Сварка при отрицательных температурах реферат

Обновлено: 05.07.2024

Аннотация: в статье определены трудности, сопровождаемые процесс сварки в условиях низких температур; рассмотрена технология сварки при отрицательных температурах с подогревом и без подогрева.

Ключевые слова: сварка, подогрев, охлаждение, теплоизоляционная камера, нагреватель.

Больше половины валового национального продукта в индустриально развитых государствах формируется с помощью сварки и близких ей технологий. Вплоть до 2/3 всемирного потребления стального проката направлено на изготовление сварных сооружений и конструкций. Во многих случаях сварка является единственным возможным и наиболее результативным способом формирования неразъемного соединения конструкционных материалов и получения ресурсосберегающих заготовок, которые максимально приближены по форме к оптимальной готовой конструкции или детали. В нефтегазовой отрасли сварка имеет широкое применение. Самым распространённым и выгодным способом транспортировки углеводородов на данный момент являются магистральные трубопроводы, прокладка которых осуществляется непосредственно при помощи сварочных технологий.

Отрицательные температуры существенно влияют на процесс сварки. С понижением температуры скорость охлаждения и кристаллизации металла сварочной ванны увеличивается, следовательно насыщение металла шлаковыми и газовыми включениями возрастает. Это приводит к образованию в сварном соединении горячих и холодных трещин. В результате проплавление охлажденного металла ухудшается, что способствует образованию непроваров. На электродах и свариваемых кромках может конденсироваться малозаметная влага, это приводит к повышению в наплавленном металле водорода [1].

При понижении температуры сталь становится чувствительной к концентраторам напряжений (мельчайшие внутренние и внешние дефекты наплавленного металла), которые при отрицательных температурах способствуют образованию трещин. Ведение сварки при низких температурах требует от сварщика повышенного внимания к соблюдению технологии сварки.

Процесс сварки в условиях низких температур осложнен тем, что минусовые температуры отрицательно влияют на механические свойства, структуру и сплошность сварного соединения. Испытания сварных соединений на продолжительное растяжение, показывают, что соединения, полученные при низких температурах без предварительного подогрева кромок, разрушаются раньше времени вследствие значительных остаточных температурных напряжений, образующихся из-за неоднородного распределения температуры. Следовательно процесс сварки при низких температурах производится с предварительным подогревом свариваемых деталей (их кромок). Нагрев осуществляют нагревательным прибором. По окончании процесса сварки производят охлаждение сварного соединения в теплоизоляционной камере [2].

В районах Крайнего Севера, болот, тундры и переувлажненных участков большинство конструкций (резервуары, сосуды, магистральные трубопроводы и другие) выгодно сооружать в зимнее время года, когда грунт скован морозом, что способствует проходимости сварочно-монтажной техники, транспорта в труднодоступные районы. Производство монтажно-сварочных работ в зимний период обладает своими объективными особенностями, которые связанны с присутствием ветров, низкой температурой воздуха и обильных снегопадов, которые оказывают значительное воздействие на качество сварных конструкций.

Свойства низкоуглеродистых и низколегированных сталей, а также сварных соединений из них наиболее заметно изменяются при понижении температуры. При испытании гладких образцов из этих сталей пределы текучести, прочности и выносливости повышаются, а относительное удлинение и поперечное сужение понижаются.

Для служебных характеристик сварных соединений и элементов сварных конструкций решающим является их способность сопротивляться хрупким разрушениям. Поэтому вопросы хладостойкости принято рассматривать в тесной связи с хрупкостью металлов. При переходе от вязкого разрушения металла к хрупкому изменяются внешний вид поверхности излома, глубина пластически деформированного слоя металла от поверхности разрушения и как следствие работа пластической деформации металла.


Изменение площади разрушения с волокнистым характером разрушения (а)

и работы разрушения металла при быстром динамическом распространении

трещины в зависимости от температуры испытания.

В некотором достаточно узком интервале температур, разном для разных металлов, доля площади В разрушения с волокнистым характером разрушения изменяется от 100% до нулевой величины, уступая место хрупкому кристаллическому излому, и понижается работа Gд разрушения металла при быстром динамическом распространении трещины. Температуру, при которой поверхность разрушения имеет 50% хрупких участков и 50% вязких, принято называть первой критической температурой Ткр1 . При испытании крупных образцов и динамическом приложении нагрузок Ткр1 несколько смещается вправо, а при испытании более мелких образцов и статическом приложении нагрузок - влево, в область более низких температур. Смещение Ткр1 обычно невелико ( в пределах 10-20ºС ). Положение Ткр1 зависит от химического состава, способа производства и термической обработки стали, а также других факторов. Чем Ткр1 стали ниже, тем более широко эту сталь можно применять для изготовления сварных конструкций различного назначения. Положение Ткр1 указывает лишь на область перехода от вязкого разрушения к хрупкому, но не характеризует количественно способность металла сопротивляться разрушению при быстром распространении трещины. Количественной характеристикой является величина Gд кгс∙м/см 2 , чем больше она, тем меньше вероятность разрушения.

Для оценки свойств сварных соединений и элементов сварных конструкций при пониженных температурах применяют многочисленные методы и критерии. Критерии и методы испытаний могут быть классифицированы по многим признакам, в частности, различают методы, с помощью которых определяется способность металла сопротивляться началу разрушения, и методы, с помощью которых оценивают свойства металла в процессе распространения трещины. Критерии классифицируют также по роду регистрируемой величины, разделяя, например, их на критерии, связанные с напряжениями деформацией, перемещением и затраченной энергией.


Зависимость предела текучести sт , среднего разрушающего напряжения sр

и процента волокнистости излома В от температуры.

Наиболее распространена оценка сварных соединений и элементов сварных конструкций по разрушающей силе Рр или среднему разрушающему напряжению sр . С их помощью можно выявить так называемую вторую критическую температуру Ткр2 . При Ткр2 среднее разрушающее напряжение испытываемого элемента становится равным пределу текучести металла sт при соответствующей температуре.

Положение Ткр2 зависит от многих факторов. Чем выше концентрация напряжений, скорость приложения нагрузки, остаточные напряжения, уровень сварочной пластической деформации, содержание газов и вредных примесей в шве, скорость охлаждения при сварке, приводящая к закалке, крупнее зерно и больше сечение испытываемого элемента, а также хуже защита металла при сварке, тем правее располагается Ткр2 , смещаясь в сторону положительных температур. При крайне неблагоприятных сочетаниях отрицательных факторов в ограниченной области сварного соединения свойства металла существенно ухудшаются, при этом Ткр2 может оказаться даже правее Ткр1 .

Преимуществом испытания для определения sр является его простота. Недостаток состоит в том, что, проводя испытания конструкционного элемента при конкретной температуре Т выше Ткр2 и получая коэффициент запаса прочности ns =sр /sт >1, нельзя судить о запасе пластичности и о возможности наступления хрупкого разрушения. Это объясняется тем, что на диаграмме в координатах напряжение - средняя деформация eср. в опасном сечении при изменении концентрации напряжений, свойств металла и т. п. Точка разрушения D смещается в основном по горизонтали, в то время, как средняя разрушающая деформация eср.р изменяется существенно.


Диаграмма зависимости среднего напряжения s от средней деформации eср .

Большое развитие получила механика разрушения. Одним из основных понятий в механике разрушения является коэффициент К интенсивности напряжений. Он характеризует напряженное состояние вблизи конца трещины, находящейся в нагруженном элементе. В момент начала продвижения конца трещины при механических испытаниях материала регистрируется критический коэффициент интенсивности напряжений КIc или Кс , который является характеристикой материала и служит для оценки его способности сопротивляться началу движения трещины при статической или ударной нагрузке в зависимости от условий проведения испытаний.

Также большое значение для оценки свойств сварных соединений и основного металла имеют энергетические критерии. Для определения свойств металла околошовных зон и шва широко применяют испытания на ударный и статический изгиб призматических образцов с получением диаграммы Р( сила ) - f(прогиб образца ). Диаграмма ( рис. а )имеет линейный упругий участок ОА, Участок изгиба образца АВ до появления в надрезе трещины или до начала ее движения, если трещина создана заранее, и участок ВС, если трещина распространяется по поперечному сечению образца.


Характер диаграмм Р - f при вязком (а) и хрупком (б) распространении трещины

Площадь фигуры ОАВD представляет собой работу пластической деформации образца на стадии до начала движения трещины, площадь DВЕ - накопленную энергию упругой деформации, площадь DBCF является работой пластической деформации образца во время продвижения трещины. При хрупком распространении трещины ( рис. б ) удается определить только работу пластической деформации изгиба - площадь OABD. Вертикальный участок диаграммы по линии ВЕ указывает лишь на то, что работа, истраченная на распространение трещины, меньше величины энергии упругой деформации, выражаемой площадью DBE, но какова она в действительности, установить невозможно.

Современные способы сварки и применяемые сварочные материалы обеспечивают получение наплавленного металла, не уступающего по хладостойкости основному металлу аналогичного химического состава, а в некоторых случаях даже превосходящего по своим свойствам основной металл. Однако при сварке имеется ряд факторов, таких как условия производства сварочных работ, качество сварочных материалов, защита расплавленного металла, термомеханическое воздействие сварки на металл, геометрическая форма соединений и другие, недостаточное внимание к которым может привести к резкому ухудшению свойств металла и снижению хладостойкости сварных конструкций.

Влияние сварки на свойства сварных соединений, эксплуатируемых при резких температурах, многообразно, оно может изменяться в широких пределах и поэтому в большинстве случаев не поддается конкретному количественному выражению. Характерным является также то, что изменения свойств носят местный, локальный характер.

Наиболее распространены несколько случаев отрицательного влияния сварки:

1. Образование хрупких зон в сварных швах под влиянием изменения химического состава металла шва по сравнению с основным металлом за счет нерационального легирования или загрязнения металла вредными примесями и газами.

2. Образование хрупких при низких температурах околошовных зон за счет термического влияния сварки - быстрого охлаждения, роста зерна, структурных изменений. Степень этого влияния решающим образом зависит от химического состава основного металла, способа его производства и исходного состояния.

3. Концентрация пластических деформаций и деформационное старение металла в зонах непровара и резкого изменения формы соединений, трещинах и т. п., находящихся в пределах зоны термического влияния сварки. Данный случай является наиболее распространенной причиной хрупких разрушений сварных соединений при низких температурах.

Предупреждение хрупких разрушений сварных соединений и конструкций при низких температурах может быть осуществлено устранением причин, их вызывающих. Существует несколько основных путей повышения сопротивляемости хрупким разрушениям.

1. Выбор основного металла для сварных конструкций, обладающих малой склонностью к деформационному старению и достаточно высокой сопротивляемостью распространению разрушений при температурах эксплуатации изделия. Развитие разрушения при использовании основного металла с высокой энергией разрушения при распространении в нем трещины возможно лишь при дефектах или зонах повреждения металла большой протяженности ( например в продольных швах трубопроводов ). В большинстве сварных конструкций изменения, вызываемые сваркой, носят локальный характер, ввиду чего начавшееся разрушение не будет распространяться по основному металлу. Такой путь оправдан в конструкциях, где невозможно обеспечить полное отсутствие дефектов сварки. Закалка и отпуск основного металла являются эффективным средством повышения энергии разрушения сталей при низких температурах.

2. Нормализация и закалка с отпуском сварных деталей. Такие операции не только устраняют отрицательные последствия влияния сварки на структуру металла в зоне сварных соединений, но и улучшают свойства основного металла.

3. Применение высокого отпуска, который является эффективным средством, позволяющим восстановить пластические свойства металла, утраченные в результате протекания пластических деформаций и старения металла в концентраторах. Одновременно общий высокий отпуск значительно снижает остаточные напряжения и накопленную потенциальную энергию при сварке. Местный отпуск применяют главным образом как средство восстановления пластичности металла.

4. Конструктивное оформление отдельных элементов, уменьшающее как концентрацию собственных деформаций в процессе сварки, так и концентрацию рабочих напряжений в процессе эксплуатации конструкции.

5. Назначение последовательности сборочно-сварочных операций и технологических приемов выполнения сварных соединений, исключающих резкие концентраторы напряжений в зоне пластических деформаций, в том числе дефекты в виде непроваров, трещин, несплавлений, подрезов и т. п.

6. Применение присадочных металлов, обеспечивающих высокую пластичность и вязкость металла швов при низких температурах.

7. Использование рациональных режимов сварки, исключающих появление зон с пониженными механическими свойствами при низких температурах.

Список использованной литературы

У подавляющего большинства металлов при понижении температуры пределы прочности, текучести, твердости увеличиваются, и, казалось бы, эти изменения свойств могут быть использованы для назначения более высоких допускаемых напряжений и облегчения конструкций. Од­нако почти во всех деталях и конструкциях имеется кон­центрация напряжений, а при понижении температуры чувствительность многих металлов к надрезам резко воз­растает.

Характер изменения свойств металлов при понижении температуры зависит от многих факторов: вида кристал­лической решетки, химического состава, величины зерна, термической обработки — и прояатяется по-разному в зависимости от условий нагружения и напряженного состояния.

.Металлы и сплавы, у которых с понижением температуры предел текучести по сравнению с пределом прочности повышается незначительно, относятся к хладостойким. Пластичность и ударная вязкость с понижением темпера­туры у них почти не меняется.

Металлы и сплавы, в которых предел текучести повы­шается значительно сильнее, чем предел прочности, пла­стичность заметно понижается, относятся к хладноломким.

С понижением температуры у металлов и сплавов:

пластичность обычно уменьшается более резко у кон­струкционных углеродистых и низколегированных сталей;

слабее — у других металлов. У ряда алюминиевых и мед* ных сплавов происходит увеличение пластичности;

сопротнмение усталости при переменных нагрузках в большинстве случаев возрастает;

чувствительность к концентрации напряжений при острых надрезах возрастает, а ударная вязкость (работа разрушения) уменьшается наиболее значительно у железа, углеродистых и низколегированных сталей высокой проч* ности, которые имеют резко выраженную область темпе­ратур перехода от вязкого к хрупкому разрушению.

К вязким разрушениям относят такие, поверхность которых имеет полностью волокнистый излом. К хрупким разрушениям относят разрушения с кристаллической по­верхностью излома. Промежуточное положение занимают полухрупкие разрушения, у которых часть поверхности имеет кристаллический, а часть поверхности — волокни­стый излом. Понижение температуры, увеличение ско­рости нагружения, увеличение концентрации напряжений способствуют переходу от вязких форм разрушения к хрупким.

Высокая работоспособность многих деталей машин, сварных соединений и элементов сварных конструкций при пониженных температурах решающим образом за­висит от их способности сопротивляться хрупким раз­рушениям.

Наиболее распространенным и простым методом оценки изменения свойств при понижении температуры является испытание на ударную вязкость. Чем острее надрез испы­туемого образца, крупнее его кристаллы, скорость ударя­ющего тела, тем меньше ударная вязкость.

Принято определять при понижении температуры тан называемую первую критическую температуру Тнр, резко уменьшающую ударную вязкость, при которой площадь волокнистого (вязкого) излома составляет 50% общей разрушенной площади.

На рис. 4.15 показаны изменения процентного содер­жания волокнистого излома В, работы разрушения Ов, предела текучести

Сварные конструкции. Расчет и проектирование

Проектирование и монтаж дымоходов

Производитель металлоапластиковых конструкций

ХОЛОДНЫЕ ТРЕЩИНЫ

Наиболее часто холодные трещины возникают в ле­гированных сталях в тех случаях, когда металл под дей­ствием термического цикла сварки претерпевает закалку. В этих случаях холодные трещины при сварке появляются в результате …

Продажа шагающий экскаватор 20/90

Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788

1.2. Руководящие технологические материалы содержат требования по технологии сварки соединений арматуры между собой и с плоскими элементами проката при изготовлении арматурных изделий (сеток, каркасов, стыковых соединений стержней) и закладных изделий, а также при монтаже элементов сборных и возведении монолитных железобетонных конструкций. Устанавливают методы и объемы контроля качества сварных соединений.

Конструкции сварных соединений, класс и марка арматурной стали и металлопроката должны быть указаны в проектной документации.

1.4. Способы и технологию сварки, а также область применения арматуры различных классов и марок стали с учетом эксплуатационных качеств сварных соединений надлежит выбирать, пользуясь табл. 1.1 и приложением 2 настоящих РТМ.

1.5. При производстве работ по сварке соединений арматуры и закладных изделий железобетонных конструкций должны выполняться требования, предусмотренные главами СНиП по проектированию, производству работ и приемке сборных и монолитных железобетонных конструкций, а также главами СНиП по организации строительства и технике безопасности в строительстве, Правилами пожарной безопасности при производстве строительно-монтажных работ и другими нормативными документами, утвержденными и согласованными в установленном порядке.

1.7. Защита сварных арматурных и закладных изделий железобетонных конструкций от коррозии должна производиться в соответствии с требованиями, предусмотренными главой СНиП 2.03.11.

1.8. Выбор типов конструкций и способов сварки соединений арматуры и элементов закладных изделий следует осуществлять из условия:

а) применения сварных соединений и технологии сварки, обеспечивающих наиболее высокие эксплуатационные качества и полное использование механических свойств арматурной стали;

б) максимально возможного сокращения материальных и трудовых затрат на выполнение сварных соединений путем применения:

1.9. В заводских условиях при изготовлении сварных арматурных сеток, каркасов и сварке стыковых соединений стержней следует применять преимущественно контактную точечную и стыковую сварку, а при изготовлении закладных изделий - механизированную сварку под флюсом и контактную рельефную сварку.

При отсутствии необходимого сварочного оборудования допускается выполнять в заводских условиях крестообразные, стыковые, нахлесточные и тавровые соединения арматуры, применяя перечисленные в настоящих РТМ способы дуговой сварки.

1.10. При монтаже арматурных изделий и сборных железобетонных конструкций в первую очередь должны применяться механизированные способы сварки, обеспечивающие возможность неразрушающего контроля качества сварных соединений (например, ультразвуковой дефектоскопии).

1.12. Руководство сварочными работами и обеспечение технологических условий сварки, включающих правильность и рациональное применение стали, сварочных материалов, выбор оборудования и наладку режимов, контроль на всех стадиях выполнения работ и документальное фиксирование вплоть до сдачи объекта, осуществляет инженер (техник) по сварке или лицо, назначенное на указанную работу (мастер, прораб).

Инженерно-технический персонал обязан один раз в год проходить аттестацию по официально утвержденной строительным министерством (концерном) программе.

1.13. К работам по изготовлению сварных соединений арматуры и закладных изделий допускаются сварщики, прошедшие теоретическое и практическое обучение по сварке, соответствующих профилю их работы и имеющие удостоверения на право производства данных работ.

1.14. Условия сварки соединений с указанием фамилии сварщиков следует фиксировать в типовом журнале сварочных работ.

1.15. Не допускается сварка с использованием неисправного оборудования, при ненадежных электрических сетях, перебоях в подаче электроэнергии, а также при колебаниях напряжения в сети более 5% оптимальной величины, последние два условия должны соблюдаться особенно строго при ванной и ванно-шовной сварке стыковых соединений арматуры.

1.16. Сварочное оборудование и источники питания дуги должны каждые полгода подвергаться паспортизации. Эксплуатация сварочного оборудования, не имеющего паспорта или с просроченным сроком паспортизации не допускается.

Основные сведения по эксплуатации сварочного оборудования и формы документации приведены в приложении 3.

Для армирования железобетонных конструкций различного назначения применяют стержневую арматуру и арматурную проволоку гладкого и периодического профиля, используемую при изготовлении сварных арматурных сеток, каркасов, закладных изделий и стержней, сваренных в мерные линейные изделия для обычных и предварительно напряженных конструкций.

Соединение элементов железобетонных конструкций между собой осуществляют через выпуски арматуры и закладные изделия, используя технологический процесс сварки, в котором следует учитывать особенности химического состава стали, масштабный фактор, условия выполнения работ и др.


По механическим свойствам стержневая арматурная сталь подразделяется на классы, обозначаемые римскими цифрами от I до VII (после буквенных символов соответственно для горячекатаной арматурной стали - А, для термомеханически упрочненной - Ат). Осуществляемым переходом на новое обозначение в соответствии с международными в обозначении арматурной стали отражают ее класс прочности в виде установленного стандартами нормируемого значения условного или физического предела текучести в (например, А400, Ат600 и т.п. ).

В зависимости от эксплуатационных характеристик арматуры в обозначении термомеханически упрочненной арматурной стали свариваемой присваивается индекс С, стойкой против коррозионного растрескивания - индекс К (например, Ат-IVС, Ат-600К и т.п. ).


На предприятиях строительной индустрии стержневую арматурную сталь классов А-III и Ат-IIIС нередко упрочняют вытяжкой для повышения ее прочностных характеристик (при некотором снижении пластических свойств). Упрочнение вытяжкой производят до контролируемого удлинения и контролируемого напряжения не менее 540 или только удлинения (без контроля напряжения). Такое упрочнение вытяжкой должно производиться на основе документа, регламентирующего для соответствующей марки стали режимы и параметры упрочнения этой арматурной стали, ее электронагрева и контактной сварки, длины заготовок и допускаемых отклонений размеров стержней, их предварительного натяжения, а также методы контроля в условиях производства. Указанная упрочненная вытяжкой арматурная сталь обозначается А-IIIв.

2.1.3. Механические свойства горячекатаной стержневой арматурной стали приведены в табл. 2.1, термомеханически упрочненной - в табл. 2.2; геометрические и физические параметры арматуры - в табл. 2.3, ее химический состав - в табл. 2.4 и 2.5.

2.1.4. Правила приемки и методы испытаний арматурной стали на растяжение регламентируются ГОСТ 12004-81 (6), методы испытания на изгиб - ГОСТ 14019-80 (7).

Арматурную сталь класса A-I изготовляют гладкой, а классов А-II и выше - периодического профиля. По требованию потребителя горячекатаную стержневую арматурную сталь классов А-II, А-III, А-IV и А-V изготовляют гладкой.

Арматурная сталь класса А-II имеет профиль согласно Рис. 2.1,а; горячекатаная классов А-II - А-VI и термомеханически упрочненная классов Ат-IIIС - Ат-VII - согласно рис. 2.1,б (ГОСТ 5781-82).

Claw.ru | Рефераты по технологии | Влияние температуры окружающей среды на свойства сварного шва

Диаграмма зависимости среднего напряжения ( от средней деформации (ср.

Большое развитие получила механика разрушения. Одним из основных понятий в механике разрушения является коэффициент К интенсивности напряжений. Он характеризует напряженное состояние вблизи конца трещины, находящейся в нагруженном элементе. В момент начала продвижения конца трещины при механических испытаниях материала регистрируется критический коэффициент интенсивности напряжений КIc или Кс , который является характеристикой материала и служит для оценки его способности сопротивляться началу движения трещины при статической или ударной нагрузке в зависимости от условий проведения испытаний.

Также большое значение для оценки свойств сварных соединений и основного металла имеют энергетические критерии. Для определения свойств металла околошовных зон и шва широко применяют испытания на ударный и статический изгиб призматических образцов с получением диаграммы Р( сила )
- f(прогиб образца ). Диаграмма ( рис. а )имеет линейный упругий участок
ОА, Участок изгиба образца АВ до появления в надрезе трещины или до начала ее движения, если трещина создана заранее, и участок ВС, если трещина распространяется по поперечному сечению образца.

Характер диаграмм Р - f при вязком (а) и хрупком (б) распространении трещины

Площадь фигуры ОАВD представляет собой работу пластической деформации образца на стадии до начала движения трещины, площадь DВЕ - накопленную энергию упругой деформации, площадь DBCF является работой пластической деформации образца во время продвижения трещины. При хрупком распространении трещины ( рис. б ) удается определить только работу пластической деформации изгиба - площадь OABD. Вертикальный участок диаграммы по линии ВЕ указывает лишь на то, что работа, истраченная на распространение трещины, меньше величины энергии упругой деформации, выражаемой площадью DBE, но какова она в действительности, установить невозможно.

Современные способы сварки и применяемые сварочные материалы обеспечивают получение наплавленного металла, не уступающего по хладостойкости основному металлу аналогичного химического состава, а в некоторых случаях даже превосходящего по своим свойствам основной металл.
Однако при сварке имеется ряд факторов, таких как условия производства сварочных работ, качество сварочных материалов, защита расплавленного металла, термомеханическое воздействие сварки на металл, геометрическая форма соединений и другие, недостаточное внимание к которым может привести к резкому ухудшению свойств металла и снижению хладостойкости сварных конструкций.

Влияние сварки на свойства сварных соединений, эксплуатируемых при резких температурах, многообразно, оно может изменяться в широких пределах и поэтому в большинстве случаев не поддается конкретному количественному выражению. Характерным является также то, что изменения свойств носят местный, локальный характер.

Наиболее распространены несколько случаев отрицательного влияния сварки:

1. Образование хрупких зон в сварных швах под влиянием изменения химического состава металла шва по сравнению с основным металлом за счет нерационального легирования или загрязнения металла вредными примесями и газами.

2. Образование хрупких при низких температурах околошовных зон за счет термического влияния сварки - быстрого охлаждения, роста зерна, структурных изменений. Степень этого влияния решающим образом зависит от химического состава основного металла, способа его производства и исходного состояния.

3. Концентрация пластических деформаций и деформационное старение металла в зонах непровара и резкого изменения формы соединений, трещинах и т. п., находящихся в пределах зоны термического влияния сварки. Данный случай является наиболее распространенной причиной хрупких разрушений сварных соединений при низких температурах.

Предупреждение хрупких разрушений сварных соединений и конструкций при низких температурах может быть осуществлено устранением причин, их вызывающих. Существует несколько основных путей повышения сопротивляемости хрупким разрушениям.

1. Выбор основного металла для сварных конструкций, обладающих малой склонностью к деформационному старению и достаточно высокой сопротивляемостью распространению разрушений при температурах эксплуатации изделия. Развитие разрушения при использовании основного металла с высокой энергией разрушения при распространении в нем трещины возможно лишь при дефектах или зонах повреждения металла большой протяженности ( например в продольных швах трубопроводов ). В большинстве сварных конструкций изменения, вызываемые сваркой, носят локальный характер, ввиду чего начавшееся разрушение не будет распространяться по основному металлу. Такой путь оправдан в конструкциях, где невозможно обеспечить полное отсутствие дефектов сварки. Закалка и отпуск основного металла являются эффективным средством повышения энергии разрушения сталей при низких температурах.

2. Нормализация и закалка с отпуском сварных деталей. Такие операции не только устраняют отрицательные последствия влияния сварки на структуру металла в зоне сварных соединений, но и улучшают свойства основного металла.

3. Применение высокого отпуска, который является эффективным средством, позволяющим восстановить пластические свойства металла, утраченные в результате протекания пластических деформаций и старения металла в концентраторах. Одновременно общий высокий отпуск значительно снижает остаточные напряжения и накопленную потенциальную энергию при сварке. Местный отпуск применяют главным образом как средство восстановления пластичности металла.

4. Конструктивное оформление отдельных элементов, уменьшающее как концентрацию собственных деформаций в процессе сварки, так и концентрацию рабочих напряжений в процессе эксплуатации конструкции.

5. Назначение последовательности сборочно-сварочных операций и технологических приемов выполнения сварных соединений, исключающих резкие концентраторы напряжений в зоне пластических деформаций, в том числе дефекты в виде непроваров, трещин, несплавлений, подрезов и т. п.

6. Применение присадочных металлов, обеспечивающих высокую пластичность и вязкость металла швов при низких температурах.

7. Использование рациональных режимов сварки, исключающих появление зон с пониженными механическими свойствами при низких температурах.

Список использованной литературы

2. Винокуров В.А., Куркин С.А., Николаев Г.А., «Сварные конструкции.


Рекомендуем скачать другие рефераты по теме: реферат,, реферати українською, рефераты бесплатно.

Читайте также: