Строение хромопротеинов и нуклеопротеидов реферат

Обновлено: 05.07.2024

План:
Введение
• 1 Структура и устойчивость
• 2 Распространённость и биологическая роль
o 2.1 Дезоксирибонуклеопротеиды
o 2.2 Рибонуклеопротеиды
o 2.3 Нуклеокапсиды вирусов
ЛитератураВведение
Нуклеопротеиды — комплексы нуклеиновых кислот с белками.
К нуклеопротеидам относятся устойчивые комплексы нуклеиновых кислот с белками, длительное время существующие в клетке в составе органелл илиструктурных элементов клетки в отличие от разнообразных короткоживущих промежуточных комплексов белок — нуклеиновая кислота (комплексы нуклеиновых кислот с ферментами — синтетазами и гидролазами — при синтезе идеградации нуклеиновых кислот, комплексы нуклеиновых кислот с регуляторными белками и т. п.).
1. Структура и устойчивость

Нуклеопротеидный комплекс — субчастица 50S рибосом бактерий.
Жёлтым показанарРНК, синим — белки.
В зависимости от типа входящих в состав нуклеопротеидных комплексов нуклеиновых кислот различают рибонуклеопротеиды и дезоксирибонуклеопротеиды.
Устойчивость нуклеопротеидныхкомплексов обеспечивается нековалентным взаимодействием. У различных нуклеопротеидов в обеспечение стабильности комплекса вносят вклад различные типы взаимодействий, при этом нуклеиново-белковыевзаимодействия могут быть специфичными и неспецифичными. В случае специфичного взаимодействия определённый участок белка связан со специфичной (комплементарной участку) нуклеотидной последовательностью, в этом случае вкладводородных связей, образующихся между нуклеотидными и аминокислотными остатками благодаря пространственному взаимному соответствию фрагментов, максимален. В случае неспецифичного взаимодействия основнойвклад в стабильность комплекса вносит электростатическое взаимодействие отрицательно заряженных фосфатных групп полианиона нуклеиновой кислоты с положительно заряженными аминокислотными остатками белка.Примером специфичного взаимодействия могут служить нуклеопротеидные комплексы рРНК — субъединицы рибосом; неспецифичное электростатическое взаимодействие.

полипептид, построенный из АК-остатков. В состав небелковой части может входить: гем, металл, остаток фосфорной кислоты, углеводы, липиды и т.д.

Хромопротеины

Для них простетическая часть окрашена (chromos – краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидоксидаза, ксантиноксидаза), цитохромы (гемсодержащие белки) и т.д. Велика биологическая роль этих белков – участвуют в физиологических процессах: дыхание клетки, транспорте кислорода и углекислого газа, окислительно-восстановительных процессах.

Гемоглобин. Его белковая часть представлена глобином, небелковая – гемом. Это олигомерный белок, т.е. имеет четвертичную структуру, состоящую из 4 субъединиц.

 цепи построены из 141 АК-остатка.

 цепи из 146 АК-остатков [рис. 4-х субъединиц, в каждой нарисована точка - гем].

Каждая из субъединиц связана с гемом:

Основная функция гемоглобина – транспортная (кислород, углекислый газ). Также он представляет собой основную буферную систему крови (75% от всей буферной емкости крови).

- HbO2 – оксигемоглобин (связан с молекулой O2);

- HbOH – метгемоглобин (образуется при соединении с нитросоединениями, не способен связывать кислород).

Типы гемоглобина. Всего известно более 100 типов, но их все делят на 2 группы:

1) Физиологические гемоглобины;

2) Патологические (аномальные).

К физиологическим гемоглобинам относятся:

- Hb P – примитивный гемоглобин, имеет место быть у 1-2 недельного эмбриона;

- Hb F – фетальный или гемоглобин плода, к моменту рождения составляет около 70% всего гемоглобина в крови;

- Hb A, Hb A2, Hb A3 – это гемоглобины взрослого организма. На Hb A приходится около 90-96%.

Физиологические типы гемоглобинов отличаются глобулиновой частью (АК-составом). Например Hb A содержит 2 и 2b субъединицы, а Hb F – 2 и 2 субъединицы.

К аномальным (возникающих при наследственных заболеваниях) гемоглобинам относятся:

- HbS – гемоглобин, сопутствующий серповидно-клеточной анемии. Отличается от нормального тем, что с N-конца в 6 положении b–цепи глутамин заменен на валин.

Миоглобин по сравнению с гемоглобином имеет третичную структуру, одну полипептидную цепь, один гем и может связывать одну молекулу кислорода. Гемоглобин и миоглобин функционируют вместе. Гемоглобин доставляет кислород из легких к тканям, а миоглобин перераспределяет его внутри клетки (доставляет к митохондриям).

Оба белка – гемопротеины, т.е. гемсодержащие белки.

2. Аэробное окисление углеводов, схема процесса. Образование пировиноградной кислоты из глюкозы, последовательность реакций. Челночные механизмы транспорта водорода.

3. Гормоны половых желез. Химическое строение и участие в обменных процессах.

Регулируют гомеостаз и формирование вторичных половых признаков. Синтез половых гормонов регулируется гонадотропным гормоном гипофиза. В крови половые гормоны соединены с гликопротеидами – уменьшают синтез белка. Эстрадиол – 1 кольцо ароматическое и ОН-группа, в 10 положении нет СН3. Тестостерон – 1 кольцо не ароматическое и кетонная группа, в 10 положении есть СН3. Тестостерон – вырабатывается семенниками, яичниками, надпочечниками. Цитозольный механизм. Регулирует дифференцировку и функционирование репродуктивной системы, дифференцировку мужских половых желез., развитие мужских вторично половых признаков, обладает анаболическим действием, стимулирует синтез белка. Гиперфункция – гиперсексуальность, увеличивается рост волос. Гипофункция – недоразвитие внутренних и наружных половых органов, инфантизм. Эстрадиол – синтезируется фолликулами яичника, надпочечниками, плацентой, семенниками. Цитозольный механизм. Обеспечение репродуктивной функции организма женщины, развитие вторичных половых признаков, оптимальные условия для оплодотварения, оказывает анаболическое действие, стимулирует синтез белка. Гиперсексуальность, или недоразвитие женских половых органов, инфантизм, бесплодие.

Понятие и особенности хромопротеинов, основные функции и задачи гемоглобина. Определение гликозилированных гемоглобинов, характеристика и отличительные черты аномальных гемоглобинов. Возможные последствия повышения содержания билирубина в крови человека.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.05.2017
Размер файла 26,5 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство Здравоохранения и социального развития Республики Казахстан

Южно-Казахстанская государственная фармацевтическая академия

Кафедра биохимии, биологии и микробиологии

Приняла: Кан А.М.

Хромопротеины (от греч. chroma -- краска) -- сложные белки, состоящие из простого белка и связанного с ним окрашенного небелкового компонента -- простетической группы. Различают гемопротеины (содержат в качестве простетической группы гем), магнийпорфирины и флавопротеины (содержат производные изоаллоксазина). Хромопротеины участвуют в таких процессах жизнедеятельности, как фотосинтез, клеточное дыхание и дыхание всего организма, транспорт кислорода и углекислого газа, окислительно-восстановительные реакции, свето- и цветовосприятие.

Хромопротеины являются важнейшими участниками аккумулирования энергии, начиная от фиксации солнечной энергии в зелёных растениях и утилизации её до превращений в организме животных и человека. Хлорофилл (магнийпорфирин) вместе с белком обеспечивает фотосинтетическую активность растений, катализируя расщепление молекулы воды на водород и кислород (поглощением солнечной энергии). Гемопротеины (железопорфирины), напротив, катализируют обратную реакцию -- образование молекулы воды, связанное с освобождением энергии.

Хромопротеины

Для них простетическая часть окрашена (chromos - краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидоксидаза, ксантиноксидаза), цитохромы (гемсодержащие белки) и т.д. Велика биологическая роль этих белков - участвуют в физиологических процессах: дыхание клетки, транспорте кислорода и углекислого газа, окислительно-восстановительных процессах.

Гемоглобин. Его белковая часть представлена глобином, небелковая - гемом. Это олигомерный белок, т.е. имеет четвертичную структуру, состоящую из 4 субъединиц.

a цепи построены из 141 АК-остатка.

b цепи из 146 АК-остатков [рис. 4-х субъединиц, в каждой нарисована точка - гем].

Каждая из субъединиц связана с гемом:

Основная функция гемоглобина - транспортная (кислород, углекислый газ). Также он представляет собой основную буферную систему крови (75% от всей буферной емкости крови).

- HbO2 - оксигемоглобин (связан с молекулой O2);

- HbOH - метгемоглобин (образуется при соединении с нитросоединениями, не способен связывать кислород).

Типы гемоглобина. Всего известно более 100 типов, но их все делят на 2 группы:

1) Физиологические гемоглобины;

2) Патологические (аномальные).

К физиологическим гемоглобинам относятся:

- Hb P - примитивный гемоглобин, имеет место быть у 1-2 недельного эмбриона;

- Hb F - фетальный или гемоглобин плода, к моменту рождения составляет около 70% всего гемоглобина в крови;

- Hb A, Hb A2, Hb A3 - это гемоглобины взрослого организма. На Hb A приходится около 90-96%.

Физиологические типы гемоглобинов отличаются глобулиновой частью (АК-составом). Например Hb A содержит 2a и 2b субъединицы, а Hb F - 2a и 2g субъединицы.

К аномальным (возникающих при наследственных заболеваниях) гемоглобинам относятся:

- HbS - гемоглобин, сопутствующий серповидно-клеточной анемии. Отличается от нормального тем, что с N-конца в 6 положении b-цепи глутамин заменен на валин.

Миоглобин по сравнению с гемоглобином имеет третичную структуру, одну полипептидную цепь, один гем и может связывать одну молекулу кислорода. Гемоглобин и миоглобин функционируют вместе. Гемоглобин доставляет кислород из легких к тканям, а миоглобин перераспределяет его внутри клетки (доставляет к митохондриям).

Гемоглобин - основной дыхательный белок крови, относящийся к хромопротеидам. Он состоит из белковой (глобин) и небелковой (гем) части, является белком четвертичной структуры и состоит из четырех субъединиц, каждая из которых включает в себя полипептидную цепь, соединенную с гемом, полипептидные цепи попарно одинаковы. Так, гемоглобин взрослого типа (НЬ А) имеет 2а- и 2y-полипептидные цепи. Фетальный гемоглобин, преобладающий в крови новорожденного (Hb F), имеет в своем составе 2а- и 2у-полипептидные цепи. У взрослого человека в крови 95-98% приходится на долю гемоглобина А, 1-1,5% составляет Hb F, 2-2,5% - на гемоглобин А2 (а2б2). Гемоглобин находится в эритроцитах в виде нескольких производных. Присоединение кислорода (к железу тема) приводит к образованию оксигемоглобина (НbО2). Отдав кислород тканям, оксигемоглобин превращается в восстановленную форму (НbО2 ННb). Удаление диоксида углерода (углекислого газа) из тканей происходит путем его присоединения к свободным аминным группам глобина и при этом образуется карбаминогемоглобин (карбгемоглобин). Оксид углерода (СО) при соединении с железом гема образует стойкое соединение карбоксигемоглобин. Оксид углерода является продуктом обмена и образуется эндогенно при распаде гема (в норме - при старении эритроцитов). Содержание карбоксигемоглобина, в первую очередь, является показателем гемолиза эритроцитов. Железо гема находится в двухвалентной форме. При окислении его (Fe2+ Fe3+) образуется метгемоглобин. Окислителями железа гема могут быть различные продукты метаболизма-активные формы кислорода (АФК), ферменты, альдегиды и др. В норме за сутки образуется 2,5% метгемоглобина, а обнаруживается в крови 1,5%. Метгемоглобинредуктазная система восстанавливает метгемоглобин, переводя его в восстановленную форму, возвращая тем самым способность транспортировать кислород. К экзогенным метгемоглобинообразователям относятся нитриты, нитраты, присутствующие в избыточном количестве в воде, в пище, ряд лекарственных препаратов. Гемоглобин, образуя комплексные соединения с различными сульфопроизводными, образует сульфметгемоглобин. У здоровых людей это производное гемоглобина в крови не содержится. Обнаружение его свидетельствует о повышенном содержании сульфопроизводных в воде, пище, воздухе. В связи с этим сульфгемоглобин является своеобразным маркером экологической обстановки. хромопротеин гемоглобин билирубин кровь

Диагностическое значение имеет определение содержания гликозилированных (гликированных) гемоглобинов, образующихся в результате комплексирования гемоглобина с различными углеводородами. 95% от общего количества гликозилированных гемоглобинов приходится на долю гемоглобина A1c, образующегося в результате комплексирования гемоглобина и глюкозы.

Повышение содержания гликозилированных гемоглобинов наблюдается при сахарном диабете.

Определение гликозилированных гемоглобинов производится как для диагностики при массовых обследованиях населения, так и для контроля за соблюдением диеты у больных с сахарным диабетом, при подборе дозы инсулина и контроле за эффективностью лечения.

Содержание гликозилированного гемоглобина (Hb A1c) у здоровых находится в пределах 3-6% от общего гемоглобина или (0,55±0,09) мг фруктозы на 1 мг гемоглобина.

Аномальные гемоглобины

Наличие в эритроцитах людей аномальных или патологических гемоглобинов определяет состояния, обозначаемые как гемоглобинозы, или гемоглобинопатии. Это наследственные аномалии кроветворения, при которых молекулы патологических гемоглобинов имеют измененную структуру, поэтому подобные заболевания относятся к группе так называемых молекулярных болезней.

В настоящее время установлено более 200 аномальных гемоглобинов: B (S), С, D, Е, G, J, I, К, L, M, N, О, Р, Q и других, а также возможные их комбинации (SC, SD и др.).

Гемоглобин S

Отличается от гемоглобина А строением четвертого пептида, в котором на шестом месте вместо глутаминовой кислоты находится электрически нейтральный валин. Гемоглобин S мало растворим, нейтрален по заряду, электрофоретически менее подвижен. В капиллярах при отдаче кислорода гемоглобин S выпадает в осадок в форме веретенообразных кристаллоидов (тактоидов), которые растягивают оболочку и ведут к распаду эритроцитов. У гетерозиготов содержание гемоглобина S равняется 20 - 45 %, у гомозиготов - 60 - 90 %. Гетерозиготная форма аномалии протекает бессимптомно или сопровождается легкой гемолитической анемией. У гомозиготных особей уже с первых месяцев жизни развивается тяжелая форма серповидноклеточной анемии.

Гемоглобин F

Характерный для крови плода фетальный гемоглобин может быть обнаружен в повышенных количествах в эритроцитах крови недоношенных детей, при коклюше, серповидноклеточной анемии, талассемии, врожденной микроцитарной анемии, пернициозной анемии, острых и хронических лейкозах, миеломной болезни. Наибольшее содержание (до 97 %) наблюдается при большой талассемии.

Гемоглобин С

Отличается строением четвертого пептида молекулы гемоглобина, в котором на шестом месте вместо глутаминовой кислоты находится лизин. Центр распространения гена С - северная часть Ганы. Частота гетерозиготности по данным одних авторов, до 15 %, по данным других, - 16,5 - 28 %, среди негров США - 1,8 - 3% на Ямайке - 2,7 % (В. П. Эфроимсон). Наличие гена С в гомозиготном состоянии ведет к развитию выраженной спленомегалии, умеренной микроцитарной анемии с наличием эритроцитов мишеневидной формы. При наличии комбинации гемоглобинов С и S анемия оказывается более тяжелой.

Гемоглобин D

Обнаружен у 2 % берберов Марокко и у 0,4 % негров США. У гомозиготов наблюдается микроцитоз, слабый анизо- и пойкилоцитоз и мишеневидность эритроцитов. Описано несколько гемоглобинов D (в северо-западной Индии, среди сикхов в Индии, на острове Кипр, в Турции).

Гемоглобин Е

Обнаружен у жителей Юго-Восточной Азии: в Кампучии, Таиланде, Бирме, Бенгалии, у веддов Шри-Ланки, в северо-восточной Малайе, у населения Калимантана и Сулавеси. Частота распространения гена С в разных местностях колеблется от 1 - 3 до 13 (Таиланд) - 20 (Бирма) - 28 - 37 % (Кампучия). У гомозиготов ЕЕ наблюдается микроцитоз, компенсированный развитием эритроцитоза (до 7 - 8 x 1012 /л). Отмечены комбинации генов ES и ЕТ, дающие сублетальный эффект. Клинические проявления при других гемоглобинозах выражены слабо, а распространение более ограниченное (гены G, I, J, К, L, M, N, О, Р, Q).

Серповидно-клеточная анемия - это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение - так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидно-клеточной анемии.

Серповидно-клеточная анемия весьма распространена в регионах мира, эндемичных по малярии, причем больные серповидно-клеточной анемией обладают повышенной (хотя и не абсолютной) врожденной устойчивостью к заражению различными штаммами малярийного плазмодия. Серповидные эритроциты этих больных также не поддаются заражению малярийным плазмодием в пробирке.

Поступающий с пищей гемоглобин в желудочно-кишечном тракте распадается на глобин и гем. Глобин как белок гидролизуется до АК. Гем окисляется в гематин и выводится с калом.

Эндогенный гемоглобин разрушается главным образом в печени, а также в селезенке, костном мозге и других органах. Начальный этап распада гемоглобина - разрыв метинового мостика и образование вердоглобина. Вердоглобин еще содержит в соем составе железо и глобин. Процесс начинается с окисления гема и разрыва системы порфириновых колец. Двухвалентное железо гемоглобина превращается при этом в трехвалентное. Это вердоглобин - от него спонтанно отщепляется белок глобин и освобождается железо. Дальнейшие превращения приводят к потере железа и глобина, в результате чего происходит развертывание порфиринового кольца и образование желчного пигмента биливердина. Глобин гидролизуется до АК, а железо соединяется с белком и под названием ферритина откладывается в организме как запасная форма железа. Оставшаяся небелковая часть биливердина восстанавливается в билирубин. Билирубин транспортируется кровью в печень, где освобождается от белка и обезвреживается путем образования диглюкуронидов. Образующийся же в печени билирубин находится в связанной форме. Из печени билирубин поступает в желчный пузырь и подвергается превращениям. Дальнейшие продукты восстановления получили название уробилиногеновых тел. Почти весь выделяющийся печенью билирубин превращается в стеркобилиноген. У здорового человека ежедневно образуется 250-300 мг билирубина, который почти полностью удаляется из организма. содержание его в крови 0,4-0,8 мг%. повышение содержания билирубина в крови свыше 2 мг% сопровождается развитием желтухи. Железо, освобождающееся в клетках ретикуло-эндотелия при распаде гемоглобина и других хромопротеидов не удаляется из организма, а используется в синтезе нового хромопротеида - ферритина, выполняющего роль депо железа в организме. 2/3 общего количества ферритина содержится в печени. Из печени железо ферритина транспортируется в место синтеза гемоглобина (костный мозг) в виде железосодержащего белка - трансферина.

Изменения в первичной структуре цепей гемоглобина, т.е. замена отдельных АК остатков на другие, является причиной возникновения ряда врожденных заболеваний. Образование значительных количеств аномальных гемоглобинов может обусловливать нарушение дыхательной функции крови.

При нарушении обмена хромопротеидов возникают заболевания:

Серповидноклеточная анемия - это наследственное заболевание. При этом заболевании эритроциты изменяют свою форму за счет выпадения гемоглобина в осадок внутри эритроцитов, в результате чего нарушается функция переноса кислорода.

Желтухи - гемолитическая, механическая и паренхиматозная. гемолитическая желтуха возникает в результате образования избытка билирубина, превосходящего способность нормальных печеночных клеток к конъюгации, при этом в крови накапливается неконъюгированный билирубин.

Порфирии - нарушение процессов синтеза гемоглобина и накопление побочных продуктов. Обусловлены наследственными нарушениями обмена веществ в костном мозгу - эритропоэтические порфирии. Также бывают порфирии, обусловленные аномалией печени - печеночные порфирии. При всех формах имеются поражения кожи, иногда симптомы со стороны нервной системы.

Желчные пигменты - биливердин и билирубин придают окраску желчи. Поступление в желчь служит нормальным путем выведения желчных пигментов, которые являются конечными продуктами катаболизма порфириновых компонентов гемопротеидов. Если желчные пигменты накапливаются в крови и других жидкостях тела, либо при избыточном их образовании, либо в результате недостаточного их выведения с желчью, они придают интенсивную желтую окраску кожи. Это заболевание - желтуха.

В некоторых тканях происходит катаболизм гемопротеидов. Всем знакомо появление целой “радуги”, образуемой желчными пигментами после кровоизлияний и местного распада гемоглобина в коже и подкожной клетчатке, например, при синяках и ссадинах. В норме печень осуществляет эффективное удаление желчных пигментов из циркулирующей крови. После ряда окислительно-восстановительных реакций, катализируемых микроорганизмами кишечника продукты превращения желчных пигментов - уробилины выводятся с фекалиями. Количество билирубина в крови имеет важное значение для этиологии желтухи.

Злокачественная анемия, авитаминоз B12, связаны с нарушением синтеза ДНК и обмена нуклеопротеидов. При этом заболевании снижено количество эритроцитов и, соответственно, гемоглобина. Анемия, развивающаяся при действии ионизирующей радиации: нарушение синтеза ДНК и подавление митотической активности клеток в кроветворных органах и тканях.

Часть сложных белков организма содержит в своем составе гем (гемоглобин, миоглобин, цитохромы, гемсодержащие ферменты). При распаде гема образуется билирубин, который является малорастворимым, токсичным соединением. Током крови билирубин доставляется в печень и там конъюгирует с глюкуроновой кислотой - таким образом повышается его растворимость и снижается токсичность. Под влиянием различных факторов может нарушаться образование и выведение билирубина и продуктов его метаболизма из организма. Повышение содержания билирубина в крови ведет к отложению его в тканях, вызывая их окрашивание в желтый цвет (желтуха).

В организме человека содержится свыше 50 000 индивидуальных белков, отличающихся первичной структурой, конформацией, строением активного центра и функциями. В основе имеющихся классификаций лежат разные признаки. Так белки можно классифицировать: по форме белковых молекул (глобулярные – округлые или фибриллярные – нитевидные), по молекулярной массе (низкомолекулярные, высокомолекулярные), по выполняемым функциям (транспортные, структурные, защитные, регуляторные), по локализации в клетке (ядерные, цитоплазматические, лизосомальные), по структурным признакам и химическому составу белки делятся на две группы: простые и сложные.

Простые белки представлены только полипептидной цепью, состоящей из аминокислот. Сложные белки имеют в своем составе белковую часть и небелковый компонент (простетическую группу).

К простым белкам относят гистоны, протамины, альбумины и глобулины, проламины и глютелины, протеиноиды.

Гистоны - тканевые белки многочисленных организмов, связаны с ДНК хроматина. Это белки небольшой молекулярной массы. По электрохимическим свойствам относятся к белкам с резко выраженными основными свойствами (поликатионные белки). Гистоны имеют только третичную структуру, сосредоточены в основном в ядрах клеток. Связь гистон-ДНК электростатическая, так как гистоны имеют большой положительный заряд, а цепь ДНК-отрицательный. В составе гистонов преобладают диаминомонокарбоновые аминокислоты аргинин, лизин. Основная функция гистонов - структурная и регуляторная. Структурная функция состоит в том, что гистоны участвуют в стабилизации пространственной структуры ДНК, а следовательно, хроматина и хромосом. Регуляторная функция заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Протамины - своеобразные биологические заменители гистонов, но отличаются от них составом и структурой. Это самые низкомолекулярные белки, обладают резко выраженными основными свойствам из-за большого содержания в них аргинина (80%). Протамины - поликатионные белки. Они связываются с ДНК в хроматине спермиев и находятся в молоках рыб. (Скумбрин - из молоки скумбрии). Протамины делают компактной ДНК сперматозоидов, т.е. выполняют структурную функцию, однако не выполняют регуляторную.

Альбумины и глобулины. А и Г белки, которые есть во всех тканях. Сыворотка крови наиболее богата этими белками. Содержание альбуминов в ней составляет 40-45 г/л, глобулинов 20-30 г/л, т.е на долю альбуминов приходится более половины белков плазмы крови.

А-белки относительно небольшой молекулярной массы, они имеют отрицательный заряд и кислые свойства, содержат много глутаминовой аминокислоты. Это сильно гидратированые белки, поэтому они осаждаются только при большой концентрации водоотнимающих веществ.Благодаря высокой гидрофильности, небольшим размерам молекул, значительной концентрации альбумины играют важную роль в поддержании осмотического давления крови. Характерным свойством альбуминов является их высокая адсорбционная способность. Они адсорбируют полярные и неполярные молекулы, выполняя транспортную роль. Это неспецифические переносчики они транспортируют гормоны, холестерол, билирубин, лекарственные вещества, ионы кальция. Связывание и перенос длинноцепочных жирных кислот - основная физиологическая функция сывороточных альбуминов. Альбумины синтезируются преимущественно в печени и быстро обновляются, период их полураспада 7 дней.

Г - белки с большей молекулярной массой. Глобулины слабокислые или нейтральные белки. Некоторые из глобулинов обладают способностью к специфическому связыванию веществ (специфические переносчики). Возможно фракционирование белков сыворотки крови на альбумины и глобулины методом высаливания с помощью (NH4)2SO4. В насыщенном растворе осаждаются альбумины как более легкая фракция, в полунасыщенном – глобулины.

Глютелины – растительные белки, не растворимые в воде, в растворах солей, этаноле. Они растворимы в слабых щелочах.

2. Сложные белки, общая характеристика, классификация.

Сложные белки кроме полипептидных цепей содержат в своем составе небелковую (простетическую) часть, представленную различными веществами.

Классификация сложных белков зависит от строения простетической группы.

-Гликопротеины (содержат углеводы).

-Липопротеины (содержат липиды).

-Фосфопротеины (содержат фосфорную кислоту).

-Хромопротеины (содержат окрашенную простетическую группу).

-Металлопротеины (содержат ионы различных металлов).

-Нуклеопротеины (содержат нуклеиновые кислоты).

-Гликопротеины. Простетические группы этих белков представлены углеводами и их производными.

У сложных белков, кроме белковой цепи, имеется дополнительная небелковая группа. Она называется лиганд, то есть молекула, связанная с белком. В случае если лиганд несет структурную и/или функциональную нагрузку, он называется простетической группой. В роли лиганда могут выступать любые молекулы: 1)молекулы, выполняющие в белке структурную функцию – липиды, углеводы, нуклеиновые кислоты, минеральные элементы, какие-либо другие органические соединения: гем в гемоглобине, углеводы в гликопротеинах, ДНК и РНК в нуклеопротеинах, медь в церулоплазмине, 2)переносимые белками молекулы: железо в трансферрине, гемоглобин в гаптоглобине, гем в гемопексине, 3)субстраты для ферментов – любые молекулы и даже другие белки.

Нуклеопротеины строение, классификация, биологическая роль. Уровни упаковки ДНК в составе хроматина.

Нуклеопротеины – это сложные белки, содержащие в качестве небольшой части нуклеиновые кислоты (до 65%). НП состоят из 2-х частей: белковой (содержит гистоны и протамины, которые являясь основными белками, придают основные свойства) и простетической, представленной НК, сообщающими кислотные свойства. Взаимодействие между этими частями по ион-ионному механизму.

Все НП по составу НК можно разделить на 2 группы: рибонуклеопротеины (РНП) и дезоксирибонуклеопротеины (ДНП).

В хромосомах нуклеиновая кислота представлена дезоксирибонуклеиновой кислотой (ДНК) и связана с гистонами, формируя хроматин. В рибосомах рибонуклеиновая кислота (РНК) связывается со специфическими рибосомальными белками.

НК являются полимерными молекулами и состоят из мономеров, называемых нуклеотидами. Нуклеотид содержит фосфорную кислоту (один, два или три остатка), сахар (рибозу или дезоксирибозу), азотистое основание (аденин, гуанин, цитозин, урацил либо тимин).Связываясь через фосфатные остатки, нуклеотиды образуют длинные цепочки – нуклеиновые кислоты.Выделяют два вида нуклеиновых кислот в зависимости от пентозы, входящей в их состав – рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Сахарофосфатный остов в ДНК и РНК заряжен отрицательно благодаря заряду фосфатных групп. В то же время пуриновые и пиримидиновые основания гидрофобны.

Четыре уровня упаковки ДНК

2) На втором уровне нуклеосомы сближаются с помощью гистона Н1, в результате чего образуется фибрилла диаметром 30 нм. Сокращение линейного размера ДНК происходит в 6-10 раз. Этот уровень упаковки, как и первый, не зависит от первичной структуры ДНК.

3) Петлевой уровень. Обеспечивается негистоновыми белками. Они узнают определённые последовательности ДНК и связываются с ними и друг с другом, образуя петли по 20-80 тыс. п.н. Укорочение за счет петель проходит в 20-30 раз. Типичная хромосома млекопитающих может содержать до 250 петель.

4) Метафазная хромосома. Перед делением клетки молекулы ДНК удваиваются, петли укладываются в стопки, хромосома утолщается и видна в световой микроскоп. На этом уровне упаковки каждая хромосома состоит из двух хроматид. Каждая из хроматид содержит по одной молекуле ДНК.

4.Строение простетической группы нуклеопротеинов. Первичные и вторичные структура нуклеиновых кислот. Отличие ДНК и РНК.

1. Углеводный компонент

2. Азотистые основания (лактамная форма)

Аденин, гуанин, циозин, урацил (А, Г, Ц, У)РНК, Аденин, гуанин, цитозин, тимин (А, Г, Ц, Т)ДНК

3. Фосфорная кислота

Нуклеиновые кислоты – это высокомолекулярные соединения, состоящие из мононуклеотидов, т.е. их структурной единицей является мононуклеотид (нуклеотид). Каждый нуклеотид включает 3 химически различных компонента: моносахарид, азотистое основание, остаток фосфорной кислоты.

Первичные структуры РНК и ДНК построены однотипно, они представляют собой линейные полимеры – полинуклеотиды, состоящие из мононуклеотидов, соединенных 3',5' – фосфодиэфирными связями. При этом сложноэфирная связь образована фосфатным остатком одного мононуклеотида и 3' – гидроксильной группой пентозного остатка другого мононуклеотида (3',5' – фосфодиэфирная связь). Концы полинуклеотидов различаются по структуре: на одном конце имеется свободная 5' – фосфатная группа (5' – конец), на другом – свободная 3' – ОН - группа (3' – конец). Уникальность структуры и функциональная индивидуальность молекул ДНК и РНК определяется их первичной структурой.

Вторичная структура ДНК. Особенностью нуклеотидного состава ДНК является то, что число адениловых нуклеотидов равно числу цитидиловых: А=Т, Г=Ц, следовательно, А+Г=Т+Ц, т.е. число пуриновых нуклеотидов равно числу пиримидиновых (правила Чаргаффа). Такие соотношения не свойственны РНК.

Молекула ДНК представляет собой двойную спираль, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидные цепи в ней антипараллельны, т.е. если одна из них ориентирована в направлении 3' 5' , то вторая – в направлении 5' 3'. Поэтому на каждом из концов молекулы ДНК расположены 5' – конец одной цепи и 3' – конец другой цепи.

Все основания цепей ДНК (гидрофобные по свойствам) расположены внутри двойной спирали, а пентозы и остатки фосфорной кислоты – снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счет водородных связей, образующихся за счет специфического взаимодействия между парами комплементарных оснований. Комплементарными являются А и Т, они образуют двеводородные связи, а также Г и Ц образуют три водородные связи. Кроме водородных связей в стабилизации вторичной структуры ДНК участвуют гидрофобные взаимодействия возникающие за счет гидрофобных азотистых оснований, обращенных внутрь спирали. Гидрофобные взаимодействия вносят основной вклад в стабилизацию двойной спирали, больший, чем водородные связи между цепями. Рибозофосфатные связи располагаются по периферии, образуя ковалентный остов спирали.

5.Глюкоконъюгаты. Классификация. Гликопротеины. Характеристика простетической группы глюкопротеинов классификация, структура, химический состава углеводов. Гликопротеины слизей.

Гликоконъюгаты представляют собой общий термин для углеводов, ковалентно связанных с другими молекулами. Гликоконъюгаты являются очень важными соединениями в биологии и состоят из множества различных категорий, таких как гликопротеины, гликопептиды, пептидогликаны, гликолипиды и липополисахариды. Они принимают участие в межклеточных взаимодействиях, включая межклеточное распознавание и взаимодействие клеток с внеклеточным матриксом.

Углеводные компоненты гликоконъюгатов обеспечивают также формирование антигенов и рецепторов, защиту слизистых оболочек от повреждений, транспорт витаминов (гликопротеин — внутренний фактор Кастла обеспечивает транспорт витамина В12) и микроэлементов. Существуют нарушения обмена гликоконъюгатов. Это — гликозидозы (лизосомальные болезни), наследственные заболевания недостаточности ферментов расщепления гликопротеинов (мукополисахаридозы) или гликолипидов (гликолипидозы). Причиной гликозидозов является дефект ферментов гликозидаз лизосом, что производит к накапливанию в этих органеллах гликолипидов или гликопротеинов. Они откладываются чаще всего в головном мозге, костях, суставах, печени и селезёнке, что приводит к увеличению органов в размерах и нарушения их функций.

Основной структурный и функциональный компонент слизи – особый подкласс гликопротеинов. До последнего времени их называли гликопротеинами слизи. Однако и сейчас за ними закрепилось название муцинов (от англ. mucus – слизь). Муцины выделены в отдельный подкласс гликопротеинов, поскольку обладают свойствами, сочетание которых присуще только этому подклассу. Среди этих свойств – огромная молекулярная масса (тысячи кДа), высокое содержание углеводов (50-80% от массы молекулы), образующих разветвленные олигосахаридные цепочки, которые связаны О-гликозидной связью с белком, и, наконец, большое количество тандемных повторов как в нуклеотидной последовательности генов, так и в кодируемой ими полипептидной цепи.

6.Гликопротеины плазмы крови. Методы их исследования. Биологическая роль отдельных представителей. Урогликопротеины.

Гликопротеины плазмы крови. Плазма крови представляет собой вязкий водный раствор (90%-ный), содержащий целый ряд соединений (глобулинов), которые являются гликопротеинами. Углевод-белковые соединения плазмы крови обусловливают такие функции плазмы, как регулирование осмотического давления, транспорт водонерастворимых веществ, иммунохимические свойства, свертываемость.

Современные методы исследования:

Гистохимический, иммунолю-минесцентный и ультраструктурный анализ.

-Трансферрин представляет собой гликопротеин плазмы крови. Он имеет два центра связывания железа железо в составе трансферрина находится в трехвалентном состоянии в форме Ре СО . Трансферрин, содержаш ий железо, эндоцитируется клетками при участии мембранных рецепторов. Главная функция трансферрина — перенос железа с током крови к местам депонирования и использования.

-Гаптоглобин: связывает гемоглобин, который попадает в кровь при повреждении эритроцитов, свободный гемоглобин. При связывании гемоглобина гаптоглобином образуется комплекс гемоглобин-гаптоглобин, который поглощается клетками печени и утилизируется ими. Это физиологический процесс, в ходе которого печень возвращает организму аминокислоты глобина и железо гема.

-церрулоплазмин(ферроксидаза): катализирует окисление полифенолов и полиаминов в плазме

-Транскортин - глобулин, связывающий кортикостероиды

Протеогликаны. Строение простетической группы-Гликозаминогликанов. Принцип построения протеогликановых комплексов. Роль гиалуронона в организации экстрацеллюлярного вещества соединительной ткани.

Протеогликаны – высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество межклеточного матрикса.

Гликозаминогликаны – гетерополисахариды, состоящие из многократно повторяющихся дисахаридов, мономерами которых являются уроновые кислоты и гексозамины.. Раньше их называли мукополисахаридами, так как они обнаруживались в слизистых секретах. Они связывают большие количества воды, в результате чего межклеточное вещество приобретает желеобразный характер.

Белки в протеогликанах представлены одной полипептидной цепью разной молекулярной массы. Белки протеогликанов называют коровыми или сердцевинными белками. Полисахаридные компоненты у разных протеогликанов разные.

В настоящее время известна структура шести основных классов гликозаминогликанов.

1. Гиалуроновая кислота – находится во многих органах и тканях. В хряще она связана с белком и участвует в образовании протеогликановых агрегатов, в некоторых тканях (стекловидное тело, пупочный канатик, суставная жидкость) встречается в свободном виде. Повторяющаяся дисахаридная единица в гиалуроновой кислоте состоит из D-глюкуроновой кислоты и N-ацетилглюкозамина.

2. Хондроитинсульфаты – самые распространенные гликозаминогликаны в организме человека. Они содержатся в хряще, сухожилиях, связках, артериях, роговице глаза. Хондроитинсульфаты являются важным составным компонентом агрекана – основного протеогликана хрящевого матрикса. В организме человека встречаются 2 вида хондроитинсульфатов: хондроитин-4-сульфат и хондроитин-6-сульфат. Они построены одинаковым образом: из D-глюкуроновой кислоты и N-ацетил-D-галактозамин-4-сульфата или N-ацетил-D-галактозамин-6-сульфата соответственно.

4. Дерматансульфат – характерен для кожи, кровеносных сосудов, сердечных клапанов, менисков, межпозвоночных дисков. Повторяющаяся дисахаридная единица – L-идуроновая кислота и N-ацетил-D-галактозамин-4-сульфат.

5. Гепарин – важный компонент противосвертывающей системы крови. Синтезируется тучными клетками. Наибольшие количества гепарина обнаруживаются в легких, печени и коже. Дисахаридная единица состоит из D-глюкуронат-2-сульфата и N-ацетилглюкозамин-6-сульфата.

6. Гепарансульфат – входит в состав протеогликанов базальных мембран. Структура дисахаридной единицы такая же как и у гепарина, но содержит больше N-ацетильных групп.

Сложные белки содержат два компонента – простой белок и небелковое вещество. Последнее называют простетической группой.

Гликопротеины– сложные белки, содержащие, помимо простого белка или пептида, группу гетероолигосахаридов.

К типичным гликопротеинам относят большинство белковых гормонов, мембранные сложные белки, все антитела, белки плазмы крови, молока, и др. Функции: обеспечивают клеточную адгезию, молекулярное и клеточное узнавание, антигенную активность опухолевых клеток, оказывают защитное и гормональное, а также антивирусное действие.

Химический состав гликопротеинов: к полипептиду присоединяются гетероолигосахаридные цепи, содержащие от 2 до 10, реже 15 мономерных остатков гексоз (галактоза и манноза, реже глюкоза), пентоз (ксилоза, арабиноза) и конечный углевод, чаще всего представленный N-ацетилга-лактозамином, L-фукозой или сиаловой кислотой.

Протеогликаны Это ВМС(внуриматричная спираль), состоящие из белка и ГАГ(гликозаминогликаны). Они образуют основное вещество межклеточного матрикса. В матриксе представлены крупные и малые протеогликаны. Крупные: агрекан и версикан. Агрекан - основнойпротеогликан хрящевого матрикса. Функции:Является структурным компонентом межклеточ. матрикса, Необходим для взаимодействия с другим белком межклеточного матрикса,Обеспечивает упругость ткани.

2 типа нуклеопротеинов:– дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНП). Они осуществляют такие важные процессы как: репликация, транскрипция и трансляция, транспорт нукл.кислот из ядра в клетку.

Нуклеопротеиды образуются в результате нековалентных взаимодействий белков и нук. кислот.

Фосфопротеиды, содержащие ковалентно связанные остатки фосфорной кислоты(простетическая группа). К фосфопротеидам относятся казеины молока, белки яйца и некоторые тканевые ферменты (фосфорилаза А, гексокиназа и др.), с помощью которых осуществляется перенос фосфатных групп. Большое количество фосфопротеинов содержится в клетках ЦНС. Следует отметить, что фосфопротеины содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. Кроме того, они являются ценным источником энергетического и пластического материала.

Липопротеины. Этот класс сложных белков состоит из белка и простетической группы, представленной каким-либо липидом. Они входят в состав клеточной мембраны и внутриклеточных биомембран ядра, митохондрий, а также присутствуют в свободном состоянии (главным образом в плазме крови). Различают ЛП низкой плотности (ЛПНП), очень низкой плотности (ЛПОНП), высокой плотности (ЛПВП), очень высокой плотности (ЛПОВП) и ЛП промежуточной плотности (ЛППП). Установлено, что липопротеины участвуют в структурной, комплексной организации миелиновых оболочек, нервной ткани, хлоропластов, фоторецепторной и электронно-транспортной систем, палочек и колбочек сетчатки и др.Большинство ЛП синтезируется в печени или в слизистой оболочке кишечника.

Хромопротеины состоят из простого белка и связанного с ним окрашенного небелкового компонента. Различают гемопротеины (содержат в качестве простетической группы железо),ифлавопротеины (содержат производные изоаллоксазина). Хромопротеины участвуют в фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и диоксида углерода, окислительно-восстановительные реакции, свето-и цветовосприятие и др.

К группе гемопротеинов относятся гемоглобин и его производные.Гемоглобин в качестве белкового компонента содержит глобин, а небелкового – гем.

Флавопротеины содержат прочно связанные с белком простетические группы, представленные изоаллоксазиновыми производными – окисленными флавинмононуклеотидом (ФМН) и флавинадениндинуклеотидом (ФАД). Флавопротеины входят в состав оксидоредуктаз – ферментов, катализирующих окислительно-восстановительные реакции в клетке. Типичными представителями флавопротеинов, являются ксантин-оксидаза, альдегидоксидаза, ацил-КоА-дегидрогеназа.

К металлопротеинам относятся биополимеры, содержащие, помимо белка, ионы какого-либо одного металла или нескольких металлов. К таким белкам принадлежат, например, белки, содержащие негемовое железо, а также белки связанные с атомами металлов в составе сложных белков-ферментов.

Типичными представителями первых являются железосодержащие белки ферритин(в селезенке, печени, костном мозге, выполняя роль депо железа в организме.), трансферрин(в сыворотке крови, служит физиологическим переносчиком железа в организме.) и гемосидерин(в ретикулоэндотелиоцитах печени и селезенки.).

Ко второй группе металлопротеинов относится ряд ферментов: ферменты, содержащие связанные с молекулой белкаионы металлов, определяющих их функцию(металлоферменты).

Структура и функция азотистых оснований, нуклеозидов, нуклеотидов. Участие в регуляции метаболизма (вторичные месенджеры цГМФ, цАМФ) коферментнАЯ функция, обеспечение энергией (нуклеозид 3 фосфаты) образование активных форм соединений.

Азотистые основания —это ароматические гетероциклические соединения, производные пиримидина или пурина. Азотистые основания выполняет в клетке метаболическую функцию, т.е. входят в состав нуклеозидов.

Пуриновые азотистые основания: Пирамидиновые азотистые основания:

:

Нуклеозиды.Соединения азотистых оснований с рибозой или 2-дезоксирибозой носят название нуклеозиды. Нуклеозиды выполняют только метаболическую функцию, входят в состав нуклеотидов. Нуклеозиды делятся на:

А) рибонуклеозиды, например: уридин, цитидин, тимидин.

В) дезоксирибонуклеозиды, например: дезокситимидин, дезоксицитидин, дезоксиурацидин.

А) рибонуклеозиды, например: аденазин, гуанозин.

В) дезоксирибонуклеозиды, например: дезоксиаденазин, дезоксигуанозин.

Нуклеотиды образуются из нуклеозидов за счет образования фосфоэфирной связи между фосфатным остатком и 5’ гидроксильной группы. К нуклеозиду может присоединится от 1 до 3 фосфатных остатков(нуклеозидмонофосфат,дифосфат,трифосфат). При расщеплении одной фосфатной группы выделяется 36,36 кДж энергии.

Функции1. метаболическая – нуклеотиды входят в состав нуклеиновых кислот.2. энергетическая – в качестве источника энергии используются НТФ и в частности АТФ и ГТФ, т.к. они содержат макроэргические связи3. регуляторная

цАМФ наделен рядом уникальных функций и высокой биологической активностью в регуляции процессов обмена, выполняя роль медиатора внеклеточных сигналов в клетках животных.

Аналогичной функцией наделены цГМФ.(например: Когда предстоит большая физическая работа, организм мобилизует ресурсы, вырабатывая адреналин. Адреналин разносится по организму и взаимодействует с соответствующими рецепторами на мышечных клетках. Это приводит к серии процессов, происходящих на мембране клетки, которые заканчиваются активацией аденилатциклазы и синтезом одного из главных внутриклеточных гормонов (вторичных мессенджеров) - циклического аденозинмонофосфата (цАМФ). Циклический АМФ, в свою очередь, активирует цАМФ-зависимую протеинкиназу. Этот фермент фосфорилирует несколько ферментов в клетке, обеспечивая координацию разных процессов, связанных с метаболизмом гликогена.)

кофермент А (КоА-производное вит.В3) Буква А означаетосновную функцию этого кофермента - перенос ацильных групп.

Атомы водорода передаются на вторичные дегидрогеназы, флавопротеиды, коферментом которых служит ФАД(производное вит В2). Основная функция флавопротеидов в цепи тканевого дыхания — перенос водорода.

НАД(производное витВ5)функции которого состоят в переносе водорода.

НАДФ кофермент многих оксидоредуктаз, выполняющий функцию переносчика электронов и протонов.

ФАФС, активированная форма серной кислоты. Участник универсальной системы детоксикации.

Активной формой метионина является S-аденозилметионин SAM.Отдает метильные группы при синтезе адреналина,кератина.

Аминоациладенилат представляет собой активированную аминокислоту. Активированная аминокислота в виде аминоациладенилата вступает под влиянием специального фермента во взаимодействие с находящейся в цитоплазме транспортной РНК.дЛя каждой аминокислоты совят РНК.

15.Структура и функция тРНК, иРНК, рРНК. Транскрипция, процессинг и сплайсинг мРНК.

Рибосомные рибонуклеиновые кисло́ты (рРНК) — несколько молекул РНК, составляющих основу рибосомы. Основной функцией рРНК является осуществление процесса трансляции — считывания информации с мРНК при помощи адапторных молекул тРНК и катализ образов пептидных связей м/у присоед. к тРНК аминокислотами. Транскрипция – генетич информ, содерж в неклеотидной последоват молекул РНК, переводится в аминокислотную последовательность белка. Процессинг– созревание мРНК. 1)кэпирование – химич модификация 5-концевой последоват мРНК 2)Сплайсинг – удаление некодирующихс экзонов 3)полиаденилирование – химич модиикация 3-концевой последоват мРНКТранскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции

Процессинг мРНК включает:

вырезание неинформативных участков – интронов (рисунок 8.2, в);

сращивание (сплайсинг) информативных участков – экзонов (рисунок 8.2, г);

защиту концевых участков от действия нуклеаз (рисунок 8.2, д):

присоединение полиаденилового нуклеотида к 3’-концу.

Образующаяся мРНК поступает из ядра в цитоплазму клеток.

Структура и функция ДНК. Физико-химические свойства (вязкость, температура плавления, поглощение УФ, заряд, пространственная организация). Репликация ДНК, формирование нуклеосом и хроматина.

ОТВЕТ:Структура и функция ДНК служит универсальным хранителем и источником наследственной информации, записанной в виде специальной последовательности нуклеотидов и определяющей свойства живого организма.молекулярная масса от 107 до 109, а число нуклеотидных остатков в молекуле достигает нескольких сотен тысяч и даже миллионов. В ДНК содержится аденин, гуанин, цитозин и тимин. Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных вправо вокруг одной и той же оси образуя двойную спираль. В силу пространственного соответствия структур двух молекул соединяться водородными связями могут лишь аденин с тимином и наоборот, а также гуанин с цитозином и наоборот. Причем между аденином и тимином образуются две вородные связи, а между гуанином и цитозином – три.

Простые и сложные ферменты, зимогены, изоферменты. Замена эмриональных ферментов из ферментов взрослого человека после рождения. Строение и функции активных и аллостерических центров фермента. Факторы определяющие каталитическую активность ферментов.

Ферменты являются белками, и поэтому подобно белкам делятся на простые и сложные. Простые ферменты состоят только из аминокислот. Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминоксилот –апофермент, и небелковую часть-кофактор. Кофактор может называться коферментом или простетической группой. Пример: аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гемм).

Изоферменты – это молекулярные формы одного и того же фермента, возникшие в результате неольших генетических различий в первичной структуре фермента. Различные ферменты определяют скорость и направление реакции. Примером фермента, имеющего изоферменты,является амилаза — панкреатическая амилаза отличается по аминокислотной последовательности и свойствам от амилазы слюнных желёз, кишечника и других органов.

Проферменты, или проэнзимы, зимогены, — функционально неактивные предшественники ферментов, подвергающиеся тем или иным преобразованиям , в результате чего образуется каталитически активный продукт — фермент. К ним относятся пепсиноген, активной формой которого является пепсин , трипсиноген — трипсин, химотрипсиноген — химотрипсин, и др.

В составе фермента выделяют области, с разными функциями.

1.Активный центр-комбинация аминокислотных остатков(16-20), обеспечивающая связывание с молекулом субстрата и обеспечивающая катализ. В активном центре выделяют два участка: якорный (связывающий)- отвечает за связывание и ориентацию субстрата в активном центре, каталитический- отвечает за осуществление реакции. У ферментов , имеющих в своем составе несколько мономеров , м.б. несколько активных центров.

2.Аллостерический центр- центр регуляции активности фермента, который пространственно отделен от активного центра и есть не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы вызывает изменение конфигурации белка-фермента, а значит и скорости ферментативной реакции.

Различные химические соединения, связываясь с ферментами, могут изменять скорость катализируемых ферментами реакций. На каталитическую активность ферментов влияют и многие другие факторы, которые могут изменять строение или химическую природу ферментов. К числу таких факторов относятся:

1. рН. 2.темпер.3. Силы, действующие в текучих средах (гидродинамические силы, гидростатическое давление и поверхностное натяжение) 4. Химические агенты (спирт, мочевина или пероксид водорода)5. Облучение (свет, звук, ионизирующая радиация)

Иногда снижение каталитической активности, вызванное, например изменением рН, обратимо. В таких случаях возврат к первоначальным условиям сопровождается восстановлением активности фермента.

Специфичность действия ферментов (абсолютная, относительная). Зависимость скорости ферментативных реакций от концентрации субстрата и фермента, температуры,РН. Ингибирование и активирование ферментов – биомедицинские ферменты.

Специфичность - очень высокая избирательность ферментов по отношению к субстрату. Специфичность фермента объясняется совпадением пространственной конфигурации субстрата и субстратного центра . За специфичность фермента ответственен как активный центр фермента, так и вся его белковая молекула. Активный центр фермента определяет тип реакции, который может осуществить данный фермент. Различают три вида специфичности: абсолютную, относительную, стереохимическую.

Абсолютная специфичность. Такой специфичностью обладают ферменты, которые действуют только на один субстрат. Например, сахараза гидролизует только сахарозу, лактаза - лактозу, мальтаза - мальтозу, уреаза - мочевину, аргиназа - аргинин и т.д.
Относительная специфичность - это способность фермента действовать на группу субстратов с общим типом связи, т.е. относительная специфичность проявляется только по отношению к определенному типу связи в группе субстратов. Пример: липаза расщепляют сложноэфирную связь в жирах животного и растительного происхождения.

От концентрации субстрата и фермента:

-При увеличении кол-ва молекул фермента скорость реакции возрастает непрерывно и прямо пропорц-но кол-ву фермента.

-При увеличении концентрации субстрата скорость реакции сначала возрастает соответственно подключению к реакции новых молекул ферм-та, затем наблюдается эффект насыщения, когда все молекулы фермента взаимодействуют с молекулами субстрата. При дальнейшей увеличении скорости субстрата м/у его молекулами возникает конкуренция за акт.центр. и скорость реакции снижается.

Зависимость от РН:

Зависимость от температуры:

Описывается колоколообразной кривой, с оптимальным знач. температуры для данного фермента. Закон о повышении скор.реакции в 2-4 раза при повышении температуры на 10град справедлив для фермент. реакций, но только до 50-60град. При понижении ферментов активность ферментов снижается , но не исчезает совсем.

На скорость химической реакции влияют различные вещества. Те из них, которые тормозят ферментативные процессы, называются ингибиторами. Те же, которые усиливают реакции - активаторами.
Ингибиторы - это вещества, которые тормозят активность ферментов. Различают два основных типа ингибирования: необратимое и обратимое.

Изучение действия различных ингибиторов на ферментативные реакции имеет очень большое значение в медицине. Например, сульфамидные препараты обладают бактериостатическим действием и применяются для лечения многих инфекционных заболеваний. Сульфамидные препараты похожие по строению на п-аминобензойную кислоту, ингибируют синтез фолиевой кислоты, которая необходима для синтеза нуклеиновых кислот в бактериальных клетках. Благодаря этому сульфаниламидные препараты тормозят процесс деления бактерий, оказывая бактериостатическое действие.

Читайте также: