к настоящему времени полностью секвенированы и можно планировать будущую структуру трансгенного организма. Сочетание полностью расшифрованных последовательностей геномов с методами адресной доставки экзогенной ДНК позволит проводить целенаправленное конструирование трансгенных геномов с заранее заданными свойствами.

            Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

            ВВЕДЕНИЕ В настоящее время используются несколько подходов в получении трансгенных животных. Наиболее широко распространен метод микроинъекций чужеродной ДНК (чДНК) в пронуклеусы зигот. Оптимальные условия для проведения микроинъекций в пронуклеусы зигот мышей описаны в работе Бринстера и соавторов (1994).

            Величина вводимой ДНК может достигать 30 Mb. Интеграция нескольких копий (от 1 до нескольких сотен) экзогенной ДНК в геном происходит, как правило, в одном сайте в ориентации "голова к хвосту" или "голова к голове". При инъекции нескольких рекомбинантных конструкций, их встраивание в геном, также происходит в одном сайте.

            Другой подход в получении трансгенных животных заключается в инфицировании ранних эмбрионов млекопитающих рекомбинант-нымиретровирусами. Недостатком этого метода является получение трансгенных животных с мультисайтовой интеграцией трансгена и его нестабильной наследуемостью в поколениях.

            Еще одним подходом в получении трансгенных животных является использование трансформированных чужеродной ДНК, эмбриональных стволовых клеток, путем инъекции последних в полость бластоцисты. Основным преимуществом данного метода является возможность проводить направленный мутагенез на уровне целого организма, при помощи гомологичной рекомбинации чужеродной ДНК с геномной ДНК.

            Для получения трансгенных животных использовались и другие методы, к которым относятся: применение сперматозоидов, обработанных экзогенной ДНК, для оплодотворения яйцеклеток в условиях in vitro; использование липосом в качестве вектора чужеродной ДНК. Однако, эти методы имеют значительно менее широкое распространение, в сравнении с методом микроинъекции чужеродной ДНК в пронуклеус зиготы.

            1. МЕТОДЫ ТРАНСГЕНЕЗА В ЖИВОТНОВОДСТВЕ Трансгенные животные - это индивидуумы, в геном которых искусственно введена дополнительная генетическая информация (трансген). Такая информация представляет собой либо отдельный участок ДНК с собственными (гомологичными) регуляторными последовательностями (эукариотическая транскрипционная единица), либо сконструированный из различных молекул ДНК гибридный (рекомбинантный) ген. Таким образом, трансген - это искусственно введенный и интегрировавшейся в ДНК животных чужеродный ген. Под трансгенезом понимают процесс переноса и интеграции чужеродной генетической информации в геном животных. 1.1 Метод микроинъекции Впервые о получении трансгенных сельскохозяйственных животных сообщили две лаборатории в США и Германии [Hammer et al, 1985; Brem et al., 1985]. В обоих случаях для переноса генных конструкций в эмбриональные линии был использован метод микроинъекции. Этот метод и сегодня остается наиболее широко используемым для трансгенеза в животноводстве.

            Суть метода микроинъекции заключается во введении раствора генных конструкций в мужской пронуклеус зигот. Обычно инъецируют 1-2 пкл раствора ДНК в концентрации, соответствующей 1000 копиям в 1 пкл микроинъекционного раствора. При этом исходят из того, что количество 1000 копий/пкл приблизительно соответствует концентрации X нг/мкл, где X - длина генной конструкции в тысячах парах нуклеотидов (т.п.н). Например, если длина генной конструкции равна 10 т.п.н., то количество 1000 копий в 1 пкл будет достигаться при концентрации равной 10 нг/мкл.

            Читайте также: