Структура спутникового приемника реферат

Обновлено: 05.07.2024

В мире уже существует множество торговых марок спутниковых ресиверов. Фактически любой из них можно использовать для индивидуальной приемной системы спутникового телевидения. Ни одна из фирм-производителей ресиверов не поставляет владельцу принципиальных электрических схем, поэтому познакомимся с принципом работы узлов ресивера с помощью упрощенной радиолюбительской схемы (рис. 8.32).

После аттенюатора ослабленный сигнал вновь усиливается каскадом (УК2) и поступает на второй смеситель (См2).

Необходимость использования этого устройства обусловлена тем, что на частоте 450 МГц очень трудно получить большое усиление и крутые фронты фильтров. Поэтому первая промежуточная частота преобразуется во вторую на 70 МГц. Для этого используется второй гетеродин, вырабатывающий сигнал с частотой 520 МГц.

Далее следует широкополосный усилитель (ШУ) на двух транзисторах. Столь сложная схема усилителя оправдана в первую очередь его стабильностью. ШУ не склонен к самовозбуждению, а между его каскадами включен фильтр нижних частот (ФНЧ), который резко подавляет спектр частот выше 84 МГц.

Усилительный каскад (УКЗ) компенсирует потери в ФНЧ. Затем фильтр высоких частот (ФВЧ) подавляет все частоты ниже 54 МГц. Таким образом формируется полоса шириной 30 МГц, необходимая для пропускания полного цветового телевизионного сигнала (ПЦТС).

После ФВЧ сигнал поступает на усилительные каскады (УК1) и (VK5), которые осуществляют дополнительное усиление ПЦTC перед подачей его на устройство ограничения.

На выходе канала изображения приемника установлен двойной эмиттерный повторитель (ЭП). Столь мощный выход необходим для работы на коаксиальный кабель, длина которого может достигать десятков метров, а также для подключения нескольких телевизоров через согласующие устройства.

В приемнике предусмотрена автоматическая подстройка частоты (АПЧ), хотя практически в ней нет необходимости. Поэтому в приемнике предусмотрена возможность отключения АПЧ.

В системе спутникового телевизионного вешания по каналу связи кроме сигнала изображения передается и другая информация. Это обычное звуковое сопровождение на поднесушей частоте в пределах 5. 10 МГц. Есть еще и стереофоническое звуковое сопровождение, отдельные звуковые каналы, передающие стерео и монорадиограммы, код шифрованных телевизионных каналов и др. Так как программ много и звуковое сопровождение может быть на разных поднесуших частотах, необходима оперативная перестройка приемника. Этим оправдана относительно сложная часть звукового тракта.

На звуковой тракт сигнал поступает с ЧМ детектора через полосовой фильтр (ПФ2), настроенный на среднюю частоту 6,5 МГц, и далее — на вход смесителя (СмЗ). Здесь используется микросхема, которая выполняет роль как смесителя, так и гетеродина. Последний перестраивается в пределах 15,7. 18,7 МГц.

На выходе микросхемы получаем ПЧ звука, равную 10,7 МГц. Это уже стандартная ПЧ для УКВ ЧМ приемников и в тракте звука можно использовать стандартный ПЧ фильтр Z1 на частоту 10,7 МГц.

После усиления и ограничения сигнал поступает на ЧМ детектор и далее — на усилитель звуковой частоты (УЗЧ) и громкоговоритель (Гр). Сигнал звукового сопровождена можно подать на вход УЗЧ бытового телевизора.

Спутниковый ресивер по внешнему виду и размерам напоминает видеомагнитофон (рис. 8.33, 8.34).

Управление всеми ресиверами осуществляется с помощью пульта дистанционного управления (ПДУ). В ПЛУ

(рис. 8.38) вмонтирован передатчик команд, работающий на инфракрасных лучах (ИКЛ). Непосредственно в ресивере находится приемник ИКЛ.

Важнейшей характеристикой любого ресивера является его статический порог, который определяет отношение сигнал/шум на выходе ресивера от отношения сигнал/шум сигнала, поступающего на вход ресивера с конвертера (рис. 8.39). Общепринятой величиной статического порога является 6 дБ. При уменьшении этого соотношения изображение на экране телевизора резко ухудшается.

В табл. 8.2 приведены характеристики некоторых зарубежных ресиверов спутникового телевидения, работающих по аналоговым системам цветного телевидения.

Ресивер может быть подключен к телевизору несколькими способами (рис. 8.40). Эфирная антенна наземного телевидения включается в гнездо ANT IN ресивера, далее через ряд соединителей сигнал подается на антенный вход телевизора. С ресивера сигнал поступает на видеомагнитофон и телевизор, например в 36-м канале ДМВ, поэтому те-

левизор должен быть оснащен селектором каналов (СКД) ДМВ. Если этот канал занят местным эфирным вещанием, то в ресивере и видеомагнитофоне предусмотрена возможность перестройки на другой канал ДМВ по усмотрению владельца аппаратуры.

В большинстве современных моделей телевизоров предусмотрены низкочастотные входы в виде соединителей SCART или «коло-

01.jpg

Необходимо обратить внимание на наличие в телевизоре декодера PAL/SECAM, чтобы иметь возможность принимать телевизионные передачи с западноевропейских спутников в цвете и со звуковым сопровождением.

Многие спутники ведут телевизионное вещание по стандарту D2-MAC. Ни один из бытовых телевизоров не может принять передачи по этому стандарту, поэтому к ресиверу необходимо дополнительно подключить декодер D/D2-МАС. Некоторые ресиверы имеют встроенный D/D2-MAC (табл. 8.3).

Сложнее обстоит дело с приемом цифрового телевидения по стандарту MPEG-2. В этом случае необходимы специальный телевизионный приемник и замена всего тракта системы приема спутникового телевидения, пожалуй, за исключением антенны. Те, кто хочет вести прием программ с ИСЗ по стандарту MPEG-2, должны приобрести новый комплект оборудования. И это оправдано, так как, например, после запуска спутников НОТ BIRD-3. 6 владелец аппаратуры цифрового телевидения сможет смотреть около 400 программ только с одной позиции 13° Е.

Выбирая ресивер, следует обратить внимание на одну из важнейших его характеристик. Это ширина полосы первой ПЧ, т. е. частоты, поступающей на вход ресивера после конвертера, который преобразует СВЧ, передаваемые со спутника, в более низкие, удобные для дальнейшей обработки. Чем шире полоса промежуточной частоты, тем большее количество спутниковых программ вы сможете охватить. В современных ресиверах часто встречаются полосы частот 950. 2050, 700. 2050 и 900. 2150 МГц. Третий вариант позволяет принимать весь Кu-диапазон в системе с универсальным конвертером.

Современные ресиверы позволяют корректировать качество изображения различных спутниковых каналов за счет уменьшения ширины промежуточной частоты видеосигнала

11.jpg

с 36 до 9 МГц. Она может меняться плавно, с шагом 1 МГц (ресивер Echostar 8700) или дискретно: 9/13/15/27 МГц (ресивер Manhatten 7400+ и др.) Сужение полосы позволяет избавиться от импульсных помех, но при этом цветное изображение становится более тусклым и невыразительным.

Для переключения частотных поддиапазонов гетеродина полнодиапазонного или двухдиапазонного конвертеров в ресиверах часто предусмотрен тоновый генератор частотой 22 кГц. Опытные радиолюбители могут самостоятельно собрать генератор по схеме (рис. 8.41).

Задающий генератор прямоугольных импульсов с частотой 22 кГц собран на микросхеме DA1. С выхода 3 через резистор R4 импульсы подаются на базу транзистора VT1. Когда транзистор закрыт, на диоде VD2 падает напряжение (около 0,7 В). Когда транзистор открыт, диод VD2 шунтируется малым сопротивлением его перехода эмиттер-коллектор и снижение напряжения на диоде составляет примерно 0,1 В. Подбором сопротивления резистора R 4 устанавливают такой режим работы транзистора VT1, чтобы он был надежно открыт при отрицательном импульсе на базе и надежно закрыт при положительном.

Подбором сопротивления резистора R3 устанавливают частоту импульсов на выводе 3 DA1, равную 22 кГц (период колебаний 42. 50 мкс).

Стабилитрон VD1 обеспечивает неизменность частоты тона при переключении напряжения питания 13/18 В. Развязывающий фильтр в цепи питания не нужен. При напряжении питания 18 В генератор потребляет ток 8 мА.

Часто возникает вопрос о просмотре телевизионных программ с нескольких спутников, которые находятся на разных позициях ГСО. С помощью специальных устройств антенна может дистанционно позиционироваться на разные спутники. Передвигает специальное приспособление — актуатор. Это обычный выдвижной рычаг-толкатель с электродвигателем, управляемый электрическими сигналами.

Для управления актуатором или супермаунтом необходимо специальное устройство — позиционер, который подает управляющие сигналы и питание на актуатор. Управляющие сигналы — это импульсы от датчиков актуаторов. Например, чтобы сориентировать антенну на первую позицию, необходимо послать 400 импульсов, на вторую — 600, а на третью — 300. Для идентификации положения антенны следящие системы используют реверсивные счетчики, которые ведут отсчет в прямом и обратном направлениях. Они считают каждый импульс датчика, причем счетчик срабатывает только на замыкание или на размыкание геркона (герметизированный контакт — реле).

Иногда позиционер выполняют в виде отдельного блока, который по форме напоминает ресивер. Однако есть некоторые модели ресиверов, интегрированных с позиционером (табл. 8.4).

Если позиционер выполнен в виде отдельного блока, необходимо, чтобы ресивер имел функцию управления внешним позииионером. Управление перемещением антенны может осуществляться по заданной программе, с помощью которой осуществляется наведение на 6. 10 и более спутников. Необходимо обращать внимание на то, чтобы ток управления актуатором был необходимой величины для данной модели ресивера.

К сервисным возможностям ресивера можно отнести функции телетекста и таймера. Практически все современные модели ресиверов снабжены таймером, который включает и выключает спутниковый приемник в определенное время. Эту функцию удобно использовать для записи передач на видеомагнитофон.

Например, ресивер NTV-3000, предназначенный для приема программ НТВ-Плюс, благодаря наличию таймера и третьего соединителя SCART позволяет в отсутствие пользователя записывать передачи со спутника с программированием начала записи на 28 дней вперед. При этом не нужно оставлять телевизор включенным.

Количество каналов, запоминаемых ресивером, в дорогих моделях может быть от 99 до нескольких сотен. Обычно ресиверы запрограммированы на наиболее популярные в Европе каналы. Однако часто возникает необходимость переименовать заложенные в память спутникового приемника программы. Многие ресиверы позволяют это сделать.

Как и для видеосигнала, для сигнала звукового сопровождения важную роль играет ширина промежуточной частоты. Сужая эту полосу, можно отстраниться от помех, пожертвовав качеством звука. В разных моделях ресиверов полоса ПЧ звука изменяется или плавно в пределах 130. 600 МГц (все модификации ресиверов Расе), или дискретно: 110/180/280/380 МГц (ресиверы Echostar LT730, LT950 и др.)

Некоторые спутники передают наиболее популярные программы на нескольких языках. Например, программа Eurosport со спутника НОТ BIRD-1 передается на шести языках, для

этого используется соответствующее число поднесуших частот. Ресивер позволяет владельцу спутниковой системы выбрать звуковое сопровождение на одном из них по своему усмотрению.

Большинство спутниковых приемников предполагает использование внешнего усилителя звуковой частоты в телевизоре, аудиосистеме. Однако появились модели Расе MSS 1034 и 1038, которые имеют УЗЧ мощностью 4 х 25 Вт. К ним достаточно подсоединить акустические колонки.

Целью данной работы является раскрытие основных компонентов спутникового телевидения, рассмотреть методы передачи сигналов , принцип построения спутниковых систем связи ,выделить преимущества, которыми обладает спутниковое телевидение .
По данной работе можно сделать такие выводы : в последнее время спутниковые системы связи становятся важнейшей движущей силой в развитии телевизионного вещания, а переход к цифровому вещанию становится возможным после методов эффективного сжатия телевизионных сигналов соответствующих стандартов.

Содержание

Аннотация…………………………………………………………………………………………. 2
Введение………………………………………………………………………………………. 3
1. Орбиты спутников ТВ вещания……………………………………………………………. 4
2. Диапазон частот спутникового телевизионного вещания …………………. 4
3. Принцип построения спутниковых систем связи…………………………………. 7
4. Спутниковое телевизионное вещание……………………………………………………. 10
5. Стандарты MPEG…………………………………………………………………………. 11
6. Методы передачи сигналов телевидения………………………………………………. 14
7. Оборудования для приема спутникового телевидения……………………………. 21
Заключение…………………………………………………………………………………….
Список литературы. 22

Прикрепленные файлы: 1 файл

телек.с и с.doc

3.Принцип построения спутниковых систем связи.

Спутниковая сеть связи (рисунок 4) включает в себя:

-космический сегмент, состоящий из нескольких спутниковых ретрансляторов;

-наземный сегмент, (центр управления орбитальными спутниками, шлюзовые станции);

- абонентский сегмент (абонентские терминалы);

-интерфейсы сопряжения шлюзовых станций с наземными сетями связи.

С целью обеспечения отсутствия взаимных помех систем спутниковой связи использование частот и расположение спутниковых ретрансляторов регламентируется Международным консультативным комитетом по радио и Международным комитетом по регистрации частот. Диапазоны частот, выделенные под типы связи (см. рисунок 4) представлены в таблице 2.

Космический сегмент включает спутниковую группировку, состоящую из нескольких спутниковых ретрансляторов, равномерно размещенных на орбитах. Космические аппараты (КА) включают:

-радиоэлектронное оборудование бортового радиотрансляционного комплекса;

- системы ориентации и стабилизации;

-система электропитания (аккумуляторы и солнечные батареи).

Рисунок 4.Структура систем спутниковой связи.

Рисунок 5. Таблица 2.

Обеспечение связи абонента, находящегося в зоне видимости одного спутника, с абонентом, находящимся в зоне видимости другого спутника, организуется посредством связи между спутниковыми ретрансляторами (по цепочке, пока информация не дойдёт до спутникового ретранслятора второго абонента). В некоторых системах эту функцию выполняют шлюзовые станции, транслирующие информацию с одного спутника на другой.

Наземный сегмент включает:

-центр управления системой;

- центр запуска КА;

- центр управления связью;

Центр управления системой осуществляет слежение за КА, расчёт их координат, сверку и коррекцию времени, диагностику бортовой аппаратуры, передачу командной информации и т.д. функции управления осуществляются на основе телеметрической информации, получаемой от каждого КА группировки. Благодаря использованию территориально разнесённых контрольно-измерительных станций центр управления системой с достаточно высокой оперативностью выполняет: контроль запуска и точность вывода КА на заданную орбиту, контроль состояния каждого КА, контроль и управление орбитой каждого КА, разрешение нештатных ситуаций, вывод КА из состава орбитальной группировки.

Центр запуска КА определяет программу запуска, осуществляет сборку ракеты-носителя, установку полезной нагрузки КА, предстартовую проверку; после запуска ракеты-носителя - траекторные измерения на активном участке полёта, которые передаёт в центр управления системой для корректировки последующей траектории.

Центр управления связью планирует использование ресурса спутника, посредством шлюзовых станций контролирует и управляет связью. В нормальных условиях работы орбитальной группировки связь со шлюзовой станцией и пользовательскими терминалами осуществляется автономно. В нештатных ситуациях (неработоспособность КА, оборудования спутникового ретранслятора или шлюзовой станции) центр переходит в режим поддержания связи с повышенной нагрузкой, или проводит реконфигурирование сети.

Абонентский сегмент определяется номенклатурой предоставляемых спутниковой системой связи услуг: связь абонентов спутниковой сети с абонентами спутниковой сети, пейджинговых и сотовых сетей, определение местоположения (координат) абонентов.

Абонентское оборудование разделяют на переносные спутниковые терминалы (весом до 700 г) и мобильные терминалы (весом порядка 2,5 кг). Спутниковые телефоны оборудованы антенной, не требующей ориентации на спутниковый ретранслятор. При установлении связи (что занимает порядка 2 с) система автоматически определяет свободный канал и закрепляет его за абонентом на период сеанса связи. Как правило, в телефонах используется временное или частотное уплотнение каналов, хорошо зарекомендовавшее себя в сотовой связи. Некоторые спутниковые телефоны способны работать с сотовыми сетями связи (устанавливается соответствующая SIM-карта).

4. Спутниковое телевизионное вещание.

Спутниковое телевидение – это множество каналов, большой выбор фильмов на любой вкус, детские, новостные, развлекательные, познавательные, спортивные передачи.

Спутниковое телевидение подразделяется на аналоговое и цифровое. На сегодняшний день аналоговое телевидение не способно в полной мере удовлетворить потребности современного человека: качество сигнала страдает, количество каналов периодически сокращается, существует проблемы с необходимым оборудованием (его попросту уже не выпускают). Ориентироваться на аналоговое спутниковое телевидение не имеет смысла. Цифровой формат вещания – это несколько тысяч каналов различных тематик на всех языках мира и отличное качество изображения и звука. Телезрители могут видеть в открытом доступе более 650 каналов с различных спутников.

Современные спутники имеют геостационарную орбиту. Это означает, что угловая скорость движения спутника равна скорости вращения земли по величине и направлению. Это значит, что относительно любой точки на земле, спутник "висит" неподвижно. Высота, на которой висит спутник, равна примерно 36 тысячам километров. Благодаря постоянному положению спутника, для приёма сигнала с него не надо перестраивать антенну. В течение всей своей жизни спутник будет находиться в одном и том же направлении от вас. Число мест на геостационарной орбите, где сегодня обитают спутники телевизионного вещания, ограничено. Сегодня таких мест около четырёхсот. В каждом месте, в каждой точке, могут висеть сразу несколько спутников, даже более десяти. Чтобы спутники не мешали друг другу помехами, их частоты вещания, зоны обслуживания и рабочие каналы выбираются, разбрасываются в определённых диапазонах. Сегодня спутники регулярно выводятся на орбиту и сводятся с неё. Это связано не только с истечением срока службы спутников, который колеблется от пяти до семи лет, но и с моральным старением оборудования, а также с поломками.

Кроме геостационарных спутников, могут использоваться ещё и так называемые низколетящие спутники. Разница между ними в том, что при применении низколетящих спутников связь организуется по принципу цепочки. Над землёй летают сотни спутников, сообщающихся между собой. При приёме данных с низколетящих спутников не обязательно иметь огромную параболическую антенну. Хватит и такой, что используется в сотовых телефонах, так как спутники излучают сигналы на очень высокой частоте. Преимущества использования низколётных спутников очевидны - в космос можно запустить восемь сотен сателлит, которые не будут мешать друг другу и будут равномерно распределять между собой всю полосу каналов, спутники висят низко, покрывают малую площадь большой мощностью передатчиков, а значит, с них можно принимать сигнал на маленькую антенну. Работать с низколетящими спутниками дороже, и пока что предпочтение отдаётся геостационарным. На каждом спутнике работают десятки передатчиков мощностью сотни ватт. Так как спутник сигналом покрывает достаточно большую площадь земли (пятно диаметром 2000 - 3000 км), то уровень сигнала в разных точках приёма различен и невысок.

Для обеспечения трансляции на каждом спутнике имеется определенное число передатчиков ("транспондер"). Число транспондеров у вновь запускаемых спутников постоянно растет. Спутниками, а значит и транспондерами, владеют определенные корпорации (например , EUTELSAT или INTELSAT). Транспондеры сдаются в аренду вещательным компаниям, чьи программы (каналы) мы с вами и смотрим. Сдача транспондера в аренду не обязательно производится на постоянное время. Существует много транспондеров, по которым днем идет один канал, а вечером или ночью другой.

Таким образом, на спутнике с 10 - 20 транспондерами может идти 20 - 30 каналов.

5. Стандарты MPEG.

Аббревиатура MPEG расшифровывается как "Moving Picture Coding Experts Group", дословно - "Группа экспертов по кодированию подвижных изображений". MPEG ведет свою историю с января 1988 года, она была создана Международной организацией стандартов (International Standards Organization или сокращенно ISO) и Международной электротехнической комиссией (International Electro-Technical Commission или сокращенно IEC). Группа была образована для создания стандартов кодирования подвижных изображений и аудио информации. Начиная с первого собрания в мае 1988 года группа начала расти и выросла до необычайно плотной группы специалистов. Обычно, в собрании MPEG принимают участие около 350 специалистов из более чем 200 компаний. Встречи проводятся около трех раз в году. Большая часть участников MPEG - это индивидуальные специалисты, занятые в тех или иных научных и академических учреждениях. Это из области истории. Теперь о практике. На сегодняшний день MPEG разработаны следующие стандарты и алгоритмы:

    • MPEG-1 (ноябрь 1992) - стандарт кодирования, хранения и декодирования подвижных изображений и аудио информации;
    • MPEG-2 (ноябрь 1994) - стандарт кодирования для цифрового телевидения;
    • MPEG-4 - стандарт для мультимедиа приложений: версия 1 (октябрь 1998) и версия 2 (декабрь 1999);
    • MPEG-7 - универсализованный стандарт работы с мультимедиа информацией, предназначенный для обработки, фильтрации и управления мультимедиа информацией. Не является новым стандартом кодирования, а представляет собой лишь переработанный и измененный набор инструментов для работы с мультимедиа данными.

    1) Рассмотрим комплект MPEG-1 (ISO/IEC 11172-3). Этот комплект, в соответствии со стандартами ISO, включает в себя три алгоритма различного уровня сложности: Layer (уровень) I, Layer II и Layer III. Общая структура процесса кодирования одинакова для всех уровней. Вместе с тем, не смотря на схожесть уровней в общем подходе к кодированию, уровни различаются по целевому использованию и внутренним механизмам (что во многом определяет степень схожести алгоритмов, "вышедших" из MPEG-1). Для каждого уровня определен свой формат записи бит-потока и свой алгоритм декодирования. Алгоритмы MPEG основаны в целом на изученных свойствах восприятия звуковых сигналов слуховым аппаратом человека (то есть кодирование производится с использованием так называемой "психоакустической модели").

    Комплект MPEG-1 предусмотрен для кодирования сигналов, оцифрованных с частотой дискретизации 32, 44.1 и 48 КГц. Как было указано выше, комплект MPEG-1 имеет три уровня (Layer I, II и III). Эти уровни имеют различия в обеспечиваемом коэффициенте сжатия и качестве звучания получаемых потоков. Layer I позволяет сигналы 44.1 КГц / 16 бит хранить без ощутимых потерь качества при скорости потока 384 Кбит/с, что составляет 4-х кратный выигрыш в занимаемом объеме; Layer II обеспечивает такое же качество при 194 Кбит/с, а Layer III – при 128 (или 112). Выигрыш Layer III очевиден, но скорость компрессии при его использовании самая низкая (надо отметить, что при современных скоростях процессоров это ограничение уже не заметно). Фактически, Layer III позволяет сжимать информацию в 10-12 раз без ощутимых потерь в качестве.

    В случае Layer II идея упрощения сигнала остается той же, однако переквантованию подвергаются не коэффициенты MDCT, а амплитудный сигнал в каждой частотной подполосе.

    В июле 2001 компании Coding Technologies и Tomson Mulimedia анонсировали продолжение кодека MP3 (MPEG-1 Layer III) - MP3 Pro. Этот кодек представляет собой доработанный вариант MP3. Подробнее об этом кодеке можно прочесть в обсуждении вопроса о существующих аудио кодеках.

    В реферате рассмотрены принципы организации спутниковых систем, сферы применения, историю создания ССС. В наше время спутниковому вещанию уделяется большое внимание, поэтому мы должны знать принцип работы системы.

    Содержание работы

    Введение 2
    1. История создания спутниковых систем связи 3
    1.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1" 4
    1.2. Первая в мире спутниковая система "Орбита" для распределения ТВ-программ 5
    1.3. Первая в мире система непосредственного ТВ-вещания "Экран" 6
    1.4. Система спутникового ТВ-вещания в диапазоне 12 ГГц 7
    1.5. Создание системы "Интерспутник" 7
    1.6. Создание спутниковой линии правительственной связи 8
    1.7. В заключении о истории 9
    2. Принципы организации спутниковых каналов связи 10
    3. Орбиты спутников связи 11
    4. Типовая схема организации услуг спутниковой связи 12
    5. Сферы применения спутниковой связи 12
    5.1.Принципы организации спутниковой связи VSAT 13
    5.2.Принципы организации подвижной спутниковой связи 14
    6. Технологии, используемые в спутниковой связи 15
    7. Земные станции спутниковых систем связи 18
    7.1. Антенны ЗС 18
    7.2. Построение типовой ЗС 18
    7.3. Малые ЗС 19
    Вывод 21
    Список используемой литературы 22

    Файлы: 1 файл

    Оглавление.docx

    1. История создания спутниковых систем связи 3

    1.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1" 4

    1.2. Первая в мире спутниковая сист ема "Орбита" для распределения ТВ-программ 5

    1.3. Первая в мире система непосредственного ТВ-вещания " Экран" 6

    1.4. Система спутникового ТВ- вещания в диапазоне 12 ГГц 7

    1.5. Создание системы " Интерспутник" 7

    1.6. Создание спутниковой линии правительственной связи 8

    1.7. В заключении о истории 9

    2. Принципы организации спутниковых каналов связи 10

    3. Орбиты спутников связи 11

    4. Типовая схема организации услуг спутниковой связи 12

    5. Сферы применения спутниковой связи 12

    5.1.Принципы организации спутниковой связи VSAT 13

    5.2.Принципы организации подвижной спутниковой связи 14

    6. Технологии, используемые в спутниковой связи 15

    7. Земные станции спутниковых систем связи 18

    7.1. Антенны ЗС 18

    7.2. Построение типовой ЗС 18

    Список используемой литературы 22

    Спутниковые системы связи (ССC) известны давно, и используются для передачи различных сигналов на протяженные расстояния. С момента своего появления спутниковая связь стремительно развивалась, и по мере накопления опыта, совершенствования аппаратуры, развития методов передачи сигналов произошел переход от отдельных линий спутниковой связи к локальным и глобальным системам.

    Такие темпы развития ССC объясняются рядом достоинств которыми они обладают. К ним, в частности, относятся большая пропускная способность, неограниченные перекрываемые пространства, высокое качество и надежность каналов связи. Эти достоинства, которые определяют широкие возможности спутниковой связи, делают ее уникальным и эффективным средством связи. Спутниковая связь в настоящее время является основным видом международной и национальной связи на большие и средние расстояния. Использование искусственных спутников Земли для организации связи продолжает расширяться по мере развития существующих сетей связи. Многие страны создают собственные национальные сети спутниковой связи.

    В нашей стране создается единая автоматизированная система связи. Для этого развиваются, совершенствуются и находят новые области применения различные технические средства связи.

    В своем реферате я рассмотрю принципы организации спутниковых систем, сферы применения, историю создания ССС. В наше время спутниковому вещанию уделяется большое внимание, поэтому мы должны знать принцип работы системы.

    1. История создания спутниковых систем связи

    Идея создания на Земле глобальных систем спутниковой связи была выдвинута в 1945 г. Артуром Кларком, ставшим впоследствии знаменитым писателем-фантастом. Реализация этой идеи стала возможной только через 12 лет после того, как появились баллистические ракеты, с помощью которых 4 октября 1957 г. на орбиту был запущен первый искусственный спутник Земли (ИСЗ). Для контроля за полетом ИСЗ на нем был помещен маленький радиопередатчик - маяк, работающий в диапазоне 27 МГц. Через несколько лет 12 апреля 1961 г. впервые в мире на советском космическом корабле "Восток" Ю.А. Гагарин совершил исторический облет Земли. При этом космонавт имел регулярную связь с Землей по радио. Так началась систематическая работа по изучению и использованию космического пространства для решения различных мирных задач.

    Создание космической техники сделало возможным развитие очень эффективных систем дальней радиосвязи и вещания. В США начались интенсивные работы по созданию связных спутников. Такие работы начали разворачиваться и в нашей стране. Ее огромная территория и слабое развитие связи, особенно в малонаселенных восточных районах, где создание сетей связи с помощью других технических средств (РРЛ, кабельные линии и др.) сопряжено с большими затратами, делало этот новый вид связи весьма перспективным.

    У истоков создания отечественных спутниковых радиосистем стояли выдающиеся отечественные ученые и инженеры, возглавлявшие крупные научные центры: М.Ф. Решетнев, М.Р. Капланов, Н.И. Калашников, Л.Я. Кантор

    Основные задачи, ставящиеся перед учеными, состояли в следующем:

    • разработка спутниковых ретрансляторов телевизионного вещания и связи ("Экран", "Радуга", "Галс"), с 1969 г. спутниковые ретрансляторы разрабатывались в отдельной лаборатории, возглавляемой М.В. Бродским;

    • создание системных проектов построения спутниковой связи и вещания;

    • разработка аппаратуры земных станций (ЗС) спутниковой связи: модуляторов, порогопонижающих демодуляторов ЧМ (частотной модуляции) сигналов, приемных и передающих устройств и др.;

    • проведение комплексных работ по оснащению оборудованием станций спутниковой связи и вещания;

    • разработка теории следящих ЧМ демодуляторов со сниженным шумовым порогом, методов многостанционного доступа, методов модуляции и помехоустойчивого кодирования;

    • разработка нормативно-технической документации на каналы, тракты телевизионного и связного оборудования спутниковых систем;

    • разработка систем управления и контроля ЗС и сетями спутниковой связи и вещания.

    Специалистами НИИР были созданы многие национальные спутниковые системы связи и вещания, находящиеся в эксплуатации и поныне. Приемо-передающее наземное и бортовое оборудование этих систем также было разработано в НИИР. Помимо оборудования специалисты института предложили методики проектирования как самих спутниковых систем, так и отдельных, входящих в их состав устройств. Опыт проектирования спутниковых систем связи специалистов НИИР отражен в многочисленных научных публикациях и монографиях.

    1.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1"

    Этот эксперимент доказал возможность успешного использования космических объектов для организации связи на Земле.

    В лаборатории спутниковой связи были подготовлены несколько системных проектов, а затем она приняла участие в разработке первой отечественной системы спутниковой связи "Молния-1" в диапазоне частот ниже 1 ГГц. Головной организацией по созданию этой системы был Московский научно-исследовательский институт радиосвязи (МНИИРС). Главным конструктором системы "Молния-1" является М.Р. Капланов - заместитель руководителя МНИИРС.

    В 60-е годы в НИИР велась разработка приемо-передающего комплекса тропосферной радиорелейной системы "Горизонт", также работающей в диапазоне частот ниже 1 ГГц. Этот комплекс был модифицирован и созданная аппаратура, названная "Горизонт-К", использовалась для оснащения первой спутниковой линии связи "Молния-1", связавшей Москву и Владивосток. Эта линия предназначалась для передачи ТВ-программы или группового спектра 60 телефонных каналов. При участии специалистов НИИР в этих городах были оборудованы две земные станции (ЗС). В МНИИРС был разработан бортовой ретранслятор первого искусственного спутника связи "Молния-1", успешный запуск которого состоялся 23 апреля 1965 г. Он был выведен на высокоэллиптическую орбиту с периодом обращения вокруг Земли 12 ч. Такая орбита была удобна для обслуживания территории СССР, рас положенной в северных широтах, так как в течение восьми часов на каждом витке ИСЗ был виден с любой точки страны. Кроме того, запуск на такую орбиту с нашей территории осуществляется с меньшими затратами энергии, чем на геостационарную. Орбита ИСЗ "Молния-1" сохранила свое значение до сих пор и используется, несмотря на преобладающее развитие геостационарных ИСЗ.

    1.2. Первая в мире спутниковая сист ема "Орбита" для распределения ТВ-программ

    После завершения исследований технических возможностей ИСЗ "Молния-1" специалистами НИИР Н.В. Талызиным и Л.Я. Кантором было предложено решить проблему подачи ТВ-программ центрального телевидения в восточные районы страны путем создания первой в мире системы спутникового вещания "Орбита" в диапазоне 1 ГГц на базе аппаратуры "Горизонт-К".

    В 1965-1967 гг. в рекордно короткие сроки в восточных районах нашей страны было одновременно сооружено и введено в действие 20 земных станций "Орбита" и новая центральная передающая станция "Резерв". Система "Орбита" стала первой в мире циркулярной, телевизионной, распределительной спутниковой системой, в которой наиболее эффективно использованы возможности спутниковой связи.

    Следует отметить, что диапазон, в котором работала новая система "Орбита" 800-1000 МГц, не соответствовал тому, который был распределен в соответствии с Регламентом радиосвязи для фиксированной спутниковой службы. Работа по переводу системы "Орбита" в С-диапазон 6/4 ГГц была выполнена специалистами НИИР в период 1970-1972 гг. Станция, функционирующая в новом диапазоне частот, получила название "Орбита-2". Для нее был создан полный комплекс аппаратуры для работы в международном диапазоне частот - на участке Земля-Космос - в диапазоне 6 ГГц, на участке Космос-Земля - в диапазоне 4 ГГц. Под руководством В.М. Цирлина была разработана система наведения и автосопровождения антенн с программным устройством. В этой системе использовались экстремальный автомат и метод конического сканирования.

    Станции "Орбита-2" начали внедряться с 1972 г., а к концу 1986 г. их было построено около 100. Многие из них и в настоящее время являются действующими приемо-передающими станциями.

    В дальнейшем для работы сети "Орбита-2" был создан и выведен на орбиту первый советский геостационарный ИСЗ "Радуга", многоствольный бортовой ретранслятор которого создавался в НИИР (руководитель работы А.Д. Фортушенко и ее участники М.В. Бродский, А.И. Островский, Ю.М. Фомин и др.) При этом были созданы и освоены технология изготовления и методы наземной обработки космических изделий.

    Для системы "Орбита-2" были разработаны новые передающие устройства "Градиент" (И.Э. Мач, М.З. Цейтлин и др.), а также параметрические усилители (А.В. Соколов, Э.Л. Ратбиль, B.C. Санин, В.М. Крылов) и устройства приема сигналов (В.И. Дьячков, В.М. Доро феев, Ю.А. Афанасьев, В.А. Полухин и др.).

    1.3. Первая в мире система непосредственного ТВ-вещания " Экран"

    Широкое развитие системы "Орбита", как средства подачи ТВ-программ, в конце 70-х годов стало экономически неоправданным из-за большой стоимости ЗС, делающей нецелесообразной ее установку в пункте с населением менее 100-200 тыс. человек. Более эффективной оказалась система "Экран", работающая в диапазоне частот ниже 1 ГГц и имеющая большую мощность передатчика бортового ретранслятора(до 300 Вт). Целью создания этой системы было охват ТВ-вещанием малонаселенных пунктов в районах Сибири, Крайнего Севера и части Дальнего Востока. Для ее реализации были выделены частоты 714 и 754 МГц, на которых было возможно создать достаточно простые и дешевые приемные устройства. Система "Экран" стала фактически первой в мире системой непосредственного спутникового вещания.

    Приемные установки этой системы должны были быть рентабельными как для обслуживания небольших населенных пунктов, так и для индивидуального приема ТВ-программ.

    Первый спутник системы "Экран" был запущен 26 октября 1976 г. на геостационарную орбиту в точку 99° в.д. Несколько позднее в Красноярске были выпущены станции коллективного приема "Экран-КР-1" и "Экран-КР-10" с мощностью выходного телевизионного передатчика 1 и 10 Вт. Земная станция, передающая сигналы на ИСЗ "Экран", имела антенну с диаметром зеркала 12 м, она была оборудована передатчиком "Градиент" мощностью 5 кВт, работающим в диапазоне 6 ГГц. Приемные установки этой системы, разработанные специалистами НИИР, были наиболее простыми и дешевыми приемными станциями из всех, реализованных в те годы. К концу 1987 г. число установленных станций "Экран" достигло 4500 шт.

    1.4. Система спутникового ТВ- вещания в диапазоне 12 ГГц

    С 1976 г. в НИИР начались работы по созданию принципиально новой в те годы системы спутникового телевидения в выделенном по международному плану для такого спутникового ТВ-вещания диапазоне частот 12 ГГц (СТВ-12), которая не имела бы ограничений по излучаемой мощности, присущих системам "Экран" и "Москва" и могла бы обеспечить охват всей территории нашей страны многопрограммным ТВ-вещанием, а также обмен программами и решение проблемы республиканского вещания. В создании этой системы НИИР являлся головной организацией.

    Специалисты института провели исследования, определившие оптимальные параметры данной системы, и разработали многоствольные бортовые ретрансляторы и оборудование передающей и приемной ЗС. На первом этапе развития этой системы использовался отечественный спутник "Галс", сигналы передавались в аналоговом виде, использовалось импортное приемное оборудование. Позже был осуществлен переход на цифровое оборудование на базе иностранного спутника, а также передающего и приемного оборудования.

    1.9. Устройство и схемотехника спутниковых ресиверов

    Структурная схема аналогового ресивера

    Спутниковый ресивер – устройство, предназначенные для приема спутникового сигнала, его обработки и передачи его на телевизор для показа.

    В ресивере сигнал первой ПЧ через усилитель промежуточной частоты № 1 поступает на смеситель № 2, в котором происходит второе преобразование частоты, т. е. дальнейшее ее понижение (рис. 1.47).

    Рис. 1.47. Структурная схема аналогового ресивера

    Ресивером осуществляется выбор необходимого канала, настройка или подстройка на канал, демодуляция принятого сигнала, разделение видео и звукового сигналов и формирование стандартного телевизионного сигнала на частоте одного из ТВ каналов в дециметровом диапазоне.

    Необходимый канал выбирается с помощью блока управления путем соответствующей настройки гетеродина № 2. Причем настройку по частоте можно осуществлять либо плавно, либо набрав номер требуемого канала. Гетеродин № 2 представляет собой транзисторный генератор, управляемый напряжением, которое подается на включенный в частотозадающий контур варикап, либо может быть выполнен на основе синтезатора частоты, управляемого микропроцессором.

    Полоса пропускания второй промежуточной частоты формируется фильтром сосредоточенной селекции (ФСС), а дополнительное усиление сигнала – усилителем ПЧ № 2.

    В тракт обязательно входит устройство автоматической регулировки усиления (АРУ). Его работа должна быть очень эффективной для того, чтобы приемная установка могла хорошо работать в различных условиях приема, независимо от диаметра приемной антенны, длины кабеля, соединяющего приемную головку с ресивером, уровня сигналов различных спутников в данной местности. Поэтому глубина регулирования устройства АРУ составляет 25–30 дБ.

    С выхода УПЧ 2 сигнал поступает на демодулятор, представляющий собой синхронный фазовый детектор (СФД).

    С выхода СФД сигнал поступает на фильтры, которыми осуществляется разделение сигнала изображения и поднесущей, модулированной сигналом звукового сопровождения.

    В тракт изображения, как правило, входят:

    • схема привязки уровня;
    • цепи предыскажений и регулировки уровня выходного видеосигнала.

    Тракт звукового сопровождения содержит:

    • смеситель с гетеродином;
    • усилитель промежуточной частоты;
    • частотный детектор.

    Настройка на частоту поднесущей осуществляется путем изменения частоты гетеродина. Для улучшения помехоустойчивости тракт звука охвачен цепью обратной связи по частоте.

    Выделенные низкочастотные сигналы видео и звукового сопровождения подаются:

    • непосредственно на выход ресивера;
    • на амплитудный и частотный модуляторы (AM и ЧМ).

    После модуляции сигналы суммируются в сумматоре и образуют стандартный телевизионный сигнал на частоте одного из ТВ каналов.

    Структурная схема цифрового ресивера

    Рассмотрим структурную схему цифрового спутникового ресивера (приемника-декодера), представленную на рис. 1.48. Сигнал на первой ПЧ в диапазоне 950–2150 МГц с выхода МШУ-конвертера (LNB), обычно размещаемого вблизи антенны, поступает по кабелю снижения в блок СВЧ приемника. Этот блок предназначен для усиления, преобразования сигнала на второй ПЧ 480 МГц.

    Рис. 1.48. Структурная схема цифрового спутникового ресивера

    В демодуляторе производится корректировка ошибок, а выделенный на его выходе цифровой поток далее поступает на демультиплексор.

    Демультиплексор разделяет общий поток на три составляющие:

    В этом же блоке осуществляется дешифрование или устранение псевдослучайной последовательности, наложенной на сигнал в передатчике.

    В блоке видеодекодера MPEG-2 видеосигналы декодируются из стандарта MPEG в декомпрессированные цифровые сигналы, из которых после цифро-аналогового преобразователя выделяются исходные видеосигналы в виде составляющих:

    • яркостной (U);
    • трех цветовых – красной (R), зеленой (G) и синей (В).

    Кодер системы цветного телевидения выполняет функции преобразователя стандартов, т. е. на его выход в соответствии с желанием пользователя можно подключить телевизионный приемник, работающий в одном из трех стандартов аналогового ТВ: PAL, SECAM или NTSC. Имеется выход сигнала для подключения модулятора ретранслятора наземной сети телевещания.

    С выхода декодера звука, совмещенного с цифроаналоговым преобразователем, можно получить как аналоговые, так и цифровые сигналы.

    Микропроцессор управляет работой блока демультиплексора-дешифратора, выделяет телефонный сигнал в случае реализации интерактивной системы связи, а также выделяет интегрированные пакеты данных других служб. Микропроцессор имеет выход для подключения стандартного интерфейса RS-232.

    Модуль цифрового управления и инфракрасный датчик обеспечивают возможность дистанционного управления цифровым ресивером.

    Первые модели цифровых спутниковых ресиверов изготавливались с использованием множества микросхем и процессоров общего назначения (рис. 1.49).

    Позднее концерны по производству процессоров разработали специализированные мультимедийные процессоры для спутниковых ресиверов (рис. 1.50).

    В одной такой микросхеме были совмещены модули, необходимые для работы цифрового спутникового ресивера (рис. 1.51):

    На центральной плате ресивера хорошо видны:

    • центральный процессор (самая большая микросхема);
    • микросхемы ОЗУ;
    • микросхемы Flash-памяти.

    Как видно на приведенной блок-схеме, всю необходимую обработку полученной информации осуществляет тюнер спутникового ресивера (рис. 1.53).

    Внешний вид тюнера цифрового спутникового ресивера
    Рис. 1.53. Внешний вид тюнера цифрового спутникового ресивера

    Обратите внимание на следующий факт: формирование сигналов управления режимами работы конвертера осуществляется отдельных узлом (Цепи управления LNB).

    В большинстве ресиверов этот узел выполнен на отдельных элементах, но в некоторых моделях для этих целей используются специализированные микросхемы. Одна из таких микросхем хорошо видна на рис. 1.53 справа от тюнера.

    Спутниковые ресиверы нового поколения

    В отличие от своих ранних собратьев, в новых моделях ресиверов принятый со спутника обрабатывает не тюнер, а центральный процессор.

    Нет, тюнер также как и раньше, принимает, усиливает и преобразует принятый сигнал в цифровую форму. Но обработка полученных цифровых данных выполняется в соответствующих узлах процессора ресивера. Благодаря таким нововведениям размеры тюнера очень сильно уменьшились (рис. 1.55).

    В одной такой микросхеме совмещены модули, необходимые для работы цифрового спутникового ресивера (рис. 1.57):

    Ресиверы, оснащенные жестким диском, очень часто имеют два независимых тюнера: сигнал с одного из них можно записывать на диск, используя второй в это же время просматривать другой канал. На рис. 1.58 показан такой ресивер.

    Внешний вид современного спутникового ресивера с жестким диском
    Рис. 1.58. Внешний вид современного спутникового ресивера с жестким диском

    Можно получить исходные тексты многих программ. Многих, но не всех: исходные тексты ядра операционной системы, большинства драйверов и часть исходных текстов программы графического интерфейса распространяются только в виде исполняемых кодов для процессора. Т. е. их нельзя модифицировать простыми программными инструментами.

    Читайте также: