Структурная неорганическая химия реферат

Обновлено: 08.07.2024

Комбинируя атомы разных химических элементов с их единицами сродства, можно создавать структурные формулы любого химического соединения. Это означает, что химик может запланировать синтез любого химического соединения, как уже известного, так еще никому не известного. Формульный схематизм Кекуле – прямой путь к практическим действиям по получению веществ с заданными свойствами. Однако, это далеко не полная гарантия успеха: намеченная химическая реакция может просто не пойти. Формульный схематизм Кекуле не указывает на реакционную активность реагентов. Знания о химической активности реагента имеют первостепенное значение для практики получения целевых продуктов. Эти знания дает теория химического строения А.М. Бутлерова. Теория Бутлерова потому и названа теорией химического строения, что она указывала на причины активности одних веществ и пассивности других. Именно поэтому она стала для химиков действительным руководством в практике синтеза органических веществ.

Теория химического строения Бутлерова нашла физические обоснования в квантовой механике.

Сегодня под структурой молекулы мы понимаем и пространственную, и энергетическую упорядоченность квантово-механической системы, состоящей из атомных ядер, электронов и обладающих единой молекулярной орбиталью.

Таким образом, эволюция понятия химической структуры осуществлялась в направлении, с одной стороны, анализа ее составных частей или элементов, с другой – установления характера физико-химического взаимодействия между ними. С точки зрения системного подхода, под структурой подразумевают упорядоченную связь и взаимодействие между элементами системы, благодаря которой и возникают новые целостные свойства. В такой химической системе, как молекула, именно специфический характер взаимодействия составляющих ее атомов определяет свойства молекулы.

За вторую половину XIX века число органических соединений возросло с полумиллиона, примерно, до двух миллионов. Успехами синтетической химии можно восторгаться, но их не следует абсолютизировать.

3.3 Пределы структурной органической химии

Пределы эти обусловлены собственно тем не высоким уровнем химических знаний, на котором находится вся концептуальная система структурной химии.

Она ограничена рамками сведений только о молекулах вещества, находящегося в дореакционном состоянии. Этих сведений недостаточно для того, чтобы управлять процессами превращения веществ.

Структурная химия оказалась не в состоянии указать пути осуществления процессов производства этилена, ацетилена, бензола, и диеновых углеводородов из парафиновых углеводородов нефти, хотя все эти процессы составляют основу нефтехимического производства, и их оказалось легко осуществить посредством химической кинетики и термодинамики.

Многие реакции препаративного органического синтеза, основанные лишь на принципах структурной химии, имеют низкие выходы конечного продукта и отходы в виде побочных продуктов, что затрудняет их использование в промышленной технологии.

Классический органический синтез трудно управляем в технологическом отношении, как правило, он является многостадийным. Это было показано на примере синтеза каучука.

3.4 Новые проблемы структурной химии

Еще более поразительной и необычной является структура молекул, существующих в непрерывном перестроении. Такова, в частности, молекула бульвалена С10Н10. Его можно представить в виде шара, по поверхности которого с огромной скоростью перемещаются 10 атомов углерода и 10 атомов водорода, имитируя таким способом симметрию молекулы или компенсируя отсутствие симметрии, что необходимо для устойчивого состояния данной структуры. Эта молекула представляет собой своеобразную постоянно протекающую химическую реакцию.

Проблемы структурной неорганической химии - это по существу проблемы химии твердого тела. В широком плане их только две: поиск путей синтеза кристаллов с максимальным приближением к идеальной решетке, чтобы получать материалы с высокой механической прочностью, термической стойкостью и долговечностью в эксплуатации; создание методов получения кристаллов, содержащих заранее запроектированные дефекты решетки, чтобы получить материалы с заданными электрофизическими и оптическими свойствами.

Современные структурные теории твердого тела сегодня дают соответствующие рекомендации для решения обеих названных проблем. Суть этих рекомендаций во многом сводится к воздействию на процессы выращивания кристаллов различных добавок, подобных тем, которые издавна применяются для легирования сталей.

Ваша точка зрения?

2. Каковы возможности и пределы структурной химии?

3. Каковы особенности структуры ферроцена и бульвалена?

4. Каковы важнейшие проблемы структурных теорий твердого тела?

1. Свойства веществ и их качественное разнообразие, обуславливаются не только их составом, но еще и структурой их молекул.

3. Структура - это устойчивая упорядоченность качественно неизменной системы, каковой является молекула.

4. На основе простейших углеводородов из каменноугольной смолы и аммиака были синтезированы: анилиновые красители, взрывчатые вещества, лекарственные препараты.

5. Проблемы структурной неорганической химии сводятся:

􀀹 к поиску путей синтеза кристаллов с максимальным приближением к идеальной решетке, чтобы получить материалы с высокой механической прочностью и долговечностью в эксплуатации;

􀀹 к созданию методов получения кристаллов, содержащих заранее запроектированные дефекты решетки, для получения материалов с заданными свойств

1. На рубеже тысячелетий в каждой из главных областей естествознания – биологии, физике, химии – произошли и происходят одинаково важные, капитальные, но притом весьма различные метаморфозы. Облик биологии преобразили молекулярная генетика, исследования биологических процессов на молекулярном уровне. Физика достигла колоссальных успехов в технологическом обеспечении электроники, поражает воображение расширение диапазона исследуемых частот и энергий (благодаря синхротрону и лазерной технике). Это пока не привело к пересмотру физических основ и общей картины мироздания, но можно ожидать, что радикальные сдвиги в теоретической физике произойдут в ближайшие годы.

Содержание работы
Файлы: 1 файл

Структурная Химия -1.doc

1. На рубеже тысячелетий в каждой из главных областей естествознания – биологии, физике, химии – произошли и происходят одинаково важные, капитальные, но притом весьма различные метаморфозы. Облик биологии преобразили молекулярная генетика, исследования биологических процессов на молекулярном уровне. Физика достигла колоссальных успехов в технологическом обеспечении электроники, поражает воображение расширение диапазона исследуемых частот и энергий (благодаря синхротрону и лазерной технике). Это пока не привело к пересмотру физических основ и общей картины мироздания, но можно ожидать, что радикальные сдвиги в теоретической физике произойдут в ближайшие годы.

Существенно иной представляется ситуация, сложившаяся в химии. Здесь также несомненно бурно развиваются новые представления (например, их несут в себе супрамолекулярная химия, нанотехнологии, фемтохимия). Фантастическими следует назвать достижения биохимии. Все шире внедряются представления о химическом веществе как о микрогетерогенной среде, и это играет огромную роль в химии материалов. Несомненно огромное значение имеют успехи квантовой химии, однако и классическая механика широко используется при описании и интерпретации химических процессов. И по-прежнему незыблемой основой очень многих разделов химии остаются структурные формулы и стереохимические представления, сложившиеся в конце 19-го века.

Основная метаморфоза, которую претерпела химия в 20-м столетии, заключается в том, что из "экспериментальной науки о веществах и их превращениях" она превратилась в систему представлений, методов, знаний и теоретических концепций, направленных на изучение атомно-молекулярных систем. При этом основным средством описания, интерпретации, прогноза и использования атомно-молекулярных систем стала структура. Не будет большим преувеличением назвать всю современную химию структурной.

2. Структура – это всегда модель, это всегда некое приближение. Стоит отметить, что если в английском языке для понятия "приближение" есть два термина: approach и approximation, то в русском для этого существует лишь одно слово – "приближение", но от этого оно не теряет своих двух смыслов: все равно оно остается, с одной стороны, приближением в смысле approach и с другой – приближением в смысле approximation. Структура есть приближение в обоих значениях этого слова.

Чаще всего и подробнее всего рассматривается структура молекул и кристаллов, но чрезвычайно важна для химии и структура других конденсированных фаз, а также прочих образований, которые не являются молекулами (например, ассоциатов и кластеров).

3. Структурная химия — раздел, область химии, изучающая связь различных физических и физико-химических свойств различных веществ с их химическим строением и реакционной способностью. Структурная химия рассматривает не только геометрическое строение молекул; изучению подвергается следующее — длины химических связей, валентные углы, координационные числа, конформации и конфигурации молекул; эффекты их взаимного влияния, ароматичность.

4. Еще в 19-м веке корифеи химии указывали на сложное соотношение между понятиями "эксперимента" и "факта", а также на относительно малую значимость "фактов" как таковых "факт сам по себе ничего не значит. Важна интерпретация." Д.И.Менделеев. К этому следует еще добавить, что любой "факт" можно зафиксировать (сформулировать), только опираясь на определенные теоретические (модельные) представления. Следовательно, если меняются теоретические воззрения, меняются и "факты", которые, таким образом, оказываются вписанными в постулируемую систему научных взглядов ).

Однако, в середине 20-го века учебники химии (неорганической, органической, аналитической) чаще всего представляли собой увесистые тома или даже многотомные издания, содержащие огромное множество "экспериментальных фактов", которые следовало запомнить или хотя бы иметь в виду. Большая часть этих сведений была получена простыми очевидными способами и казалась весьма надежной. Но впоследствии очень многое оказалось неверным или неточным или неправильно истолкованным.

Тем временем мало-помалу стала меняться, причем во многих отношениях, та масса зафиксированного в научной литературе материала, который принято называть "опытными данными", "результатами экспериментальных исследований" и т.п. Этот процесс был обусловлен рядом факторов, из которых первым стало многократное увеличение числа научных работников. Стало возможным накопление огромных массивов однообразной информации для широкого круга химических соединений (диэлектрические постоянные, магнитная восприимчивость, дипольные моменты, термохимические данные и многое другое). Наряду с толстыми учебниками появились очень толстые справочники.

Далее, информация такого рода разрослась настолько, что перестала умещаться уже и в справочники; к тому же пользоваться такими изданиями стало дорого и неудобно. В последние три-четыре десятилетия 20-го века однообразная информация стала оседать в компьютерных базах данных (их называют также и банками).

Потоки фактической информации, используемой для наполнения компьютерных банков, практически полностью поступают от экспериментаторов, освоивших дорогое и весьма совершенное фирменное оборудование (бурный расцвет так называемых "физических методов исследования"!). Если говорить о структурных данных, то здесь основными источниками информации стали инфракрасные спектры и спектры комбинационного рассеяния, спектры ядерного магнитного резонанса и электронного парамагнитного резонанса, дифракционные методы (рентгеноструктурный анализ и нейтронография). Объем сведений, полученных с помощью названных методов в последние три-четыре десятилетия 20-го века, в тысячи раз превысил объем опытных данных, накопленных за предыдущие три века существования научной химии. При этом разрабатываемые в настоящее время новые экспериментальные методики (например, использование синхротронного излучения в рентгеноструктурном анализе) открывают фантастические возможности не только ускоренного накопления информации, но и ее полной перепроверки и уточнения, осуществляемого за очень короткие сроки ).

Разумеется, развитие мощных физических методов, реализуемых с помощью фирменной аппаратуры, и существование компьютерных банков данных открывает новые великолепные возможности перед современной химией. Надо, однако, сказать и о негативных последствиях этих достижений. Создание ультрасовершенных приборов и комплексов программ для стандартизированной обработки экспериментальных данных заметно снизило творческий потенциал работающих на этих приборах исследователей ), точнее, ту часть этого потенциала, которая могла бы и должна была бы направляться на осмысление получаемых результатов, нешаблонную оценку их значимости и соотнесение новых данных с актуальными проблемами химии. Стандартизация способов обработки и представления данных, принятая в компьютерных банках, поддерживаемая научными журналами, устанавливаемая научными сообществами как общепринятая норма, нередко приводит к тому, что исследователи осуществляют не тот эксперимент, который задуман (ими или их руководителями) и определяется поставленной научной задачей, а тот, который нужно выполнить, чтобы хорошо смотреться на конференции, без проблем опубликовать результаты и заложить их в банк.

При более общем взгляде на этот вопрос можно подразделить используемые физические методы на широко распространенные (общепринятые) (например, ИК- и ЯМР-спектроскопия), редкие, но также достаточно широко известные (например, газовая электронография), методы, представляющие собой нестандартное использование стандартного оборудования (например, прецизионный рентгеноструктурный анализ, о котором сказано ниже) и уникальные методы ). В настоящее время работы, в которых используются уникальные методы, встречаются крайне редко. Почти не находится желающих идти непроторенными путями при наличии удобных хорошо оборудованных магистралей к тому же с риском не добиться успеха. Немаловажно и то, что в этом случае могут возникнуть проблемы с финансированием. Вместе с тем, если уникальный замысел оправдывает себя, при современном развитии коммуникаций метод быстро перемещается в разряд более или менее распространенных, если же нет, – забывается, и говорить о нем нет смысла. Поэтому затруднительно даже привести подходящий пример уникального метода. (Фемтосекундная спектроскопия уже приобрела определенное распространение и в ближайшее время станет, если не общепринятой, то достаточно часто используемой.)

5. Весьма существенное (и, к сожалению, пока недостаточно осознанное химическим сообществом) обстоятельство заключается в том, что современная химия имеет дело отнюдь не только с химическими веществами и другими гомогенными фазами, например, растворами, но и с обширным кругом принципиально иных атомно-молекулярных систем (АМС). Именно это обстоятельство побуждает пересмотреть традиционное определение химии, о чем было сказано в начале настоящей статьи.

На первый план выдвинулось изучение таких объектов, как ДНК, РНК, белки, которые функционируют не в качестве вещества, а виде отдельных молекул.) К химическим процессам, реализующимся в биологических системах , неприменимы принципы классической термодинамики. Быстро растет интерес к супрамолекулярным системам . Отдельный и очень важный круг АМС представляют собой системы, возникающие на поверхности, на границах раздела фаз. Примером таких систем являются модифицированные поверхности графита, силикагеля и других носителей, несущие на себе "привитые" (химически связанные) молекулы модификатора . Самостоятельная область химических знаний, имеющая дело со специфическими АМС, – коллоидная химия.

Следует отметить, что структура все в большей мере становится не только средством интерпретации поведения самых различных АМС, но и средством их идентификации, главным признаком, используемым при инвентаризации многообразия АМС.

Добавим к этому еще одно немаловажное обстоятельство, существенно влияющее на дефиницию химии и формулировку ее задач: многие химические вещества, которые априори считались (и чаще всего до сих пор считаются) гомогенными, в действительности представляют собой микрогетерогенные фазы. Это проявляется, например, в том, что в молекулярных жидкостях молекулы часто объединены в агломераты – ансамбли, в пределах которых молекулы взаимодействуют сильнее, т.е. связаны прочнее, чем молекулы, относящиеся к разным агломератам. В частном случае молекулы в агломератах соединены водородными связями – тогда агломераты называются H-ассоциатами. Агломераты (конечные и бесконечные), как правило, наблюдаются и в органических кристаллах. Однако в кристаллическом веществе агломераты расположены закономерно, упорядочено, и их существование не порождает микрогетерогенности. В расплаве или растворе органического соединения микрогетерогенность обусловлена существованием более или менее стабильных или нестабильных, хаотически дрейфующих относительно друг друга агломератов. Эти агломераты представляют собой фрагменты молекулярных цепей, лент, стержней, слоев, имеющих вполне определенное строение, по-видимому, чаще всего воспроизводящих те или иные элементы структуры кристалла, но различных по размерам, т.е. по числу содержащихся в них молекул. Такая структура жидкого вещества несомненно влияет на его свойства, например, на фармакокинетические параметры, предопределяющие лечебное действие лекарств, растворенных в физиологических жидкостях.

Таким образом, структура раствора (или расплава), вообще говоря, зависит от структуры кристалла, из которого этот раствор (или расплав) образовался. Известны примеры существенных различий растворов, полученных из разных полиморфов или из кристаллов родственных химических веществ. Это явление можно назвать структурной памятью жидкой фазы. Естественно, можно говорить и о структурной памяти кристалла, полученного из определенного раствора (или расплава).

Микрогетерогенность и особенности строения реальных конденсированных фаз – актуальная проблема, относящаяся отнюдь не только к жидкостям, но и к реальным кристаллам. разнообразие и специфичность дефектов, обнаруживаемых в реальных кристаллах в точном соответствии с их морфогенезом, дает возможность обсуждать правомерность такого понятия как полиморфизм реального кристаллического вещества.

6. Современная структурная химия достигла больших результатов. Синтез новых органических веществ позволяет получить полезные и ценные материалы, отсутствующие в природе. Так, ежегодно в мире синтезируют тысячи килограммов аскорбиновой кислоты (витамина С), множество новых лекарств, среди которых — безвредные антибиотики, лекарства против гипертонии, язвенной болезни и др.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Шилов Дмитрий Алексеевич

Учитель химии: Воронаев Иван

Основные классы неорганических веществ…………..3 стр.

Простые вещества………………………………………. 4 стр.

Бинарные соединения……………………………………12 стр.

Список литературы………………………………………14 стр.

Введение

Классификация неорганических веществ базируется на их химическом составе – наиболее простой и постоянной во времени характеристике. Химический состав вещества показывает, какие элементы присутствуют в нём и в каком числовом отношении для их атомов. Символы и названия химических элементов приведены в Периодической системе химических элементов Д. И. Менделеева.

Элементы условно делятся на элементы с металлическими и неметаллическими свойствами. Первые из них всегда входят в состав катионов многоэлементных веществ (металлические свойства), вторые – в состав анионов (неметаллические свойства). В соответствии с Периодическим законом вы периодах и группах между этими элементами находятся амфотерные элементы, проявляющие в той или иной мере металлические и неметаллические (амфотерные, двойственные) свойства. Элементы VIII А-группы продолжают рассматривать отдельно (благородные газы), хотя для Kr , Xe и Rn обнаружены явно неметаллические свойства (элементы He , Ne , Ar химически инертны).

Основные классы неорганических веществ . Соответственно делению элементов классифицируют простые вещества, одноэлементные по составу и представляющие собой формы нахождения элементов в свободном виде. Все двух- и многоэлементные вещества называют сложными веществами, а многоатомные простые вещества и все сложные вещества вместе – химическими соединениями (в них атомы одного или разных элементов соединены между собой химическими связями).

Классификация сложных веществ первых трёх классов по составу основана на обязательном наличии в них самого распространённого в природе элемента – кислорода, и на самом распространённом соединении кислорода – воде.

Первый класс сложных веществ – это оксиды, соединения катионов элементов (реальных или формальных) с кислородом (- II ); их общая формула Э х О у . К оксидам не относятся соединения кислорода с фтором (простейшее из них О - II F 2 - I ), а также пероксиды и надпероксиды ( Na 2 O 2 , KO 2 ), включающие анионы из химически связанных атомов кислорода О 2 2- и О 2 - .

Второй класс сложных веществ – гидроксиды, получающиеся при соединении оксидов с водой (чаще формально, реже реально). По химическим свойствам различают кислотные (Н х ЭО у ), основные и амфотерные [ M ( OH ) n ] гидроксиды, соответствующие кислотным, основным и амфотерным оксидам.

Третий класс сложных веществ – соли, продукты взаимодействия (реального и формального) гидроксидов. Разные типы гидроксидов реагируют между собой и образуют кислородсодержащие соли, имеющие общую формулу М х (ЭО у ) n и состоящих из катионов М n + и анионов (кислотных остатков) ЭО у х- . Такие соли называют средними солями, а если они содержат два химически разных катиона – двойными. При наличии водорода в составе кислотного остатка соли называются кислыми, а при наличии гидроксогрупп ОН – (иногда и ионов О 2– ) – основными солями.

Четвёртый класс сложных веществ – бинарные соединения, их существование и образование логически не вытекает из цепочки первых трёх классов (оксиды – гидроксиды – соли). Классификация бинарных соединений не связана с наличием в них кислорода (– II ) и не основана на соединении такого кислорода – воде. Фактически это обширный класс сложных неорганических веществ, не относящихся к оксидам, гидроксидам и солям и имеющих разнообразные химические свойства.

Неорганические вещества – соединения, образуемые всеми химичес-кими элементами (кроме большинства органических соединений углерода). Неорганические вещества делятся по химическому составу на простые и сложные.

Металлы – простые вещества элементов с металлическими свойствами (низкая электроотрицательность). Типичные металлы:

I А-группа Li , Na , K, Rb, Cs

IIA -группа Mg , Ca , Sr , Ba

При обычных условиях все металлы (за исключением ртути) – твёрдые вещества с характерным металлическим блеском. Большинство металлов имеют серебристо-белый цвет, хотя и есть исключения. Так медь – металл розово-красного цвета, золото – жёлтого. Многие физические свойства металлов изменяются в широких пределах. Например, осмий (самый тяжелый металл) имеет плотность в 42 раза большую, чем литий (самый лёгкий металл). В больших интервалах меняются температуры плавления металлов: наибольшая она у вольфрама (3420 о С), наименьшая – у ртути (–38,9 о С). Взаимодействуют с неметаллами с образованием бинарных соединений, то есть веществ, состоящих из двух элементов. Металлы обладают высокой восстановительной способностью по сравнению с типичными неметаллами. В электрохимическом ряду напряжений они стоят значительно левее водорода, вытесняют водород из воды (магний – при кипячении):

2М + 2Н 2 О = 2МОН + Н 2(г) (М = Li , Na , K, Rb, Cs)

М + 2Н 2 о = М(ОН) 2 + Н 2(г) (М = Mg , Ca , Sr , Ba )

Простые вещества элементов Cu , Ag , Ni также относят к неметаллам, так как у их оксидов CuO , Ag 2 O , NiO и гидроксидов Cu ( OH ) 2 , Ni ( OH ) 2 преобладают основные свойства.

Неметаллы. Простые вещества элементов с неметаллическими свойствами (высокая электроотрицательность). Типичные неметаллы:

VIIA - группа F 2 , Cl 2 , Br 2 , I 2

VIA - группа O 2 , S, Se

VA - группа N 2 , P , As

IVA - группа С, Si

При обычных условиях они могут быть газами (водород, кислород, гелий, хлор), жидкостями (бром), твёрдыми веществами (углерод, сера, фосфор). Неметаллы, находящиеся в твёрдом состоянии, как правило хрупкие. Характерными свойствами неметаллов являются низкие теплопроводность и электропроводность. Неметаллы образуют простые вещества, молекулы которых могут быть одноатомными (Не, Ne и другие благородные газы), двухатомными (Н 2 , О 2 , I 2 ), многоатомными ( O 3 , P 4 , S 8 ), полимерными ( S х , Р х ). Неметаллы обладают высокой окислительной способностью по сравнению с типичными металлами.

Амфигены. Амфотерные простые вещества, образованные элементами с амфотерными (двойственными) свойствами (электроотрицательность промежуточная между металлами и неметаллами). Типичные амфигены:

VII -группа Ве

VI Б-группа Cr

II Б-группа Zn

IIIA -группа Al , Ga

IVA -группа Ge , Sn , Pb

Амфигены обладают более низкой восстановительной способностью по сравнению с типичными металлами. В электрохимическом ряду напряжений они примыкают слева к водороду или стоят за ним справа.

Аэрогены. Благородные газы, одноатомные простые вещества элементов VIIIA -группы: He , Ne , Ar , Kr , Хе, Rn . Из них He , Ne и Ar химически пассивны (соединения с другими элементами не получены), а Kr , Хе и Rn проявляют некоторые свойства неметаллов с высокой электроотрицатель-ностью.

Сложные вещества . Образованы атомами разных элементов. Делятся по составу и химическим свойствам на: оксиды, гидроксиды, соли, бинарные соединения.

I . Оксиды . Оксид – это соединение какого-либо элемента с кислородом. Степень окисления кислорода в оксидах всегда равна (- II ). Оксиды делятся по составу и химическим свойствам на: солеобразующие (основные, кислотные, амфотерные, двойные) и несолеобразующие (пероксиды безразличные, солеобразные,).

Основные оксиды. Продукты полной дегидратации (реальной или условной) основных гидроксидов, сохраняющие химические свойства последних. Из типичных металлов только Li , Mg , Ca , Sr образуют оксиды Li 2 О, Mg О, Ca О, Sr О при сжигании на воздухе. Оксиды Na 2 O , K 2 O , Rb 2 О, Cs 2 О и Ва 2 О получают другими способами. К основным оксидам относят также CuO , Ag 2 O и NiO . Получение основных оксидов:

2 Mg + O 2 = 2 MgO

2 Cu + О 2 = 2 Cu О.

Этот метод практически неприменим для щелочных металлов, которые при окислении обычно дают пероксиды, поэтому оксиды Na 2 О, К 2 О крайне труднодоступны.

2С uS + 3 O 2 = 2 CuO + 2 SO 2

Метод неприменим для сульфидов активных металлов, окисляющихся до сульфатов.

Cu(OH) 2 = CuO + H 2 O ( при t o )

Этим методом нельзя получить оксиды щелочных металлов.

Разложение солей кислородсодержащих кислот

ВаСО 3 = ВаО + СО 2 (при t o )

Этот способ получения оксидов особенно легко осуществляется для нитратов и карбонатов, в том числе и для основных солей:

Основные оксиды при нагревании могут вступать в реакции с кислотными и амфотерными оксидами, с кислотами. Оксиды щелочных и щелочноземельных металлов непосредственно реагируют с водой:

Как и другие типы оксидов, основные оксиды могут вступать в окислительно-восстановительные реакции:

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O ( при t o )

Кислотные оксиды. Продукты полной дегидратации (реальной или условной) кислотных гидроксидов, сохраняющие химические свойства последних. Представляют собой оксиды неметаллов или переходных металлов в высоких степенях окисления и могут быть получены методами, аналогичными методам получения основных оксидов, например:

2ZnS + 3O 2 = 2ZnO + 2SO 2 ( при t o )

Большинство кислотных оксидов непосредственно взаимодействуют с водой с образованием кислот:

Наряду с современной номенклатурой для кислотных оксидов до сих пор широко используется старинная система названий, как ангидридов кислот – продуктов отщепления воды от соответствующих кислот => СО 2 – ангидрид угольной кислоты, а SO 3 – ангидрид серной кислоты. Из типичных неметаллов только S , Se , P , As , С, Si образуют оксиды S О 2 , Se О 2 , Р 2 О 5 , As 2 О 3 , СО 2 , и Si О 2 при сжигании в воздухе. Остальные кислотные оксиды получают другими способами.

И с к л ю ч е н и е: у оксидов NO 2 и CIO 2 нет соответствующих кислотных гидроксидов, но их считают кислотными, так как NO 2 и CIO 2 реагируют со щелочами, образуя соли двух кислот, а CIO 2 и с водой, образуя две кислоты: а) 2 NO 2 + 2 N аОН = N а NO 2 + NaNO 3 + Н 2 О

б) 2 CIO 2 + 2 N аОН(хол.) = N а CIO 2 + N а CIO 3 + Н 2 О

Оксиды CrO 3 и Mn 2 O 7 (хром и марганец в высшей степени окисления) также являются кислотными.

Наиболее типичными для кислотных оксидов являются их реакции с основными и амфотерными оксидами, щелочами:

Кислотные оксиды могут вступать в многочисленные окислительно-восстановительные реакции:

Амфотерные оксиды. Продукты полной дегидратации (реальной или условной) амфотерных гидроксидов, сохраняющие химические свойства последних. Типичные амфигены (кроме G а) при сжигании на воздухе образуют оксиды ВеО, Cr 2 О 3 , Zn О, Al 2 О 3 , Ge О 2 , Sn О 2 , Pb О; амфотерные оксиды Ga 2 О 3 , Sn О, Pb О 2 получают другими способами. Обладают двойственной природой: они одновременно способны вступать в реакции, в которых выступают как основные, так и как кислотные оксиды, то есть реагируют как с кислотами, так и с щелочами:

Al 2 O 3 + 2 NaOH + 3Н 2 О = 2 Na [ Al ( OH ) 4 ]

К числу амфотерных оксидов относится оксид алюминия ( III ) Al 2 O 3 , оксид хрома ( III ) Cr 2 O 3 , оксид бериллия ВеО, оксид цинка ZnO , оксид железа ( III ) Fe 2 O 3 и ряд других. Идеально амфотерным оксидом является вода Н 2 О, которая диссоциирует с образованием одинаковых количеств ионов водорода (кислотные свойства) и гидроксид-иона (основные свойства).

Амфотерные свойства воды ярко проявляются при гидролизе растворённых в ней солей

Cu 2+ + Н 2 О = Cu ( OH ) + + H +

Двойные оксиды. Образованы либо атомами одного амфотерного элемента в разных степенях окисления, либо атомами двух разных (металлических, амфотерных) элементов, что и определяет их химические свойства. Примеры:

(Fe II Fe 2 III )O 4 , (Pb 2 II Pb IV )O 4 , (MgAl 2 )O 4 , (CaTi)O 3

Оксид железа образуется при сгорании железа на воздухе, оксид свинца – при слабом нагревании свинца в кислороде; оксиды двух разных металлов получают другими способами.

Несолеобразующие оксиды . Несолеобразующие оксиды – это оксиды неметаллов, не имеющие кислотных гидроксидов и не вступающие в реакции солеобразования (отличие от основных, кислотных и амфотерных оксидов). К таким оксидам относятся: СО, NO , N 2 O , SiO , S 2 О и др.

Рассмотрим несолеобразующие оксиды на примере оксида углерода ( II ) СО – угарного газа. Формальная степень окисления углерода 2+ не отражает строение молекулы СО. Оксид углерода является несолеобразующим и не взаимодействует в обычных условиях с водой, кислотами и щелочами. Пероксиды. Щелочные металлы образуют пероксидные соединения – соединения, в которых имеются химические связи кислород – кислород. Связь О – О не прочна, поэтому пероксиды неустойчивые соединения, легко разлагающиеся. Склонность к образованию таких соединений и их устойчивость возрастают от лития к цезию. Щелочные металлы образуют пероксиды состава Ме 2 О 2 и надпероксиды МеО 2 , где Ме – щелочной металл. Пероксиды щелочных металлов разлагаются водой с выделением кислорода:

Действием кислот на пероксиды щелочных металлов можно получить пероксид водорода:

II Гидроксиды . Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН – в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее небольшие равновесные концентрации иона ОН – даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

Гидроксиды – соединения элементов (кроме фтора и кислорода) с гидроксогруппами O - II H , могут содержать также кислород O - II . В гидроксидах

степень окисления элемента всегда положительная (от + I до + VIII ). Число гидроксогрупп от 1 до 6. Делятся по химическим свойствам на основные, кислотные и амфотерные.

Основные гидроксиды (основания) . Образованы элементами с металлическими свойствами. Получаются по реакциям соответствующих основных оксидов с водой:

Ме 2 О + Н 2 О = МеОН (Ме = Li , Na , K, Rb, Cs)

МеО + Н 2 О = Ме(ОН) 2 (Ме = Ca, Sr, Ba)

При нагревании реальная дегидратация (потеря воды) протекает для следующих гидроксидов:

Основные гидроксиды замещают свои гидроксогруппы на кислотные остатки по правилу валентности с образованием солей, металлические элементы сохраняют свою степень окисления в катионах солей.


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar

avatar

avatar

avatar

Слов найти не могу, вся работа выполнена досрочно и отличного качества, советую Нину, как лучшего исполнителя?

Нина на редкость приятна в общении и очень вежлива. Брал работы к сессии, сам заочник, достаточно занятой. Нина старается, работы выполнены качественно, а большего мне не надо.

Последние размещённые задания


Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

30 страниц максимум , грубо говоря подставить мои значения и.

Курсовая, Основы экономики отрасли и правового обеспечения профессиональной деятельности

Срок сдачи к 28 февр.

Солнце и звёзды

Срок сдачи к 4 мар.

Сделать методическое пособие

Срок сдачи к 26 мар.

Помочь в написание курсовой На тему Особенности Английского научно.

Срок сдачи к 11 мар.

Сделать курсовую до 14 марта. Если можно сдать раньше то отлично !!

Курсовая, Теория линеных электрических цепей

Срок сдачи к 14 мар.

применения интегральных микросхем на аналого-цифровых преобразователях (АЦП)

Срок сдачи к 13 мар.

коммерческая работа по организации розничных продаж

Срок сдачи к 4 мар.

Конспект для проведения урока по математике для 2 класса

Решение задач, Математика

Срок сдачи к 28 февр.

Срок сдачи к 11 мар.

Выполнить задания по ТГП.

Другое, Теория государства и права

Срок сдачи к 27 февр.

задача по нормальному распределению

Решение задач, Статистика

Срок сдачи к 27 февр.

Контрольная, Электроэнергетические системы и сети

Срок сдачи к 4 мар.

В файле все задачи, которые необходимо решить

Решение задач, Python

Срок сдачи к 8 мар.

Написание диплома, по главам.

Срок сдачи к 30 мар.

Коровник на 400 коров беспривязного содержания.

Курсовая, Гигиена животных

Срок сдачи к 2 мар.

Контрольная, Электрическая часть станций и подстанций

Срок сдачи к 5 мар.

Природа тел солнечной системы

Срок сдачи к 4 мар.

Составить бизнес план

Курсовая, экономика организации

Срок сдачи к 28 февр.

planes
planes

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

Читайте также: