Средняя арифметическая и ее свойства реферат

Обновлено: 04.07.2024

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, являются средние показатели (средняя величина).

Средняя величина – представляет обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени.

Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

  • Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу.

Сущность средней заключается, в том, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенно­стей, присущих отдельным единицам.

ВИДЫ СРЕДНИХ ВЕЛИЧИН наиболее часто применяемых на практике:

Выбор средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять.

  • Средняя арифметическая простая (невзвешенная) – вычисляется когда каждый вариант совокупности встречается только один раз.
  • Средняя арифметическая (взвешенная)вариантыповторяютсяразличное число раз , при этом число повторений вариантов называется частотой, или статистическим весом.

ФОРМУЛЫ СРЕДНИХ ВЕЛИЧИН

  • Средняя арифметическая простая – самый распространенный вид средней величины, рассчитывается по формуле (8.8):

Пример формула 8.9

  • гдехi – вариант,аn – количество единиц совокупности.
  • Пример вычисления средней арифметической простой. Провели опрос о желаемом размере заработной платы у пяти сотрудников офиса. По результатам опроса выяснили, что желаемый размер заработной платы составляет соответственно для каждого сотрудника: 50000, 100000, 200000, 350000, 500000 рублей человек. Рассчитаем среднюю арифметическую простую по формуле (8.8):Вывод: в среднем желаемый размер заработной платы по результатам опроса 5-ти человек составил 240 тысяч рублей.
  • Средняя арифметическая взвешенная формула 8.9.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. В таких рядах условно величина интервала первой группы принимается равной величине интервала последующей, а величина интервала последней группы — величине интервала предыдущей. Дальнейший расчет… Читать ещё >

Средняя арифметическая. Средние величины в статистике ( реферат , курсовая , диплом , контрольная )

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака — через. Следовательно, средняя арифметическая простая равна:

Средняя арифметическая. Средние величины в статистике.

Средняя арифметическая. Средние величины в статистике.

Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т. е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе.

Средняя арифметическая взвешенная вычисляется по формуле, где fi — частота повторения i-ых вариантов признака, называемая весом. Таким образом, средняя арифметическая взвешенная равна сумме взвешенных вариантов признака, деленная на сумму весов:

Средняя арифметическая. Средние величины в статистике.

Средняя арифметическая. Средние величины в статистике.

Она применяется в тех случаях, когда каждая варианта признака встречается несколько (неравное) число раз.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. В таких рядах условно величина интервала первой группы принимается равной величине интервала последующей, а величина интервала последней группы — величине интервала предыдущей. Дальнейший расчет аналогичен изложенному выше (10, "https://referat.bookap.info").

При расчете средней по интервальному вариационному ряду необходимо сначала найти середину интервалов. Это и будут значения xi, а количество единиц совокупности в каждой группе fi

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в n раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через . Следовательно, средняя арифметическая простая равна:

Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе.

Напр., имеются следующие данные о заработной плате рабочих:

Месячная з/п (варианта - х), руб. Число рабочих, n xn
х = 1100 n = 2
х = 1300 n = 6
х = 1600 n = 16
х = 1900 n = 12
х = 2200 n = 14
ИТОГО

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

В соответствии с этим, расчеты можно представить в общем виде:

Полученная формула называется средней арифметической взвешенной.

Из нее видно, что средняя зависит не только от значений признака, но и от их частот, т.е. от состава совокупности, от ее структуры. Если рассмотреть формулу средней арифметической взвешенной в следующем виде

то видно что каждая варианта взвешивается через ее удельный вес .

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

В данном ряду варианты осредняемого признака представлены не одним числом, а в виде интервала "от - до". Если каждая группа ряда распределения имеет нижнее и верхнее значения вариант, или закрытые интервалы, то исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

Чтобы применить эту формулу, необходимо варианты признака выразить одним числом (дискретным). За такое дискретное число принимается средняя арифметическая простая из верхнего и нижнего значения интервала.

В рядах с открытыми интервалами условно величина интервала первой группы принимается равной величине интервала последующей, а величина интервала последней группы - величине интервала предыдущей. Дальнейший расчет аналогичен изложенному выше.

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Основные свойства средней арифметической.

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

4. Если х = с, где с - постоянная величина, то .

5. Сумма отклонений значений признака от средней арифметической равна нулю:

Наиболее распространенным видом средних величин является средняя арифмети­ческая, которая, как и все средние, в зависимости от характера имеющихся данных может быть простой или взвешенной.

Средняя арифметическая простая (невзвешенная).Эта форма средней исполь­зуется в тех случаях, когда расчет осуществляется по несгруппированным данным.


Средняя арифметическая взвешенная.При расчете средних величин отдельные значения осредняемого признака могут повторяться, встречаться по нескольку раз. В по­добных случаях расчет средней производится по сгруппированным данным или вариаци­онным рядам, которые могут быть дискретными или интервальными.


При расчете средней по интервальному вариационномуряду для выполнения необходимых вычислений от интервалов переходят к их серединам.

Свойства средней арифметической.

Средняя арифметическая обладает некото­рыми математическими свойствами, более полно раскрывающими ее сущность и в ряде случаев используемыми при ее расчетах:

1. Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты.

2. Сумма отклонений индивидуальных значений признака от средней арифмети­ческой равна нулю.

3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произ­вольной величины С.

4. Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на ту же величину.

5. Если все варианты значений признака уменьшить или увеличить в А раз, то средняя также соответственно увеличится или уменьшится в А раз.

6. Если все веса уменьшить или увеличить в А раз, то средняя арифметическая от этого не изменится.

Другие виды средних величин

Средняя гармоническая взвешенная:


,


где

Средняя гармоническая невзвешенная.

Эта форма средней, используемая зна­чительно реже, имеет следующий вид:

.

Для иллюстрации области ее применения воспользуемся упрощенным условным примером. Предположим, в автохозяйстве эксплуатируются два электромобиля разных моделей, работающих на однотипных подзаряжаемых за ночь аккумуляторных батареях. Первый электромобиль расходует на 1 км пути 1,0 кВт ч электроэнергии, второй - 0,6 кВт- ч. Каков средний расход электроэнергии на 1 пройденный километр?

На первый взгляд решение этой задачи заключается в осреднении индивидуальных значений потребления электроэнергии по двум электромобилям, т.е. (1,0 + 0,6) : 2 = 0,8 кВт ч. Проверим обоснованность такого подхода на примере одного дня работы машин, в течение которого они расходуют один заряд аккумулятора, предположим, 60,0 кВт ч (как будет показано ниже, конкретная цифра значения не имеет). За этот день первая машинам пройдет 60 км (60,0/1,0), пробег отарой составит 100 км (60,0/0,6), т.е. в сумме- 160 км. Если же заменить индивидуальные значения признака их предполагаемым средним значе­нием, то общий пробег, выступающий в данном случае в качестве определяющего показа­теля, сократится до 150 км (60,0/0,8 + 60,0/0,8). Следовательно, полученная средняя рас­считана неверно.

Средняя геометрическая.

Еще одной формулой, по которой может осуществлять­ся расчет среднего показателя, является средняя геометрическая:

- незвешенная;


- взвешенная.

Наиболее широкое применение этот вид средней получил в анализе динамики для определения среднего темпа роста.

Средняя квадратическая.

Воснове вычислений ряда сводных расчетных показа­телей лежит средняя квадратическая:


- невзвешенная;


- взвешенная.

Наиболее широко этот вид средней используется при расчете показателей вариации.

Структурные средние(мода и медиана).

В отличие от степен­ных средних, которые в значительной степени являются абст­рактной характеристикой совокупности, структурные средние выступают как конкретные величины, совпадающие с вполне определенными вариантами совокупности. Это делает их неза­менимыми при решении ряда практических задач.


Модой ( ) называется значение признака, которое наиболее часто встречается в совокупности (в статистическом ряду).


Медианой ( ) называется значение признака, которое лежитв се­редине ранжированного ряда и делит этот ряд на две равныепо численности части.

Ранжированный ряд — ряд, расположенный в порядкевозрас­тания или убывания значений признака.

Для определения медианы сначала определяют ее местов ря­ду, используя формулу:


Если ряд состоит из четного числа членов, то за медиану ус­ловно принимают среднюю арифметическую из двух срединных значений.

Мода применяется при экспертных оценках, при определе­нии наиболее ходовых размеров обуви, одежды, что учитывается при планировании их производства. Медиана используется при статистическом контроле качества продукции и технологическо­го процесса на промышленных предприятиях; при изучении рас­пределения семей по величине дохода и др. Мода и медиана име­ют преимущество перед средней арифметической для ряда рас­пределения с открытыми интервалами.

Читайте также: