Технологическое повышение долговечности изделий машиностроения реферат

Обновлено: 04.07.2024

Основные показатели долговечности. Виды ремонтов, их назначение. Долговечность деталей двигателей внутреннего сгорания и других машин, способы ее повышения. Методы и средства улучшения надежности деталей. Процесс нормализации или термоулучшения.

Подобные документы

Общие сведения о двигателе внутреннего сгорания, его устройство и особенности работы, преимущества и недостатки. Рабочий процесс двигателя, способы воспламенения топлива. Поиск направлений совершенствования конструкции двигателя внутреннего сгорания.

реферат, добавлен 21.06.2012

Характеристика и химический состав низколегированных и углеродистых сталей, применяемых для повышения долговечности рабочих органов машин. Свойства электродных материалов для наплавки. Технология электрошлаковой наплавки зубьев ковшей экскаваторов.

курсовая работа, добавлен 07.05.2014

Описание конструкции компрессора газотурбинного двигателя. Расчет вероятности безотказной работы лопатки и диска рабочего колеса входной ступени дозвукового осевого компрессора. Расчет надежности лопатки компрессора при повторно-статических нагружениях.

курсовая работа, добавлен 18.03.2012

Технологические требования к конструкции деталей. Литье под давлением. Формообразование деталей методом литья по выплавляемым моделям. Технологические особенности конструирования пластмассовых деталей. Изготовление деталей из термореактивных пластмасс.

учебное пособие, добавлен 10.03.2009

Краткая характеристика способов и оборудования для обработки деталей пластическим деформированием. Схемы восстановления и особенности ремонта деталей с пластической деформацией. Анализ влияния пластических деформаций на структуру и свойства металла.

реферат, добавлен 04.12.2009

Нормативы периодичности, продолжительности и трудоёмкости ремонтов, технологического оборудования. Методы ремонта, восстановления и повышения износостойкости деталей машин. Методика расчета численности ремонтного персонала и станочного оборудования.

курсовая работа, добавлен 08.02.2013

Проектирования технологических процессов обработки деталей. Базирование и точность обработки деталей. Качество поверхностей деталей машин. Определение припусков на механическую обработку. Обработка зубчатых, плоских, резьбовых, шлицевых поверхностей.

курс лекций, добавлен 23.05.2010

Кинематический и энергетический расчеты приводной станции, ременной и цилиндрической передачи. Проверка долговечности подшипников, прочности шпоночных соединений, проверка соединительной муфты. Посадка зубчатых колес, шкивов и подшипников на валы.

курсовая работа, добавлен 09.04.2011

Контроль деталей автомашин для определения их технического состояния. Сортировка деталей на три группы: годные для дальнейшего использования, подлежащие восстановлению и негодные. Определение коэффициентов годности, сменности и восстановления деталей.

реферат, добавлен 22.04.2011

Производство деталей из жидких полимеров (композиционных пластиков). Приготовление смеси и формообразование заготовок. Общие сведения о порошковой металлургии. Способы формирования резиновых деталей. Переработка пластмасс в высокоэластичном состоянии.

Способы повышения долговечности

Методы и средства повышения надежности и долговечности деталей

Повышение долговечности деталей при их ремонте

Отдельные детали машины изнашиваются неодинаково. В том случае, если машина эксплуатируется в соответствии с ее назначением при соблюдении установленных технических обслуживаний и ремонтов, изнашивание проявляется как нормальный относительно медленный естественный процесс. Однако нарушение правил технической эксплуатации машины приводит к тому, что ее детали начинают подвергаться повышенному изнашиванию.

Процесс постепенного изменения размеров тела при трении, связанный с отделением с поверхности трения материала и (или) его остаточной деформации, называется изнашиванием.

Износ - результат изнашивания, проявляющегося в виде отделения или остаточной деформации материала детали.

Долговечность - свойство объекта сохранять работоспособное состояние до наступления предельного значения при установленной системе технического обслуживания и ремонта.

К основным показателям долговечности относятся:

) средний ресурс (например, средняя наработка до капитального ремонта, средняя наработка от капитального ремонта до списания);

) гамма-процентный ресурс (наработка, в течение которой объект не достигнет предельного). Под параметром понимается некоторая выходная характеристика детали, сопряжения, сборочной единицы или автомобиля в целом, в качестве которой принимается один или несколько технологических показателей качества. Выход значения параметра за границы предельного значения классифицируется как отказ, если при этом происходит нарушение работоспособного состояния объекта, т.е. такого состояния, при котором значения всех параметров, характеризующих его способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской документации.

Отказы обычно разделяют на внезапные и постепенные. Внезапные отказы характеризуются скачкообразным изменением значений одного или нескольких параметров объекта. Они происходят в случайные моменты времени, которые точно прогнозировать невозможно, а можно лишь характеризовать наступление или ненаступление данного события с определенной вероятностью. Постепенный отказ характеризуется плавным изменением одного или нескольких параметров объекта. Например, монотонное возрастание износа деталей цилиндропоршневой группы двигателя, снижение топливной экономичности и мощности. Разделение отказов на постепенные и внезапные носит условный характер. Например, постепенное изнашивание рабочих поверхностей деталей коробки передач увеличивает зазоры и приводит к внезапному самовыключению передачи.

Составные части автомобилей подразделяются на ремонтируемые и не ремонтируемые. Для первых в нормативно-технической и (или) конструкторской документации предусмотрено проведение ремонтов, а для вторых не предусмотрено. Надежность изделий обусловливается их безотказностью, долговечностью, ремонтопригодностью и сохраняемостью.

Безотказность - свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

Основными показателями безотказности являются:

) вероятность безотказной работы (вероятность того, что в пределах заданной наработки отказ объекта не возникает);

) средняя наработка на отказ (отношение наработки восстанавливаемого объекта к среднему значению числа его отказов в течение этой наработки);

) параметр потока отказов (отношение среднего числа отказов восстанавливаемого объекта за произвольно малую его наработку к значению этой наработки).

Текущий ремонт обеспечивает безотказную работу отремонтированных агрегатов, узлов и деталей на пробеге, не меньшем, чем до ближайшего ТО-2. Сокращение времени простоя автомобиля достигается применением агрегатного метода ремонта, при котором производится замена неисправных или требующих капитального ремонта агрегатов и узлов на исправные, взятые из оборотного фонда. Оборотный фонд составных частей автомобиля может создаваться как непосредственно на АТП, так и в обменных пунктах, при региональных центральных мастерских и ремонтных заводах.

Средний ремонт (CP) автомобилей предусматривается для случаев их эксплуатации в тяжелых дорожных условиях; проводится с периодичностью более одного года. При нем могут выполняться следующие ремонтные работы: замена двигателя, достигшего предельного состояния и требующего капитального ремонта, устранение неисправностей других агрегатов с заменой или ремонтом деталей, окраска кузова и другие работы, которые бы обеспечили восстановление исправного состояния автомобиля.

Капитальный ремонт (КР) автомобилей, агрегатов и узлов предназначен для обеспечения назначенного ресурса автомобиля и его составных частей путем восстановления их исправности и близкого к полному (не менее 80% доремонтного) восстановлению ресурса и обеспечения других нормируемых свойств. При КР заменяют или восстанавливают любые узлы и детали, включая базовые. Автомобили и агрегаты подвергают, как правило, не более чем одному капитальному ремонту. Базовой частью легкового автомобиля и автобуса является кузов, грузового автомобиля - рама. К базовым деталям агрегатов относятся: в двигателе - блок цилиндров; в коробке передач, заднем мосту, рулевом механизме - картер; в переднем мосту - балка переднего моста или поперечина независимой подвески; в кузове или кабине - корпус; в раме - продольные балки.

Централизованный КР полнокомплектных грузовых автомобилей недостаточно эффективен в связи с тем, что из-за малых производственных программ и универсального характера производства увеличиваются транспортные затраты на доставку ремонтного фонда и отремонтированной продукции, автомобили на длительное время отвлекаются из сферы эксплуатации. В связи с этим КР полнокомплектных автомобилей должен осуществляться главным образом для тех из них, которые работают в особо тяжелых дорожных условиях при интенсивной эксплуатации. В этом случае КР и CP автомобилей должен быть максимально приближен к АТП и производиться с использованием готовых агрегатах, узлов и деталей, поступающих в специализированная автомобилей и их составных частей в ремонте. Экономия времени достигается за счет того, что объекты ремонта не ожидают, пока будут отремонтированы снятые с них агрегаты и узлы.

Агрегатный метод - обезличенный метод текущего ремонта, при котором неисправные агрегаты заменяются новыми или заранее отремонтированными. Замена агрегатов может выполняться после отказа изделия или по плану.

Способы повышения долговечности.

Долговечность деталей двигателей внутреннего сгорания и других машин в значительной степени зависит от качества рабочих поверхностей деталей. Понятие качество поверхности, определяющее эксплуатационные свойства и износостойкость деталей, характеризуется совокупностью геометрических параметров и физических свойств их поверхностного слоя.

Повысить долговечность деталей можно несколькими путями: улучшением условий эксплуатации и ухода за оборудованием и повышением качества материала, из которого изготовляются детали. Последнее может быть достигнуто при применении более прочных материалов и улучшении поверхностной механической обработки деталей.

Если долговечность детали зависит от длительности обоих этапов повреждения ( возникновение и развитие трещин), то при ее определении нельзя пользоваться простыми формулами, выведенными с учетом соображений о развитии трещины в детали.

На долговечность деталей трансмиссий, силовых агрегатов, шасси наружная коррозия не оказывает определяющего влияния. Уход за ними сводится к периодическому удалению грязи, зачистке от продуктов коррозии и подкрашиванию нитроэмалями, что позволяет сохранять эстетический вид автомобиля.

Продление долговечности деталей, сборочных единиц и изделия в целом необходимо обосновать технически. Технологические принципы увеличения долговечности, а также некоторые конструктивные принципы связаны с повышением трудоемкости изготовления изделия. Поэтому конструктор должен избегать того, чтобы изделие обладало излишней долговечностью. Желательно, чтобы узлы, механизмы и детали изделия в равной степени имели долговечность, незначительно превышающую срок службы изделия в целом.

Требования долговечности деталей, подвергающихся износу, могут быть удовлетворены обеспечением таких физико-механических свойств материала ( с учетом химико-термической обработки), пр которых интенсивность износа рабочих поверхностей деталей будет в допустимых пределах.

Повышение долговечности деталей достигается также применением при их изготовлении упрочняющей обработки: закалки и цементации.

Повышение долговечности деталей и узлов оборудования. Основными факторами, лимитирующими долговечность, а следовательно и надежность оборудования, являются: поломки деталей; износ трущихся поверхностей; повреждения поверхностей в результате коррозии, действие контактных напряжений и наклепа; пластические деформации деталей, вызываемые местным или общим переходом напряжений за предел текучести или ( при повышенных температурах) за предел ползучести.

Продление долговечности деталей, сборочных единиц и изделия в целом необходимо обосновать технически. Технологические принципы увеличения долговечности, а также некоторые конструктивные принципы связаны с повышением трудоемкости изготовления изделия. Поэтому конструктор должен избегать того, чтобы изделие обладало излишней долговечностью. Желательно, чтобы узлы, механизмы и детали изделия в равной степени имели долговечность, незначительно превышающую срок службы изделия в целом.

Рассеивание долговечности деталей узлов машины является основным препятствием для создания надежных машин, дешевых в эксплуатации и ремонте. Поэтому основное внимание при проектировании должно быть направлено на возможное сближение вероятных сроков службы деталей узла и целых узлов, что может быть достигнуто установлением для них четырех - пяти градаций сроков службы. В процессе эксплуатации необходимо стремиться к сокращению по возможности заложенных градаций сроков службы.

Методы и средства повышения надежности и долговечности деталей

Основные термины и определения надежности установлены ГОСТом. Под надежностью понимается свойство изделия выполнять заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени работы (пробега) при соблюдении условий технического обслуживания, ремонта, хранения и транспортировки. Надежность изделия характеризуется его безотказностью, ремонтопригодностью, сохранностью и долговечностью.

Безотказность (или надежность в узком смысле слова) - свойство изделия сохранять работоспособность в течение некоторого времени или пробега без вынужденных перерывов. Ремонтопригодность - свойство изделия, обеспечивающее возможность предупреждать, обнаруживать и устранять отказ или неисправность путем проведения технического обслуживания и ремонтов. Долговечность - свойство изделия сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонта. Для восстанавливаемых изделий понятия долговечности и безотказности практически совпадают. Показателем долговечности служит срок службы (ресурс).

Повышение надежности - это актуальная задача. Тепловоз - машина сложная и его надежность определяется надежностью наиболее слабого звена. Уровень надежности тепловоза зависит от многих факторов, которые можно условно разделить на конструктивные, технологические и эксплуатационные. В процессе проектирования и постройки тепловоза важными факторами явля ются использование новейших методов расчета, выбор рациональных конструкций сборочных единиц и деталей, материалов, строгое соблюдение технологии изготовления деталей, сборки узлов и всего тепловоза в целом. В процессе эксплуатации уровень надежности тепловоза, достигнутый при постройке, постепенно снижается. Для поддержания надежности на достаточном для эксплуатации уровне существует система планово-предупредительных ремонтов и технических обслуживании. От того, насколько правильно используется, содержится и ремонтируется локомотив, зависит его техническое состояние и в конечном итоге его надежная работа.

Одним из наиболее эффективных конструктивных решений для повышения надежности является снижение уровня динамических нагрузок на детали и сборочные единицы тепловоза путем применения различных упругих элементов (пружин, рессор, резиновых амортизаторов и т. д.). Не менее важно также применение принципа самоустановки, позволяющего обеспечить у совместно работающих деталей равномерное распределение нагрузки. Самоустанавливающимся деталям дается либо свободная ограниченная подвижность, либо упругая при применении эластичных элементов. В том и другом случаях в системе компенсируется влияние зазоров и деформаций, вызывающих перекос сопряженных деталей. Оптимальные зазоры в подвижных соединениях, надежность прессовых посадок, подбор пар трения, отсутствие неуравновешенных масс в узлах с вращающимися элементами, продуманная система смазки - также являются важными конструктивными факторами, обеспечивающими высокую надежность узлов.

К технологическим методам повышения надежности деталей тепловоза относятся мероприятия по улучшению свойств материалов, применяемых в данной конструкции. Свойства детали начинают формироваться в процессе изготовления (отливки, сварки, обработки давлением, механической обработки). Важно не допустить при этом внутренних пороков в деталях, концентраторов напряжений (острых углов, резких переходов, надрезов и т. д.). Все последующие операции сводятся к улучшению свойств материалов заготовки путем применения различных методов термической и термохимической обработки. Эти виды обработки позволяют значительно повысить прочность и износостойкость деталей.

Так, нормализация (термоулучшение) позволяет получить мелкозернистую однородную структуру стали, повышает ее прочность и ударную вязкость, улучшает обрабатываемость; закалка (нагрев до определенной температуры, выдержка при этой температуре и быстрое охлаждение) дает резкое увеличение твердости и прочности. Особенно эффективна поверхностная закалка, при которой обеспечивается высокая твердость и износостойкость поверхностного слоя детали, а сердцевина остается вязкой. Такие детали хорошо сопротивляются ударным нагрузкам, выдерживают высокие контактные напряжения и мало изнашиваются.

В результате термохимической обработки представляется возможным в гораздо большей степени, чем при термической обработке, повысить твердость поверхностных слоев деталей и их износостойкость. Например, цементация (науглероживание) шестерен из среднеуглеродистой стали повышает их износостойкость в 1,5-2 раза по сравнению с объемной закалкой. Большое распространение получили также методы нанесения износостойких материалов на поверхности трения путем наплавки, напыления, плакирования, электроискрового легирования.

Для повышения усталостной прочности металла широко применяются методы поверхностного пластического деформирования (накатка роликами, наклеп дробью). Эффект упрочнения в этом случае достигается вследствие создания в поверхностных слоях детали значительных сжимающих внутренних напряжений, противодействующих напряжениям растяжения от внешней нагрузки, а также снижения вредного влияния концентраторов напряжений. Так, накатка шеек и галтелей подступичных частей осей колесных пар повышает предел их выносливости примерно в 2 раза.

Значительное влияние на усталостную прочность деталей оказывает состояние ее наружной поверхности. Любое отклонение от зеркальной полированной поверхности приводит к снижению предела выносливости (особенно появление окалины и коррозии). Для защиты от коррозии широко применяется клей (эластомер) ГЭН150В. Например, при посадке колесных центров на ось тепловым способом подступичную часть оси покрывают этим клеем. Образовавшаяся клеевая пленка предохраняет ось от фретииг-коррозии, а также увеличивает прочность соединения.

Как бы хорошо ни была сконструирована и изготовлена любая машина, ее эффективное использование окажется возможным только при хорошем уходе за ней и нормальном режиме работы. Главными эксплуатационными факторами, обеспечивающими надежность тепловоза, является своевременная постановка его на планово-предупредительные ремонты, качественное их выполнение и квалифицированный уход за сборочными единицами в процессе эксплуатации.

долговечность деталь износ надежность

Повышение долговечности деталей при их ремонте

В процессе ремонта и модернизации машин особенно важно улучшать качество и повышать долговечность ее деталей. С этой целью в ремонтной практике применяют несколько методов.

Упрочнение пластическим деформированием производят с помощью следующих способов.

Центробежно-шариковое наклепывание производят с помощью установки (рис. 189), представляющей собой сепаратор с рядом отверстий, в которых расположены шарики. При вращении сепаратора по стрелке Б центробежная сила стремится выбросить шарики из отверстий с силой, зависящей от скорости вращения сепаратора. Конструктивно сепаратор выполнен так, что шарики могут выдвинуться от отверстий только на величину h. При подводе вращающегося сепаратора к вращающейся по стрелке А ему навстречу детали шарики ударяют о ее поверхность и наклепывают ее. Достигаемая глубина наклепа, от 0,4 до 1,5 мм, шероховатость поверхности 10-го класса.

Обкаткой роликами и шариками получают высококачественную поверхность на цилиндрических деталях - 2-го класса точности и 9-го класса шероховатости. Обкатку производят роликами под нагрузкой 2-4 КН при подаче 1--2 мм/об и шариками под нагрузкой 1-1,5 Кн при подаче 0,4-0,8 мм/об. Износостойкость деталей повышается путем устранения структурной неоднородности в поверхностном слое.

В ряде случаев обкатка роликами повышает усталостную прочность на 50-100%. Обкатке могут быть подвергнуты впадины между зубьями колес, что увеличивает их усталостную прочность до 50%.

Рис. 1. Схема установки для центробежно-шарикового наклепа:1 - деталь, 2 - шарики, 3 - сепаратор

Чеканка заключается в нанесении по упрочняемой поверхности ударов бойка. Чеканке подвергают галтели крупных валов, что позволяет повышать несущую способность ступенчатых валов на 50%. Обработка чеканкой дает шероховатость поверхности в пределах 2-4-го класса при глубине наклепа до 35 мм. Твердость отчеканенных поверхностей повышается на 30-50%.

Упрочнению с помощью термической обработки подвергают детали с контактирующими поверхностями - зубчатые колеса, звездочки, элементы типа вал-втулка, направляющие.

Упрочнение деталей с помощью их наплавки износостойкими сплавами - один из наиболее эффективных методов повышения долговечности деталей, особенно деталей, работающих в условиях абразивного изнашивания под действием нагрузок различной динамичности. К деталям, наиболее часто наплавляемым износостойким сплавом, относятся рабочие органы строительных машин - зубья и ковши экскаваторов, ножи бульдозеров, грейдеров и скреперов, дробящие плиты и била камнедробилок.

. Зенкин H.A., Насер Аль Клуб, Мацснко Н.С. Применение упрочняют технологий при изготовлении деталей машин легкой промышленное // Тез .докл.конф." Производство и ремонт механизмов и машин в у слов, 23-25 мая 1995 г. - К.,1995,- С.114-115.

Теги: Повышение долговечности деталей, подвергающихся износу Реферат Другое

Долговечность машины зависит от совокупности влияния самых разнообразных факторов, которые проявляются на всех этапах ее создания и эксплуатации, при этом долговечность отдельных деталей может существенно отличаться от долговечности машины в целом.

В процессе разработки конструкции машины, станка, агрегата закладываются фундаментальные основы долговечности и надежности отдельных узлов и деталей машины. Ошибка конструктора на этой стадии создания машины может привести к тому, что машина из-за недостаточной долговечности отдельных деталей окажется неэкономичной или вовсе неработоспособной.

При изготовлении машины большое влияние на качество и долговечность деталей оказывают различные технологические факторы. От правильности выбора метода изготовления, назначения соответствующей упрочняющей обработки металла, качества сборки, во многом зависит надежность и долговечность наиболее нагруженных сопряженных деталей, рабочих органов машины. И, наконец, в эксплуатации надежность и долговечность машины, созданной конструкторами и технологами, попадает в зависимость от индивидуальных особенностей машиниста, оператора или техника, которые в процессе эксплуатации машины могут оказать значительное влияние на срок службы ее деталей и механизмов. Таким образом, при создании машины и последующей эксплуатации используются разнообразные приемы повышения срока службы ее деталей и узлов.

Методы повышения долговечности деталей машины можно разделить на три основных группы:

Особым, перспективным направлением в совершенствовании конструкции машины является создание саморегулирующихся и самовосстанавливающихся узлов и устройств. Сущность подобных конструктивных решений заключается в том, что система или устройство автоматически подналаживается или регулируется, при этом соблюдается постоянство основных геометрических параметров сопряженного узла в процессе эксплуатации.

К технологическим методам повышения долговечности деталей машин относятся мероприятия по улучшению свойств материалов, применяемых в данной конструкции. Свойства детали начинают формироваться в процессе отливки, сварки, обработки давлением и механической обработки. При выполнении указанных операций закладываются прочностные характеристики и другие показатели долговечности будущих деталей машины. Все последующие операции изготовления детали сводятся к улучшению свойств материала заготовки. Поэтому прежде чем назначать улучшающую обработку, необходимо убедиться в правильности выбора материала и метода получения заготовки детали.

Некоторые механические характеристики стального литья, проката и поковок после нормализации могут повышаться на 50 – 100%, в зависимости от условий выплавки или обработки стали давлением. Особенно велико влияние способа получения заготовки на динамическую прочность материала. Еще более значительно можно изменить свойства деталей, применив новые методы получения заготовок и новые материалы типа металлокерамики, пластических масс или композиционных веществ.

Дальнейшее повышение долговечности деталей машин при их изготовлении осуществляется путем применения различных методов термической и химико-термической обработки. Эти виды обработки позволяют значительно повысить прочность и износостойкость деталей. Так, после обычной закалки и соответствующего отпуска прочность углеродистой стали можно повысить в 1,5 – 2 раза, легированной стали в 2 – 3 раза. В результате химико-термической обработки представляется возможным в гораздо больших масштабах, чем при термической обработке, увеличить твердость поверхностных слоев изделий до 1200 – 2200 кГ/мм 2 . Поверхностное химико-термическое упрочнение деталей машин позволяет повысить их износостойкость во много раз. Например, износостойкое борирование и хромирование увеличивают срок службы деталей, работающих в контакте с абразивной средой, в 8 – 10 раз, цементация и нитроцементация шестерен из средне-углеродистой стали повышают их износостойкость в 1,5 – 2 раза по сравнению с объемной закалкой.

Большое распространение получили также методы нанесения износостойких материалов на поверхности трения путем наплавки, напыления плакирования. В качестве мероприятий, повышающих коррозионную стойкость деталей, широко используются методы нанесения гальванических, лакокрасочных, пластмассовых и эмалевых покрытий. Процесс нанесения защитных покрытий, как правило, является заключительным в технологическом комплексе операций по созданию деталей и узлов машины, и от качества его выполнения во многом зависит долговечность изделия.

Машина, созданная конструкторами, технологами и заводскими рабочими, сдается в эксплуатацию, в которой проявляются новые факторы долговечности и надежности. Как бы хорошо ни была сконструирована и изготовлена машина, ее эффективное использование окажется возможным только при нормальном уходе за ней и нормальном режиме работы. Практика показывает, что полный ресурс локомотивов, станков, автомобилей, сельскохозяйственных и других машин в зависимости от условий эксплуатации значительно изменяется. При неудовлетворительном уходе имеют место случаи выхода из строя новых машин в самом начале эксплуатации. Поэтому эксплуатационные методы являются составной частью комплекса мероприятий по увеличению долговечности машин.

К ним в первую очередь относятся организационные мероприятия, способствующие реализации установленных графиков планово-предупредительного ремонта, осуществление систематического контроля за износом сопряженных деталей. Большое влияние на интенсивность износа ответственных деталей машины оказывает качество ухода за машиной в эксплуатации, особенно своевременная смазка трущихся частей, предохранение их от загрязнения. И, наконец, весьма эффективным методом продления срока службы машины или станка является применение наиболее рациональных режимов эксплуатации, исключающих недозволенную перегрузку двигателя и рабочих элементов машины.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

1.3.2 Классификация методов отделочно-упрочняющей обработки деталей машин

Все известные методы упрочнения подразделяются на 6 основных классов:

Упрочнение с созданием пленки на поверхности

а) осаждение химической реакции (оксидирование, сульфидирование, фосфатирование, нанесение упрочняющего смазочного материала, осаждение из газовой фазы).

б) осаждение из паров (термическое испарение тугоплавких соединений, катодно-ионная бомбардировка, прямое электронно-лучевое испарение, реактивное электронно-лучевое испарение, электронно-химическое испарение).

в) электролитическое осаждение (хромирование, никелирование, электрофорез, никельфосфатирование, борирование, борохромирование, хромофосфатирование).

г) напыление износостойких соединений (плазменное напыление порошковых материалов, детонационное напыление, электродуговое напыление, лазерное напыление, вихревое напыление, индукционное припекание порошковых материалов).

Упрочнение с изменением химического состава поверхностного слоя металла

а) диффузионное насыщение (борирование, цианирование, азотирование, нитроцементация и т.п.)

б) химическое и физико-химическое воздействие (химическая обработка, ионная имплантация, электроискровая обработка и т.д.).

Упрочнение с изменением структуры поверхностного слоя

а) физико-термическая обработка (лазерная закалка, плазменная закалка);

б) электрофизическая обработка (электроконтактная, электроэрозионная, магнитная обработка);

в) механическая (упрочнение вибрацией, фрикционно-упрочняющая обработка, дробеструйная, обработка взрывом, термомеханическая, электромеханическая);

г) наплавка легированным элементом (газовым пламенем, электрической дугой, плазмой, лазерным лучом, пучком ионов и т.д.).

Упрочнение с изменением энергетического запаса поверхностного слоя

а) обработка в магнитном поле (термомагнитная обработка, импульсным магнитным полем, магнитным полем);

б) обработка в электрическом поле.

Упрочнение с изменением микрогеометрии поверхности и наклепом

а) обработка резанием (точение, шлифование, сверхскоростное резание);

б) пластическое деформирование (накатывание, обкатывание, раскатывание, выглаживание, вибронакатывание, вибровыглаживание, калибрование, центробежно-ударное упрочнение, виброударное и т.д.);

в) комбинированные методы (анодно-механическая, поверхностное легирование с выглаживанием, резание с воздействием ультразвуковых колебаний, магнитно-абразивная обработка и т.д.).

Упрочнение с изменением структуры всего объема металла

а) термообработка при положительных температурах (закалка, отпуск, улучшение, закалка ТВЧ, нормализация, термомагнитная обработка);

б) криогенная обработка (закалка с обработкой холодом, термоциклирование).

Проанализировав выше приведенные данные можно сделать вывод, что для случая ремонтного производства целесообразно использовать, с целью повышения износостойкости восстановленных поверхностей, только лишь методы позволяющие локально изменять свойства материала в одном месте не затрагивая, а тем самым не изменяя свойств уже обработанных и исправных поверхностей детали. К таким методам относится методы обработки с изменением микрогеометрии материала наклепом, применяемый целенаправленно на отдельные поверхности детали.

Основные эксплуатационные свойства деталей машин – износостойкость, прочность, коррозионная устойчивость в значительной мере определяются состоянием их поверхностного слоя, определяемого технологией изготовления. В современном производстве назначение и технологическое обеспечение параметров состояния поверхностей деталей недостаточно обосновано, что приводит либо к завышению требований и удорожанию машин, либо к их занижению и снижению надежности.
Существует достаточно большое количество различных технологических методов повышения качества поверхностей деталей. Наиболее распространенными из них являются, гальванические и химические методы нанесения покрытий, наплавка, напыление, ионная имплантация, лазерная обработка. Обеспечивая повышение эксплуатационных свойств, а так же, улучшая декоративный вид изделий, эти методы в то же время являются экологически небезопасными, загрязняющими окружающую среду и представляющими сложность в утилизации отходов.

Методы повышения качества деталей машин
Большие возможности в технологическом управлении качеством поверхности деталей машин имеют такие прогрессивные методы обработки, как разновидности отделочно-упрочняющей обработки, в основе которых заложено поверхностное пластическое деформирование (ППД). Требуемые параметры качества поверхности и практически все важнейшие эксплуатационные свойства деталей машин могут быть обеспечены процессами упрочнения их методами поверхностного пластического деформирования, максимально проявляющими потенциальные возможности материала. Применение пластического деформирования материала позволяет снизить материалоемкость и повысить надежность и долговечность изделий. В зависимости от назначения метода и пластических деформаций все эти методы можно разделить на три класса: 1) отделочно-упрочняющая обработка поверхностным пластическим деформированием (накатывание, обкатывание, раскатывание, выглаживание, виброобработка, динамическое упрочнение, электромеханическая и комбинированная обработка различных поверхностей деталей машин); 2) формообразующая обработка пластическим деформированием (накатывание зубьев, шлицев, резьб, фасонных поверхностей); 3) отделочно-упрочняющая обработка пластическим деформированием (калибрование наружных и внутренних поверхностей вращения и дорнование). Выглаживание производят инструментом, рабочим элементом которого является алмазный индентор, скользящий по обрабатываемой поверхности. Этим методом можно обрабатывать все виды поверхностей от плоской до фасонной.
Накатывание, раскатывание и обкатывание осуществляют специальным инструментом. При давлении рабочего элемента на обрабатываемую поверхность происходит её локальное пластическое деформирование в месте контакта, наличие различных вращательных и поступательных движений позволяет обрабатывать различные поверхности 9 плоские, цилиндрические, фасонные.
Комбинированная обработка
Особое место среди методов повышения качества деталей машин занимает комбинированная обработка, совмещающая лезвийную и отделочно-упрочняющую обработки. В настоящее время для обработки наружных и внутренних поверхностей вращения достаточно широкое распространение получило совместное точение и обкатывание, осуществляемое с применением комбинированных инструментов, сочетающих в себе режущие и деформирующие элементы. Преимущества совместной обработки резанием и ППД различных поверхностей комбинированными инструментами по сравнению с раздельной обработкой неоспоримо доказаны в современной литературе [6]. Такой метод позволяет не только повысить качество поверхности, но и даёт возможность увеличить производительность, снизить трудоёмкость обработки, что является существенным преимуществом комбинированной обработки перед другими способами повышения качества поверхностного слоя. Однако в настоящее время в справочно-нормативной документации недостаточно полно представлены сведения о рациональной области применения комбинированной отделочно-упрочняющей обработки. Следовательно, использование этого метода требует более подробного исследования и обоснования качества обработанной поверхности в зависимости от свойств обрабатываемого материала, режимов резания, эксплуатационных свойств обрабатываемых деталей. Таким образом, все методы обработки поверхностным пластическим де-формированием имеют широкие возможности в управлении параметрами состояния поверхностного слоя деталей машин, а следовательно и их эксплуатационными свойствами. Опыт современного машиностроения свидетельствует, что при совмещении процесса лезвийной обработки с ППД предоставляется возможность наряду с повышением эксплуатационных свойств изготовляемой продукции одновременно повысить точность и производительность технологического процесса обработки в целом.

Классификация методов отделочно-упрочняющей обработки деталей машин

Все известные методы упрочнения подразделяются на 6 основных классов:

упрочнение с образованием пленки на поверхности;

с изменением химического состава поверхностного слоя;

с изменением структуры поверхностного слоя;

с изменением энергетического запаса поверхностного слоя;

с изменением микрогеометрии поверхности и наклепом;

с изменением структуры по всему объему материала.

2.1 Упрочнение с созданием пленки на поверхности

а) осаждение химической реакции (оксидирование, сульфидирование, фосфатирование, нанесение упрочняющего смазочного материала, осаждение из газовой фазы).

б) осаждение из паров (термическое испарение тугоплавких соединений, катодно-ионная бомбардировка, прямое электронно-лучевое испарение, реактивное электронно-лучевое испарение, электронно-химическое испарение).

в) электролитическое осаждение (хромирование, никелирование, электрофорез, никельфосфатирование, борирование, борохромирование, хромофосфатирование).

г) напыление износостойких соединений (плазменное напыление порошковых материалов, детонационное напыление, электродуговое напыление, лазерное напыление, вихревое напыление, индукционное припекание порошковых материалов).

2.2 Упрочнение с изменением химического состава поверхностного слоя металла

а) диффузионное насыщение (борирование, цианирование, азотирование, нитроцементация и т.п.)

б) химическое и физико-химическое воздействие (химическая обработка, ионная имплантация, электроискровая обработка и т.д.).

2.3 Упрочнение с изменением структуры поверхностного слоя

а) физико-термическая обработка (лазерная закалка, плазменная закалка);

б) электрофизическая обработка (электроконтактная, электроэрозионная, магнитная обработка);

в) механическая (упрочнение вибрацией, фрикционно-упрочняющая обработка, дробеструйная, обработка взрывом, термомеханическая, электромеханическая);

г) наплавка легированным элементом (газовым пламенем, электрической дугой, плазмой, лазерным лучом, пучком ионов и т.д.).

2.4 Упрочнение с изменением энергетического запаса поверхностного слоя

а) обработка в магнитном поле (термомагнитная обработка, импульсным магнитным полем, магнитным полем);

б) обработка в электрическом поле.

2.5 Упрочнение с изменением микрогеометрии поверхности и наклепом

а) обработка резанием (точение, шлифование, сверхскоростное резание);

б) пластическое деформирование (накатывание, обкатывание, раскатывание, выглаживание, вибронакатывание, вибровыглаживание, калибрование, центробежно-ударное упрочнение, виброударное и т.д.);

в) комбинированные методы (анодно-механическая, поверхностное легирование с выглаживанием, резание с воздействием ультразвуковых колебаний, магнитно-абразивная обработка и т.д.).

2.6 Упрочнение с изменением структуры всего объема металла

а) термообработка при положительных температурах (закалка, отпуск, улучшение, закалка ТВЧ, нормализация, термомагнитная обработка);

б) криогенная обработка (закалка с обработкой холодом, термоциклирование).

Повышение долговечности деталей машин и механизмов, а также широкое применение в технике новых материалов ( пластмасс, металлокерамики и др.) неуклонно требуют оценки их по сопротивлению изнашиванию. [ 1 ]

Повышение долговечности деталей машин методом поверхностноро пластического деформирования ( ППД) или поверхностного наклепа широко используется в промышленности для повышения сопротивляемости малоцикловой и многсцикловой усталости деталей машин. На рис. 155 приведены схемы различных методов ППД. [ 2 ]

К эффективным методам повышения долговечности деталей машин , снижения их веса и экономии легированных сталей должен быть отнесен и способ изометрической закалки стальных деталей до высоких пределов прочности. [ 3 ]

К технологическим факторам повышения долговечности деталей машин относятся мероприятия по улучшению свойств применяемых материалов. [ 4 ]

В настоящее время существует множество технологических методов повышения долговечности деталей машин , основанных на механическом, физическом и химическом воздействии на поверхностный слой, приводящем к. [ 5 ]

Наплавка металлов - один из наиболее эффективных способов повышения долговечности деталей машин - позволяет восстанавливать геометрические размеры изношенных деталей, а также упрочнять их путем применения специальных электродных материалов, обеспечивающих получение наплавленного металла с заданными физическими свойствами. [ 6 ]

Поверхностное упрочнение наклепом или поверхностное пластическое деформирование широко используется для повышения долговечности деталей машин и элементов конструкций. Оно может быть осуществлено различными методами: 1) бомбардированием ( обдувом) металла струей стальной или чугунной дроби ( дробеструйная обработка), струей шариков или суспензии, содержащей абразивные частицы; 2) обкатыванием металла шариками или роликами; 3) выглаживанием инструментом сферической, трапецеидальной или конусной формы из природных или искусственных алмазов или синтетических сверхтвердых материалов ( карбонада, гексанита - Р или эльбора - Р); 4) чеканкой - упорядоченным многократным воздействием на упрочняемую поверхность специальными бойками или вибрирующими шариками или роликами. [ 7 ]

Приведенные выше примеры показывают, что ЭМУ является высокоэффективным методом повышения долговечности деталей машин . Указанные в табл. 15 значения силы тока и скорости выбирают в соответствии с требованиями к глубине упрочнения. [ 8 ]

Наплавка широко применяется в различных отраслях промышленности и является высокоэкономичным методом повышения долговечности деталей машин , повышая их износостойкость в 2 - 6 раз. [ 9 ]

На основании проведенных исследований можно сделать вывод, что сульфидирование, как метод повышения долговечности деталей машин при их работе на трение, повышает их долговечность также и при работе на усталость, особенно в коррозионной среде. [ 10 ]

Впервые введен раздел, посвященный поверхностному деформационному упрочнению, широко применяемому в машиностроении для повышения долговечности деталей машин . Указаны возможности использования ЭВМ для металловедческих исследований, решения технологических вопросов и управления оборудованием в термических цехах. [ 11 ]

Процессы химической и нефтеперерабатывающей промышленности, где применяются агрессивные среды, требуют использования новых материалов для повышения долговечности деталей машин и аппаратов и безотказной их работы. [ 12 ]

В связи с этим в ряде случаев даже применение легированных материалов с более высоким пределом прочности не позволяет разрешить проблему повышения долговечности деталей машин , в частности подверженных действию переменных нагрузок. [ 13 ]

Для снижения расходе энортчш на работу машин, станков, приборов, аппаратов, а также ла процесс бурения скважин, в котором имеет место трение между рожущим инструментом и породой, межго / бурильными трубами и отенками скважин, важно снизить трение. Для повышения долговечности деталей машин , бурового инструмента предотвращения аварий необходимо снизить износ и предотвратить схватывание. Для этой цели используют различные смазочные материал. При использовании хорошей смазки коэффициент трения снижается на порядок, а износ уменьшается в тысячи раз. В качестве смазочных материалов а различных отраслях промышленности используют нефтяные и синтетические масла и различные поверхностно-активные вещества. При бурогаш скважин используют до-бявки - присадки ПАВ в промнвочные жидкости. Добавки ПАВ, снижающие трение, называются антифрикционными присадками. [ 14 ]

На плановый капитальный ремонт мездрильной ( кожевенной) машины, например, расходуется в среднем 250 кг чугунного литья , 140 кг конструкционной стали, 60 кг углеродистой качественной стали, 12 кг бронзы, 5 кг красной меди, 10 5 кг баббита и другие материалы. Совершенно очевидно, что повышение долговечности деталей машин - очень важная народнохозяйственная проблема. [ 15 ]

Выбор способов повышения долговечности деталей машин

Каждый класс деталей должен отвечать определенным условиям работы. Исходя из этих условий, они, как правило, имеют определенные виды повреждений, для предотвращения которых применяют различные технологические методы, приведенные выше. Ниже в табл. 9.23 приведены экономически вытодные способы повышения долговечности ряда деталей.

Читайте также: