Среды передачи информации реферат

Обновлено: 05.07.2024


1.
Понятие о средах передачи данных. Ограниченные и неограниченные среды
передачи данных.
Линия связи между удаленными компьютерами состоит из физической среды, по которой передаются сигналы, аппаратуры передачи данных АПД (или аппаратуры окончания канала данных АКД) и промежуточного оборудования коммуникационной сети.
DTE (data terminal equipment) – оконечное оборудование для ввода, вывода, обработки и хранения данных. Чаще всего это компьютер, где работает приложение.
DCE (data circuit-terminating equipment) – аппаратура передачи данных, устройство физического и канального уровня, соединяющее DTE c линией связи.
Служит интерфейсом между компьютером и средой передачи.
Для соединения двух компьютеров на небольшом расстоянии можно использовать их соединение нуль-модемным кабелем (null modem). Осуществляет электрическое и механическое соединение передающего порта одного компьютера и принимающего порта другого. Нет необходимости преобразования цифрового сигнала в аналоговый.
Симплексная передача (simplex) означает возможность передачи данных по линии связи только в одну сторону.
Полудуплексная передача (half duplex) – это передача данных устройствами в обе стороны, но поочередно.
Дуплексная передача (full duplex) подразумевает возможность одновременной передачи взаимодействующими устройствами.
Асинхронная ((стартстопная) передача комбинации бит каждого символа алфавита предваряется стартовым битом, заканчивается стоповым битом (или двумя стоповыми битами). Стартовый и стоповый биты синхронизируют передачу байта.
Контроль ошибок осуществляется добавляемым битом контроля четности (или нечетности) числа единиц в байте.
Синхронные протоколы передачи - синхронизируют блоки передаваемых данных. Перед блоком должен передаваться специальный сигнал, который обеспечит вхождение принимающего устройства в синхронный режим. Передаваемый блок данных имеет установленный формат. Контроль ошибок осуществляется за счет добавления к блоку данных контрольной последовательности, получаемой в результате кодирования пакета помехоустойчивым циклическим кодом (CRC).
Ограниченные среды представляют собой кабели (витая пара, коаксиальный кабель, оптоволоконный кабель), которые передают электрические и световые сигналы. Возможности передачи данных ограничены возможностями кабеля.
Применяются в высокоскоростной передаче данных на ограниченных расстояниях.
Неограниченные среды (wireless media) обеспечивают микроволновую, лазерную, инфракрасную и радио передачи.
При построении мобильных сетей, больших корпоративных сетей или глобальных сетей применяется комбинация ограниченных и неограниченных сред.


2.
Ограниченные среды передачи. Витая пара. Коаксиальный кабель.
Оптоволоконный кабель. Достоинства и недостатки каждого вида кабеля.
Ограниченные среды представляют собой кабели (витая пара, коаксиальный кабель, оптоволоконный кабель), которые передают электрические и световые сигналы.
Возможности передачи данных ограничены возможностями кабеля. Применяются в высокоскоростной передаче данных на ограниченных расстояниях.
Витая пара образуется парой изолированных перевитых медных проводников
(жил). Эти жилы объединяются в одном кабеле изолирующей оплеткой. Для подключения сетевых устройств посредством витой пары используются разъемы RJ-11
(4 пина), RJ-45 (8 пинов – 4 пары) и мультипиновые разъемы RS-232, RS-449. Витая пара бывает экранированной (Shielded Twisted Pair - STP, Foil Twisted Pair - FTP) и неэкранированной (Unshielded Twisted Pair - UTP).
Характеристики UTP:

Attenuation (затухание);

NEXT- near end crosstalk (перекрестное влияние на ближний конец);

Impedance (полное сопротивление); 100 Ом для всех категорий +/- 15% на всех частотах.
Достоинствами: дешевизна, совместимость с существующими телефонными кабельными системами, наличие множества стандартов, относительная простота инсталляции и относительно низкая стоимость диагностического оборудования.
Недостатком: подверженность электромагнитным влияниям, что приводит к необходимости применения множества средств кодирования и скремблирования для обеспечения высокоскоростной передачи.
Коаксиальный кабель состоит из двух проводников, находящихся на одной оси
(“co”, “axis”- ось) и разделенных изолирующей оплеткой. В системах передачи данных

больших компьютеров также применяются кабели, состоящие из трех проводников – твинаксиальные (twinax). По своим характеристикам (полоса пропускания, максимальные расстояния) эти кабели находятся посредине между UTP и оптоволокном. Недостатки: более дорогие и более тяжелые, чем UTP, а с другой стороны, приближаются по стоимости к оптоволокну.
Оптоволоконный кабель (Fiber) - представляет собой тонкие светопроводящие стеклянные или пластиковые сердечники (core) в стеклянной же светоотражающей оболочке (cladding), заключенной в защитную оплетку (jacket). Невосприимчиво к электромагнитным воздействиям.
Многомодовое волокно (multimode, MM) – сечение 50/125 мкм или 62,5/125 мкм, длина волны 850 нм или 1300 нм, затухание 1,5-5 дБ/км
Одномодовое волокно (singlemode, SM) – сечение 9-10/125 мкм, длина волны
1300 нм или 1550 нм, затухание 1 дБ/км
Коннекторы: ST – вращательное движение; SC – широко применяются; FC (NTT)
Достоинства: низкая стоимость (стеклянные компоненты значительно дешевле медных), лёгкость кабеля, очень высокая скорость передачи по сравнению с медными кабелями, нечувствительность к интерференциям и высокая защищенность от несанкционированного доступа.
Недостатки: высокая стоимость соответствующего сетевого и диагностического оборудования, квалификационные требования к инсталлирующему персоналу.

Изучение устройств связи, объединённых каналами передачи данных и коммутирующими устройствами. Характеристика процесса передачи данных. Исследование структуры, компонентов и способов описания конфигурации сетей. Классификация сетей по типу среды передачи.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 20.02.2013
Размер файла 21,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сети передачи данных

1. Сети передачи данных

2. Характеристика процесса передачи данных

3.1 По территориальной распространенности

3.2 По типу функционального взаимодействия

3.3 По типу сетевой топологии

3.4 По типу среды передачи

3.5 По функциональному назначению

3.6 По скорости передач

3.7 По сетевым операционным системам

3.8 По необходимости поддержания постоянного соединения

С ростом производительности вычислительной техники и увеличением мощности и сложности приложений, применяемых для решения бизнес-задач современного предприятия, растет необходимость в грамотно построенных, высокопроизводительных сетевых коммуникациях. Современные методы ведения бизнеса, а также территориальная распределенность офисов компаний обуславливают развитие мультисервисных сетей, интегрирующих воедино локальные вычислительные сети, телефонную сеть и другие средства телекоммуникаций.

В последние годы идеология построения корпоративных сетей претерпела коренные изменения. Эти изменения связаны не столько с увеличением пропускной способности каналов связи и ростом производительности сетевого оборудования, но и в основном с интеграцией всех типов передаваемого трафика при передаче в единую сетевую инфраструктуру. Переход к такой идеологии был обусловлен появлением спроса на новые типы услуг, а также попытками обеспечить наиболее эффективное использование пропускной способности каналов связи. Построение сетевых и телекоммуникационных комплексов является сложной и ответственной задачей. Это связано с тем, что необходимо учитывать особые требования по использованию имеющихся каналов связи, по защите от несанкционированного доступа, по предоставлению пользователям сети дополнительных сервисов, при этом все решения должны быть ориентированы на выполнение бизнес-задач компании-заказчика. Последствия непродуманных решений могут привести к низкой производительности системы при высокой стоимости её компонентов, высоким издержкам на администрирование, дополнительным инвестициям на оптимизацию реализованного решения, утрате данных, простоям.

1. Сети передачи данных

Существуют следующие виды сетей передачи данных:

Телефонные сети -- сети, в которых оконечными устройствами являются простые преобразователи сигнала между электрическим и видимым/слышимым.

Компьютерные сети -- сети, оконечными устройствами которых являются компьютеры.

По принципу коммутации сети делятся на:

Сети с коммутацией каналов -- для передачи между оконечными устройствами выделяется физический или логический канал, по которому возможна непрерывная передача информации. Сетью с коммутацией каналов является, например, телефонная сеть. В таких сетях возможно использование узлов весьма простой организации, вплоть до ручной коммутации, однако недостатком такой организации является неэффективное использование каналов связи, если поток информации непостоянный и мало предсказуемый.

Сети с коммутацией пакетов -- данные между оконечными устройствами в такой сети передаются короткими посылками -- пакетами, которые коммутируются независимо. По такой схеме построено подавляющее большинство компьютерных сетей. Этот тип организации весьма эффективно использует каналы передачи данных, но требует более сложного оборудования узлов, что и определило использование почти исключительно в компьютерной среде.

Компьютерная сеть (вычислительная сеть, сеть передачи данных) -- система связи компьютеров или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило -- различные виды электрических сигналов, световых сигналов или электромагнитного излучения.

2. Характеристика процесса передачи данных

коммутирующий связь конфигурация передача

Передатчик - устройство, являющееся источником данных.

Приемник - устройство, принимающее данные.

Приемником могут быть компьютер, терминал или какое-либо цифровое устройство.

Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение.

Особняком в этом отношении стоят ЛВС, где в качестве передающей среды используются витая пара ПРОВОДОВ, коаксиальный кабель и оптоволоконный кабель.

Существуют три режима передачи: симплексный, полудуплексный и дуплексный.

Симплексный режим - передача данных только в одном направлении.

Примером симплексного режима передачи является система, в которой информация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычислительных сетях симплексная передача практически не используется. Полудуплексный режим - попеременная передача информации, когда источник и приемник последовательно меняются местами.

Яркий пример работы в полудуплексном режиме - разведчик, передающий в Центр информацию, а затем принимающий инструкции из Центра.

Дуплексный режим является наиболее скоростным режимом работы и позволяет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Пример дуплексного режима - телефонный разговор.

Процессы передачи или приема информации в вычислительных сетях могут быть привязаны к определенным временным отметкам, Т.е. один из процессов может начаться только после того, как получит полностью данные от другого процесса. Такие процессы называются синхронными.

В то же время существуют процессы, в которых нет такой привязки и они могут выполняться независимо от степени полноты переданных данных. Такие процессы называются асинхронными.

Синхронизация данных - согласование различных процессов во времени. В системах передачи данных используются два способа передачи данных: синхронный и асинхронный.

При синхронной передаче информация передается блоками, которые обрамляются специальными управляющими символами. В состав блока включаются также специальные синхросимволы, обеспечивающие контроль состояния физической передающей среды, и символы, позволяющие обнаруживать ошибки при обмене информацией. В конце блока данных при синхронной передаче в канал связи выдается контрольная последовательность, сформированная по специальному алгоритму. По этому же алгоритму формируется контрольная последовательность при приеме информации из канала связи. Если обе последовательности совпадают - ошибок нет. Блок данных принят. Если же последовательности не совпадают - ошибка. Передача повторяется до положительного результата проверки. Если повторные передачи не дают положительного результата, то фиксируется состояние аварии.

При асинхронной передаче данные передаются в канал связи как последовательность битов, из которой при приеме необходимо выделить байты для последующей их обработки. для этого каждый байт ограничивается стартовым и стоповым битами, которые и позволяют про извести выделение их из потока передачи. Иногда в линиях связи с низкой надежностью используется несколько таких битов. Дополнительные стартовые и стоповые биты несколько снижают эффективную скорость передачи данных и соответственно пропускную способность канала связи. В то же время асинхронная передача не требует дорогостоящего оборудования и отвечает требованиям организации диалога в вычислительной сети при взаимодействии персональных ЭВМ.

3. Классификация

3.1 По территориальной распространенности

PAN (Personal Area Network) -- персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.

CAN (Campus Area Network -- кампусная сеть) -- объединяет локальные сети близко расположенных зданий.

MAN (Metropolitan Area Network) -- городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.

3.2 По типу функционального взаимодействия

1. Клиент-сервер - вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.

2. Смешанная сеть - информационная сеть, построенная в результате интеграции территориальных и локальных сетей. Обычно смешанная сеть состоит из группы разнотипных сетей, соединенных друг с другом ретрансляционными системами.

3. Одноранговая сеть - это компьютерная сеть, основанная на равноправии участников. В такой сети отсутствуют выделенные серверы, а каждый узел (peer) является как клиентом, так и сервером. Участниками сети являются пиры.

4. Многоранговая сеть предполагает наличие неравноправных компьютеров - мощных серверов, осуществляющих управление сетью: распределение ресурсов между станциями, разграничение прав доступа пользователей, хранение и резервирование информации, контроль над периферийными устройствами.

3.3 По типу сетевой топологии

Топология сети - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

1. Шина (Передаваемая информация распространяется по кабелю и доступна одновременно всем присоединенным к нему компьютерам.)

2. Кольцо (данные передаются по кольцу от одного компьютера к другому)

3. Двойное кольцо (Первое кольцо -- основной путь для передачи данных. Второе -- резервный путь, дублирующий основной.)

4. Звезда(каждый компьютер с помощью отдельного кабеля подключается к общему центральному устройству, называемому концентратором.)

5. Ячеистая (каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети.)

6. Решётка (узлы образуют регулярную многомерную решётку.)

7. Дерево (между любыми двумя узлами существует только один путь)

8. Fat Tree (связи в утолщенном дереве становятся более широкими (толстыми, производительными по пропускной способности) с каждым уровнем по мере приближения к корню дерева.)

3.4 По типу среды передачи

1. Проводные (телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель)

2. Беспроводные (передачей информации по радиоволнам в определенном частотном диапазоне)

3.5 По функциональному назначению

1. Сети хранения данных (архитектурное решение для подключения внешних устройств хранения данных, таких как дисковые массивы, ленточные библиотеки, оптические приводы к серверам таким образом, чтобы операционная система распознала подключённые ресурсы как локальные.)

2. Серверные фермы (ассоциация серверов, соединенных сетью передачи данных и работающих как единое целое.)

3. Сети управления процессом

4. Сети SOHO, домовые сети (разновидность локальной вычислительной сети, позволяющая пользователям нескольких компьютеров обмениваться данными, играть в сетевые игры и выходить в Интернет, проложенная в пределах одного здания (обычно жилого) или объединяющая несколько близлежащих зданий.)

3.6 По скорости передач

1. низкоскоростные (до 10 Мбит/с),

2. среднескоростные (до 100 Мбит/с),

3. высокоскоростные (свыше 100 Мбит/с);

3.7 По сетевым операционным системам

1. На основе Windows

2. На основе UNIX

3. На основе NetWare

4. На основе Cisco

3.8 По необходимости поддержания постоянного соединения

1. Пакетная сеть, например Фидонет и UUCP

2. Онлайновая сеть, например Интернет и GSM

Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право не принимать это к разработке и не применять их на практике.

Поэтому необходимо разработать принципиальное решение вопроса по организации ИВС (информационно-вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса отвечающего современным научно-техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений.

Столь привлекательная простота доступа оборачивается серьезнейшей проблемой защиты информации, которая приобретает особую остроту сейчас, когда мировая Сеть все активнее используется для электронной коммерции. Неупорядоченность передачи пакетов и невозможность отследить маршрут их продвижения также представляют собой важные проблемы, поскольку препятствуют реализации таких необходимых в современных коммуникациях возможностей, как передача мультимедийных данных в реальном времени.

Список литературы

Студентки механико-математического факультета

Кафедры информационных систем Турсынкали Алии

В реферате подробно описывается определения сети передачи данных, классификации, видов сетей.

Подробно рассказывается о структуре и компонентах сетей, а также о различных типах каналов передачи. Все расписано в примерах, что очень важно для лучшего восприятия информации. Очень хорошо написано о типах сетей по территориальной распространенности. Описаны способы описания конфигурации сетей.

Раскрыты цели использования тех или иных типов сетей, на каких ОС устанавливать.

В заключении поставлены задачи по нынешним проблемам сетей передачи данных.

Подобные документы

курсовая работа [69,5 K], добавлен 06.01.2013

Понятие сетей передачи данных, их виды и классификация. Оптико-волоконные и волоконно-коаксиальные сети. Использование витой пары и абонентских телефонных проводов для передачи данных. Спутниковые системы доступа. Сети персональной сотовой связи.

реферат [287,1 K], добавлен 15.01.2015

Характеристика современного состояния цифровых широкополосных сетей передачи данных, особенности их применения для передачи телеметрической информации от специальных объектов. Принципы построения и расчета сетей с использованием технологий Wi-Fi и WiMax.

дипломная работа [915,0 K], добавлен 01.06.2010

Архитектура вычислительных сетей, их классификация, топология и принципы построения. Передача данных в сети, коллизии и способы их разрешения. Протоколы TCP-IP. OSI, DNS, NetBios. Аппаратное обеспечение для передачи данных. Система доменных имён DNS.

реферат [1,1 M], добавлен 03.11.2010

Исследование и анализ беспроводных сетей передачи данных. Беспроводная связь технологии wi–fi. Технология ближней беспроводной радиосвязи bluetooth. Пропускная способность беспроводных сетей. Алгоритмы альтернативной маршрутизации в беспроводных сетях.

Проводные среды передачи данных 3
Телефонный провод 3
Коаксиальный кабель 4
Витая пара 5
Волоконно-оптический кабель 7
Беспроводные среды передачи данных 9
Wi-Fi 10
Преимущества Wi-Fi: 11
Недостатки Wi-Fi: 11
WiMAX 12
WiMAX подходит для решения следующих задач: 12
Пользовательское оборудование 13
Wi-Fi и WiMAX 14
Литература 17

Работа содержит 1 файл

Проводная и беспроводная среды передачи данных.docx

Российский Государственный Аграрный Университет – МСХА имени К. А. Тимирязева

Реферат по информатике на тему:

студента дневного отделения 101

группы зоотехнического факультета

Новикова Ивана Владимировича

Проводные среды передачи данных 3

Телефонный провод 3

Коаксиальный кабель 4

Волоконно-оптический кабель 7

Беспроводные среды передачи данных 9

Преимущества Wi-Fi: 11

Недостатки Wi-Fi: 11

WiMAX подходит для решения следующих задач: 12

Пользовательское оборудование 13

Wi-Fi и WiMAX 14

Компьютерная сеть - система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило — различные виды электрических сигналов, световых сигналов или электромагнитного излучения.

По типу среды передачи данных компьютерные сети делятся на проводные и беспроводные среды.

Очевидно, чтобы соединять различные устройства в проводной сети, необходимы кабели. Естественно, не каждый кабель можно использовать для соединения сетевых устройств. Поэтому во всех сетевых стандартах определены необходимые условия и характеристики используемого кабеля, такие как полоса пропускания, волновое сопротивление (импеданс), удельное затухание сигнала, помехозащищенность и другие.

Существует несколько видов кабеля: телефонный провод, коаксиальный кабель, витая пара и волоконно-оптический кабель.

Телефонный провод

Телефонный распределительный провод (ТРП) - двух- или четырёхжильный телефонный кабель, предназначенный для стационарной скрытой и открытой абонентской проводки телефонной или трансляционной распределительной сети внутри помещений.

Считается морально устаревшим ввиду ненадёжности, низкой помехозащищённости, невозможности высокоскоростной передачи данных, неудобств при разделке и оконечивании. Однако ввиду своей низкой стоимости находит применение в телефонной разводке внутри помещений, так как является самым дешёвым решением (благодаря своей примитивной конструкции) во многих ситуациях. В отличие от более продвинутых аналогов витой пары 1 и 2 категорий, токопроводящие жилы ТРП не скручиваются (жилы располагаются параллельно, кабель плоский), благодаря чему он получил прозвище лапша по схожести внешнего вида с макаронными изделиями.

Кабель ТРП крепится к поверхности путём прибивания мелкими гвоздями между жилами. Может прокладываться в кабель-каналах. Оконечивается классическим способом под винты, с одной (линейной, станционной) стороны - на винтовые клеммы телефонной коробки типа КРТН-10, с другой - под винты в телефонной розетке. Не рекомендуется врезание ТРП во врезной плинт кросса или врезные контакты телефонной или компьютерной розетки, так как полиэтиленовая изоляция при врезании перерезается и провод держится только на медной проволоке.

Коаксиальный кабель

Устройство коаксиального кабеля
1 — внутренний проводник (медная проволока),
2 — изоляция (сплошной полиэтилен),
3 — внешний проводник (оплётка из меди),
4 — оболочка (светостабилизированный полиэтилен).

Коаксиальный кабель (см. рисунок) состоит из:

  • 4 - оболочки (служит для изоляции и защиты от внешних воздействий) из светостабилизированного (то есть устойчивого к ультрафиолетовому излучению солнца) полиэтилена, поливинилхлорида, повива фторопластовой ленты или иного изоляционного материала;
  • 3 - внешнего проводника (экрана) в виде оплетки, фольги, покрытой слоем алюминия пленки и их комбинаций, а также гофрированной трубки, повива металлических лент и др. из меди, медного или алюминиевого сплава;
  • 2 - изоляции, выполненной в виде сплошного (полиэтилен, вспененный полиэтилен, сплошной фторопласт, фторопластовая лента и т. п.) или полувоздушного (кордельно-трубчатый повив, шайбы и др.) диэлектрического заполнения, обеспечивающей постоянство взаимного расположения (соосность) внутреннего и внешнего проводников;
  • 1 - внутреннего проводника в виде одиночного прямолинейного (как на рисунке) или свитого в спираль провода, многожильного провода, трубки, выполняемых из меди, медного сплава, алюминиевого сплава, омеднённой стали, омедненного алюминия, посеребренной меди и т. п.

Благодаря совпадению центров обоих проводников, а также определенному соотношению между диаметром центральной жилы и экрана, внутри кабеля в радиальном направлении образуется режим стоячей волны, позволяющий снизить потери электромагнитной энергии на излучение почти до нуля. В то же время экран обеспечивает защиту от внешних электромагнитных помех.

Основное назначение коаксиального кабеля - передача сигнала в различных областях техники:

  • системы связи;
  • вещательные сети;
  • компьютерные сети;
  • антенно-фидерные системы;
  • АСУ и другие производственные и научно-исследовательские технические системы;
  • системы дистанционного управления, измерения и контроля;
  • системы сигнализации и автоматики;
  • системы объективного контроля и видеонаблюдения;
  • каналы связи различных радиоэлектронных устройств мобильных объектов (судов, летательных аппаратов и др.);
  • внутриблочные и межблочные связи в составе радиоэлектронной аппаратуры;
  • каналы связи в бытовой и любительской технике;
  • военная техника и другие области специального применения.

Кроме канализации сигнала, отрезки кабеля могут использоваться и для других целей:

  • кабельные линии задержки;
  • четвертьволновые трансформаторы;
  • симметрирующие и согласующие устройства;
  • фильтры и формирователи импульса.

Витая пара

Витая пара (англ. twisted pair) - вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой.

Свивание проводников производится с целью повышения степени связи между собой проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных полей от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом.

Витая пара - один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве физической среды передачи сигнала во многих технологиях, таких как Ethernet, Arcnet и Token ring. В настоящее время, благодаря своей дешевизне и лёгкости в монтаже, является самым распространённым решением для построения проводных (кабельных) локальных сетей.

Кабель подключается к сетевым устройствам при помощи разъёма 8P8C, который часто неверно называют RJ45.

В зависимости от наличия защиты - электрически заземленной медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности данной технологии:

  • неэкранированная витая пара (англ. UTP - Unshielded twisted pair) - без защитного экрана;
  • фольгированная витая пара (англ. FTP - Foiled twisted pair), также известна как F/UTP) - присутствует один общий внешний экран в виде фольги;
  • экранированная витая пара (англ. STP - Shielded twisted pair) - присутствует защита в виде экрана для каждой пары и общий внешний экран в виде сетки;
  • фольгированная экранированная витая пара (англ. S/FTP - Screened Foiled twisted pair) - внешний экран из медной оплетки и каждая пара в фольгированной оплетке;

Экранирование обеспечивает лучшую защиту от электромагнитных наводок как внешних, так и внутренних и т. д. Экран по всей длине соединен с неизолированным дренажным проводом, который объединяет экран в случае разделения на секции при излишнем изгибе или растяжении кабеля.

В зависимости от структуры проводников - кабель применяется одно- и многожильный. В первом случае каждый провод состоит из одной медной жилы и называется жила-монолит, а во втором - из нескольких и называется жила-пучок.

Волоконно-оптический кабель

Оптическое волокно - нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения.

Волоконная оптика - раздел прикладной науки и машиностроения, описывающий такие волокна. Кабели на базе оптических волокон используются в волоконно-оптической связи, позволяющей передавать информацию на большие расстояния с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон. Сердечник в таком волокне изготовляют из полиметилметакрилата (PMMA), а оболочку из фторированных PMMA (фторполимеров).

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

СЕТИ ПЕРЕДАЧИ ДАННЫХ

Одновременно огромный скачок произошел в технике защиты передачи от помех. От простых способов обнаружения ошибок путем проверки перфоленты на четность числа пробитых в ней отверстий удалось перейти к высоконадежным кодам не только обнаруживающим, но и исправляющим ошибки. Самое же главное, была создана микроэлектронная база. Она позволила сделать сложную аппаратуру компактной и экономичной по расходу электроэнергии. Все это открыло возможности построения технических средств передачи с огромной скоростью и ознаменовало наступление новой эпохи развития документальной связи.

От первых систем передачи данных к системе Х.25
Общая структура системы передачи данных показана на рис. 1. Она включает канал передачи данных, на каждом конце которого находятся линейное устройство передачи данных (ЛУПД) и оконечное устройство передачи данных (ОУПД). В официальном издании рекомендаций бывшего МККТТ на английском языке приняты названия Data Circuit terminating Equipment (DCE) и Data Terminal Equipment (DTE). В русском переводе упомянутого документа использованы термины: аппаратура окончания канала данных (АКД) и оконечное оборудование данных (ООД), которые представляются не вполне удачными с точки зрения традиций русскоязычной научно-технической терминологии.

Именно поэтому автор предпочитает более понятные названия, приведенные в тексте. Необходимость введения таких понятий объясняется расширением номенклатуры абонентских устройств, существенно усложняющих задачи их согласования с линией связи.

Телетайпы и другие терминалы с клавиатурой, снабженные устройствами отображения или не имеющие таковых, системы дистанционного ввода заданий с устройствами считывания, печатающие устройства и сканеры, автоматизированные лабораторные установки с различными физическими датчиками, персональные или любые другие ЭВМ с разнообразными периферийными устройствами - все они охватываются понятием ОУПД при условии, что включены для работы в сеть связи.

Задачей ЛУПД является также преобразование сигналов. Если канал передачи данных аналоговый, то данные от терминала поступают на модем (модулятор-демодулятор). Если же канал передачи данных является цифровым, то двоичные данные преобразуются в стандартную форму сбалансированного кода для передачи по линии сигналами, не содержащими составляющей постоянного тока. Другой функцией ЛУПД является выполнение совместно с ОУПД процедур установления, поддержания и прекращения соединений между передающим и приемным концами.

Канал передачи данных - это любая передающая среда. По способу его работы различают симплексную, полудуплексную и дуплексную связь (рис. 2). При симплексной связи, показанной на рис. 2, а, данные всегда перемещаются в одном направлении, как показано сплошными линиями. При этом не исключается возможность передачи в противоположном направлении подтверждений со стороны приемного конца, которые показаны штриховыми линиями.

При полудуплексной связи (рис. 2, б) данные передаются в обоих направлениях, но попеременно. Термин "полудуплексная связь", означающий попеременное применение симплексной связи то в одном, то в другом направлении, не применялся в технике связи до его введения специалистами по вычислительной технике.

При дуплексной связи, как показано на рис. 2, в, данные передаются в обоих направлениях одновременно. При этом как при полудуплексной, так и при дуплексной связи также передаются подтверждения, показанные штриховыми линиями. Физически для симплексной или полудуплексной работы должна использоваться либо одна пара проводов, по которой сигналы передаются в обоих направлениях, либо две пары проводов, по каждой из которых сигналы передаются в одном направлении. Первый способ применяется, когда в тракте нет усилителей, и называется двухпроводным соединением. Второй способ применяется при наличии усилителей и называется четырехпроводным соединением. Дуплексная работа требует четырехпроводного соединения.

Если работа передающего и приемного концов тракта передачи данных полностью согласована во времени, то на приемном конце каждый переданный символ может быть выделен. В противном случае символы выделяются с помощью специальных разделительных знаков: стартового (пробела) и стопового (посылки). Первый способ называется синхронной передачей, второй - асинхронной. В терминалах передачи данных со скоростью до 1,2 кбит/с, как и в телетайпах, применяют асинхронную передачу. В терминалах же со скоростью передачи 2,4 кбит/с и выше применяется синхронная передача.

Широкое применение систем передачи данных началось в 1960-х гг. как по телефонным сетям общего пользования, так и по специализированным сетям. Главные недостатки систем передачи данных по телефонным сетям состоят в том, что для таких систем требуются модемы, а время установления соединения составляет по меньшей мере 15 с, а обычно - значительно больше. Кроме этого, качество передачи в этом случае зависит от характеристик телефонных каналов. Они могут меняться от соединения к соединению и подвергаться воздействию помех, в частности, от работы коммутационных приборов на телефонных станциях электромеханических систем. Некоторое улучшение качества передачи может быть достигнуто при использовании арендованных телефонных линий, но для них также требуются модемы. За выигрыш же возможного улучшения качества передачи приходится расплачиваться заботами о сокращении простоев линий. В ходе таких забот во многих странах разрабатывались и применялись схемы коллективного использования арендованных линий путем формирования групп абонентов, подключения терминалов в разных точках трассы абонентской линии, мультиплексирования, применения других методов.

На нижнем (физическом) уровне устанавливаются стандарты на механические разъемы и электрические характеристики линий связи, на передаваемые по ним цифровые сигналы, включая сигналы занятия линии и ее освобождения. Эти стандарты описаны в рекомендации Х.21 и за недостатком места здесь не рассматриваются. На втором (канальном) уровне определяются требования к средствам передачи информации по участку цифрового канала между двумя соседними узлами в виде блоков данных, называемых кадрами.

На третьем (сетевом) уровне определяются требования к системе передачи информации в виде блоков данных, называемых пакетами. Помимо полезной информации, пакеты несут управляющую информацию об адресах отправителя и получателя, порядковую нумерацию и некоторые другие служебные данные. Описанное разделение функций позволяет в одном физическом цифровом канале создать большое число логических (так называемых виртуальных) каналов. Они одновременно работают между разными пользователями, которые могут находиться в одном или разных пунктах.

Перед тем как перейти к рассмотрению особенностей второго и третьего уровней сети Х.25, уточним некоторые понятия. Будем называть блоком данных произвольный набор символов, предназначенных для передачи по каналу связи. В зависимости от состава (формата) блока, а также его назначения в конкретных случаях блокам могут быть присвоены разные названия. Например, блок данных, передаваемых по СПД общеканальной телефонной сигнализации № 7, называют сигнальной единицей. В этой статье рассматриваются блоки данных, называемые кадрами и пакетами, а в следующей беседе, посвященной технологии АТМ, будут рассматриваться блоки данных, называемые ячейками. Необходимость такого уточнения вызвана тем, что в литературе часто можно встретить термин "пакет" применительно к любому блоку данных, в том числе такому, который с точки зрения рекомендации Х.25 пакетом не является. Именно поэтому читателю, который встретит термин "пакет", можно лишь порекомендовать в каждом конкретном случае внимательно разбираться с тем, какой именно блок данных имеется в виду.

В описываемом стандарте, который подтвержден несколькими международными и национальными организациями и фактически признан во всем мире, рассматривается управление каналом связи по участкам с помощью протокола высокого уровня (по-английски HDLC - High-level Data Link Control). Русским эквивалентом термина HDLC может служить сокращение ВУК (высокоуровневое управление каналом). Обслуживаемый протокол рассчитан на широкий круг применений, в том числе и в локальных сетях для связи целой группы абонентских пунктов. Мы же ограничимся здесь лишь рассмотрением этого протокола на примере одной версии, а именно: версии связи двух равноправных пунктов LAPB (Link Access Procedures Balanced, т.е. процедур сбалансированного доступа к каналу).

Протокол ВУК управляет передачей информации в виде стандартных блоков, поступающих от сетевого уровня и называемых пакетами. На уровне канала к каждому пакету добавляется заголовок, обычно содержащий 48 двоичных разрядов. Пакет с этим дополнительным заголовком называется кадром. Термин "заголовок" носит условный характер, так как часть его разрядов помещается в голове кадра, а другая часть (проверочное поле для обнаружения ошибок) - в его хвосте. Коды, исправляющие ошибки, требуют внесения слишком большой избыточности и поэтому в обычных сетях передачи данных не применяются. Вместо этого используются коды, обнаруживающие ошибки. При обнаружении ошибки посылается автоматический запрос на повторную передачу кадра, а принятый ошибочный кадр сбрасывается. Длина кадра (следовательно, пакета) не регламентируется, так как оптимальная длина пакета зависит от вероятности ошибки в канале. С точки зрения накладных расходов, связанных с передачей служебных разрядов заголовка, длину пакета предпочтительнее сделать как можно больше, чтобы снизить процент содержания служебной информации. При этом, если вероятность ошибки невелика, запросы на повторение передачи будут редки, система будет работать эффективно. Если же вероятность ошибки будет большой, повторная передача потребуется чаще. Тогда большая часть накладных расходов придется не на заголовки, а на участившиеся повторные передачи. Именно поэтому выбор длины пакета (следовательно, кадра) предоставляется пользователю. Для обнаружения же начала и конца кадра в непрерывном потоке цифровой передачи используются специальные кодовые комбинации вида 01111110, называемые флагами (рис. 4, на котором показан формат кадра).

Применение флагов вносит определенные трудности в решение задачи обеспечения прозрачности цифровой передачи, т.е. ее независимости от характера передаваемых последовательностей. Действительно, если в передаваемом потоке полезной информации встретится последовательность из шести единиц, то она будет принята за границу между кадрами. Это вызовет нарушение работы канала. Во избежание подобных сбоев во всех случаях, когда в передаваемой последовательности встречаются пять "1", то после них автоматически вставляются "0". На приемном же конце после принятых пяти "1" следующий за ними "0" всегда сбрасывается. Такое техническое решение позволяет гарантировать прозрачность цифровой передачи. Рассматривая рис. 4, нетрудно обнаружить назначение всех 48 служебных разрядов заголовка кадра.

Как видно из изложенного, описанное поле нумерации кадров позволяет вести счет только до восьми (три двоичных разряда). Следовательно, при наличии семи неподтвержденных кадров передача должна быть приостановлена. Именно поэтому, например, в системах спутниковой связи, когда в пути могут находиться более семи кадров, поле их нумерации может быть расширено до 7 разрядов и, следовательно, счет увеличен до 128. Аналогичным образом стандарт допускает увеличение поля адресов и проверочной последовательности.

Протокол предусматривает различные процедуры передачи на уровне канала. Наибольшее распространение получила так называемая процедура передачи с возвращением на N кадров (N

Читайте также: