Способы решения математических задач реферат

Обновлено: 02.07.2024

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Древнейшей математической деятельностью был подсчет. Счет был необходим для учета крупного рогатого скота и торговли. Некоторые первобытные племена подсчитывали количество предметов и сравнивали различные части тела, в основном пальцы ног и ног. На рисунке, сохранившемся с каменного века, изображена цифра 35 в ряду 35 стержней, нанизанных друг на друга. Первыми значительными достижениями в арифметике стали концептуализация числа и изобретение четырех основных действий: сложение, вычитание, умножение и деление. Первые достижения в геометрии были связаны с такими простыми понятиями, как прямая линия и окружность. Дальнейшее развитие математики началось около 3000 г. до н.э. благодаря вавилонянам и египтянам. И постепенно математика стала незаменимой наукой для человечества.

Математика как наука

Вот некоторые определения математики от разных авторов.

Математика — это цикл наук, посвященный ценностям и пространственным формам (арифметике, алгебре, геометрии, тригонометрии и т.д.). Чистая математика. Прикладная математика. Высшая математика. (Пояснительный словарь русского языка Д.Н.Ушакова).

Математика — академический предмет, содержащий теоретические основы соответствующей научной дисциплины (толковый русский словарь Т.Ф. Ефремовой).

Период элементарной математики

Были решены задачи, сведенные к решению уравнений третьей степени и особых типов уравнений четвертой, пятой и шестой степени. Использовались только два разных символа: один обозначал единицу, а другой — число 10; все номера записывались этими двумя символами с учетом позиционного принципа. В старых текстах (около 1700 г. до н.э.) нет символа нуля, поэтому числовое значение, присваиваемое символу, зависело от условий задачи, и этот же символ мог обозначать 1, 60, 3600 или даже 1/60, 1/3600. Греция также была сильна в математике. Математическое элементарное геометрическое исчисление

Восточная математика зародилась как прикладная наука с целью облегчения календарных расчетов распределения доходов и сбора налогов. Вначале на переднем плане были арифметические расчеты и измерения. Однако с течением времени алгебра развивалась из арифметики и зачатков теоретической геометрии из измерений. На Востоке была разработана система, основанная на десятичной системе со специальными символами для каждого высшего десятичного знака, система, которую мы знаем благодаря римской математике, которая основана на том же принципе. На Востоке было определено значение π.

Период создания математических переменных. Создание аналитической геометрии, дифференциальных и интегральных вычислений

В XVII веке начинается новый период в истории математики — период математики переменных. Его появление связано, прежде всего, с успехами астрономии и механики.

В 1609-1619 гг. Кеплер открыл законы движения планет и сформулировал их математически. Около 1638 года Галилео создал механику свободного движения тел, установил теорию упругости, применил математические методы для изучения движения с целью нахождения закономерностей между природой движения, его скоростью и ускорением. К 1686 году Ньютон сформулировал закон гравитации.

Развитие математики в России в XVIII-XIX вв.

На Древней Руси получило такое же распространение, как и в греко-византийской системе числовых знаков, основанной на Славянском алфавите. Славянская нумерация в русской математической литературе встречалась до начала 18 века, но уже с конца 16 века эта нумерация все больше заменяется принятой сегодня десятичной системой. Старейший известный нам математический труд относится к 1136 году и принадлежит новгородскому монаху Кирику. Она посвящена арифметическим и хронологическим вычислениям, которые показывают, что в то время на Руси можно было решить сложную задачу пасхального вычисления, которая в математической части сводилась к решению целых чисел неопределенных уравнений первой степени. Трудно сказать, кого следует считать первыми русскими математиками, но если люди свободно владеют современным математическим анализом и пишут работы на эту тему, то эти первенцы русских математиков, очевидно, были С. К. Котельников и С. Я. Румовский.

С. К. Котельников не занимался самостоятельным творчеством, хотя и написал что-то вроде базового курса по математике, но ограничился изданием первого тома. Котельников также написал еще один подробный учебник по геодезии.

В первой половине XIX века не было разработано преемника русской математики, но молодой русский математик уже в первый период своего развития дал выдающиеся представители в различных отраслях этой сложной науки, одна из которых уже в первой половине века вписала его имя в историю человеческой мысли.

Основные этапы образования современной математики

В XIX веке начинается новый период в развитии математики — современный. Огромный объем материала, накопленного в 17-18 веках, обусловил необходимость проведения глубокого логического анализа и объединения его с новыми аспектами. В настоящее время связь между математикой и естественными науками принимает более сложные формы. Новые теории возникают не только из потребностей науки или техники, но и из внутренних потребностей самой математики.

Усилена теория дифференциальных уравнений с частными производными и теория потенциала. Большинство великих аналитиков начала и середины XIX века работают в этом направлении: К. Гаусс, Ж. Фурье, С. Пуассон, О. Коши, П. Дирихле, М. Остроградский. Во второй половине XIX века начинается интенсивное изучение истории математики. В конце XIX и в XX веке во всех областях математики, начиная с древнейшей из них — теории чисел, произошло необычайное развитие. Теория дифференциальных уравнений с частными производными в конце XIX в. приобретает принципиально новую форму.

Важным дополнением к методам теории дифференциальных уравнений в изучении природы и решении технических задач являются методы теории вероятностей. В конце XIX и в XX веке большое внимание уделяется методам численного интегрирования дифференциальных уравнений. Таким образом, методы обоснования и методики математики, разработанные в первой половине XIX века, позволили математикам реконструировать математический анализ, алгебру, исследование числа и частично геометрии в соответствии с требованиями новой методологии. Новая методология математики способствовала преодолению кризиса ее основ и создала для них широкие перспективы дальнейшего развития математики, до конца 19 — начала 20 века носила в основном прагматический характер, если математика использовалась как эффективное средство для решения физических, астрономических и других прикладных задач.

Среди важнейших достижений 20-го века в области математики — основы:

  1. разработка концепции формального языка и формальной системы (вычисления) и генерируемой из нее теории
  2. создание математической логики как последовательной семантически завершенной формальной системы.
  3. создание аксиоматизированных формальных теорий арифметики, теории множеств, алгебраических систем и других важных областей математики
  4. формальная спецификация условий алгоритма и вычисляемой функции.

Заключение

Математическое моделирование, универсальность математических методов приписывает математике большую роль в различных областях человеческой деятельности.

Основой любой профессиональной деятельности являются навыки:

  • создавать и использовать математические модели для описания, прогнозирования и изучения различных явлений
  • проводить систематический, качественный и количественный анализ;
  • Они располагают компьютеризированными методами сбора, хранения и обработки информации;
  • имеют методы решения задач оптимизации.

Математические методы широко используются в естественных и чистых гуманитарных науках: психология, образование.

Можно сказать, что в ближайшем будущем каждая часть человеческой деятельности будет в еще большей степени использовать математические методы в исследованиях.

Список литературы

  1. Лаптев Б.Л. Н.И. Лобачевский и его геометрия. М.: Разведка, 1974 .
  2. К.А. Рыбников. История математики. М.: Наука, 1995.
  3. Самарский А.А. Математическое моделирование. М.: Наука, 1983.
  4. Остановить Р.Р. Множественность, логика, аксиоматическая теория. М.: Просвещение, 1964.
  5. Строй Ди. Я… Краткое эссе по истории математики. М.: Наука, Физматлит, 1994.
  6. А.Н. Тихонов, Д.П. Костомаров. Истории о прикладной математике. М.: Вита-Пресс, 1995.
  7. А.П. Юшкевич. Математика в своей истории. М.: Наука, 1994.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Основную часть времени на уроке ученик проводит, решая задачи, и во многом от их особенностей (сложности, многогранности, сюжетной формы, последовательности и др.) и зависит, насколько успешным будет процесс обучения математике. Но что же мы имеем на самом деле? На практике получается, что чаще всего процесс решения задач на уроке обладает некоторой рутинностью и оставляет ученику мало… Читать ещё >

Общие методы обучения решению математических задач ( реферат , курсовая , диплом , контрольная )

1. Анализ и синтез при решении задач находит широкое применение.

Анализ — это метод рассуждения к данным.

Синтез — это метод рассуждения ведущий от данных к искомому.

Применяется практически при решении каждого вида задач.

  • а) Анализ и синтез при решении задач на доказательство. (Шар касается боковых граней треугольной пирамиды в точке пересечения их биссектрис. Доказать, что пирамида правильная.)
  • б) Анализ и синтез при решении текстовых задач. Текстовыми задачами здесь называют математические задачи, в которых входная информация содержит не только математические данные, но ещё и некоторый сюжет. (Большая комната имеет длину 5,3 м. и ширину 4 м., а меньшая комната длину 4 м., а ширину 4,3 м. На сколько площадь первой комнаты больше второй.)
  • в) Анализ и синтез при решении задач на построение в геометрии. Решение геометрических задач выполняется по плану:
    • — анализ
    • — построение
    • — доказательство
    • — исследование
    • (Через данную прямую провести плоскость параллельную другой данной прямой.)
    • 2. Другие общие методы решения задач.

    Один из них метод исчерпывающих проб, основой которого является выявление всех логических возможностей и отбор из них тех, которые удовлетворяют условию задачи. С помощью этого приёма решаются некоторые элементарные задачи теоретического содержания.

    Второй метод — это метод сравнения, третий — имеет своей основой моделирование.

    3. Общие советы учителя ученику при решении задач.

    Для того чтобы научиться решать, надо приобрести опыт решения.

    • 1) Вопросы и советы для усвоения содержания задачи.
    • 2) Составление плана решения задачи.
    • 3) Реализация плана решения задачи.
    • 4) Анализ и проверка правильности.
    • 5) От общих советов к частным.
    • 6) Пример применения рекомендуемых советов и вопросов при решении задачи.

    Как учит решать задачи современная школа?

    Однако использование задач в процессе обучения математике и в настоящее время ещё далеко от совершенства.

    Как пишет А. Эсаулов в психологии и педагогике обращается внимание преимущественно на то, как решаются уже кем-то найденные и вполне чётко сформулированные задачи, а не на то, как они обнаруживаются и ставятся. В результате получается, что человек, привыкший видеть перед собой чётко и корректно сформулированную задачу, просто теряется в незнакомой ситуации, будь то хоть обычная некорректная математическая задача или некая задача, возникшая как следствие из практики (прикладная).

    В современном математическом образовании отмечается следующий актуальный аспект: изучение математики на всех этапах должно иметь развивающий характер и прикладную направленность. Молодёжи необходимо давать не просто конкретную сумму знаний, но и прививать ей навыки творчества, интерес к исследованию, формировать у неё положительную мотивацию. Интерес к учебной деятельности, подкрепляемый постоянным активным участием в открытии новых истин, проверке гипотез, поиском способа действий в задаче, является основным психологическим условием успешности этой деятельности.

    Школьные уроки математики по-прежнему нацелены на прохождение программы, а не на развитие мышления у детей. Учитель видит свою задачу в том, чтобы школьники с его помощью усвоили ещё одну порцию материала. Однако главная его задача — всемерно содействовать развитию познавательных возможностей у учащихся.

    Основную часть времени на уроке ученик проводит, решая задачи, и во многом от их особенностей (сложности, многогранности, сюжетной формы, последовательности и др.) и зависит, насколько успешным будет процесс обучения математике. Но что же мы имеем на самом деле? На практике получается, что чаще всего процесс решения задач на уроке обладает некоторой рутинностью и оставляет ученику мало возможностей для творчества. Со временем такая специфика задач вырабатывает у ученика некоторый неправильный стереотип мышления, относящийся к решению задач. Ученик просто ищет стандартную ситуацию, к которой можно было бы применить известные формулы и теоремы, и теряется, когда предложенная задача требует даже несложного нестандартного подхода.

    По мнению Л. Фридмана, одной из основных в обучении математике функций задач является функция формирования и развития у учащихся общих умений решений любых математических (в том числе и прикладных) задач.

    Каковы же причины этого широко распространённого явления?

    Основная причина в неудовлетворительной постановке задач в обучении математике — проблема постановки задач в процессе обучения математике до сих пор не нашла удовлетворительного решения ни с точки зрения содержания учебных задач, ни с точки зрения их целевого назначения, ни с точки зрения числа обязательных или необязательных задач или представления их в виде целостной системы.

    Сейчас, когда учащиеся не имеют систематических знаний о задачах и сущности их решения, главное внимание учащихся (и учителей) направлено на то, чтобы найти решение задачи и притом как можно быстрей. На заключительный анализ, на установление того, какие выводы можно сделать из выполненного решения, — на всё это уже не остаётся ни сил, ни времени, ни желания, а ведь это едва ли не главные аспекты решения задач.

    В школе невозможно, да и не нужно, рассматривать все виды математических задач. Сколько бы задач ни решали в школе, всё равно учащиеся в своей будущей работе встретятся с новыми видами задач. Поэтому школа должна вооружать учащихся общим подходом к решению любых задач.

    Одной из особенностей математики является алгоритмичность решения многих её задач. Алгоритмом, как известно, называется определённое указание относительно того, какие операции и в какой последовательности надо выполнить, чтобы решить любую задачу определённого типа. Конечно, очень большое количество задач не алгоритмизируется и решается с помощью специальных, особых приёмов. Поэтому способность находить пути решения, не подходящие под стандартное правило, является одной из существенных особенностей математического мышления, как об этом пишет в своей книге академик Колмогоров.

    Необходимость специальных способностей для изучения и понимания математики часто преувеличивают. Впечатление исключительной трудности математики иногда создаётся её плохим, чрезмерно формальным изложением на уроке.

    Умение последовательно, логически рассуждать в незнакомой обстановке приобретается с трудом. На математических олимпиадах самые неожиданные трудности возникают именно при решении задач, в которых не предполагается никаких предварительных знаний из школьного курса, но требуется правильно уловить смысл вопроса и рассуждать последовательно.

    Многие нарекания вызывает и подготовка школьников как абитуриентов, поступающих в ВУЗы на физико-математические специальности. Многолетняя практика приёмных экзаменов показывает, что воспитанные в традиционной школе абитуриенты обладают знаниями, достаточными для поступления в ВУЗ, однако интеллектуальное развитие большинства из них и, прежде всего, уровень абстрактного и логического мышления недостаточен для эффективного обучения по выбранной специальности.

    Итак, как показывает вышеизложенный анализ литературы, наборы задач имеющихся школьных учебников пока ещё не удовлетворяют требованиям, предъявляемым к результативности математического образования. Чаще всего, эти задачи относятся к алгоритмически разрешимым, не развивают у учеников вариативного мышления, не учат множеству навыков, столь необходимых для решения задач, как школьных, так и бытовых, производственных, научных и т. д.

    Рассмотрим более детально, как обстоит дело с задачами, представленными в действующих учебниках математики.

    Анализ школьных учебников математики показывает, что с 5-го по 11-й класс ученики решают более 7000 задач.

    Если взглянуть на задачи, представленные в школьных учебниках математики, то все задачи, содержащиеся в них, внутри одной темы классифицированы по степени сложности и расположены, как правило, в порядке её возрастания.

    Среди предлагаемых учащимся задач представлены задачи разных классификаций (по крайней мере, к этому стремятся авторы учебников): по их назначению — тренировочные и развивающие, по наличию алгоритма решения — стандартные и нестандартные, по характеру требования — доказательные, вычислительные и конструктивные. Есть и другие классификации, находящие то или иное отражение в школьных учебниках.

    Нажмите, чтобы узнать подробности

    Далеко не все ученики основной школы осваивают алгебраический метод решения текстовых задач даже на базовом уровне. Причин тому великое множество. Одни из них носят общий характер: устоявшийся страх перед задачей, отсутствие общих представлений о рассматриваемых в задачах процессах, неумение устанавливать, что дано в задаче, что надо найти, выявлять по тексту взаимосвязи рассматриваемых в задаче величин и т.п. Другие свидетельствуют о несформированности определенных умений и навыков: незнание этапов решения задачи, непонимание содержания и цели собственной деятельности на каждом из них, неумение решать уравнения или неравенства (или их системы) определенного вида, неумение производить отбор корней уравнения или решений неравенства в соответствии с условием задачи и т.д. Недостатки в овладении необходимыми приемами рассуждений, незнание общих методов решения задач не дают возможности многим школьникам успешно работать над конкретной задачей. [13]

    Следует отметить и недостатки в методике построения различных моделей обучения как на этапе текущего обучения решению текстовых задач, так и на этапе работы с задачами в процессе обобщающего повторения по отдельной теме или по целому курсу. Работая над конкретной задачей в классе, учитель дает пояснения, сущность и значимость которых понимают и запоминают в классе лишь отдельные ученики. Как правило, эти пояснения не систематизированы учителем и носят локальный характер.

    К субъективным причинам можно отнести влияние индивидуальных особенностей школьников на процесс усвоения материала и формирование необходимых умений. Затрудненное восприятие, плохая память, слабое владение анализом и синтезом, отсутствие достаточного опыта в решении простейших задач оказывают несомненное влияние на освоение такими учениками алгебраического метода решения текстовых задач.

    Известно, что решение сюжетной задачи алгебраическим методом состоит в последовательной реализации трех этапов:

     перевод текста задачи на алгебраический язык – составление математической модели данной сюжетной задачи;

     решение полученной математической задачи – внутримодельное решение;

     ответ на вопрос задачи, перевод полученного результата на язык исходной ситуации – интерпретация внутримодельного решения.

    Процесс обучения решению текстовых задач в контексте алгебры в основной школе построен так, что сначала школьники осваивают эту деятельность в пределах одной темы, а затем – на этапе обобщения и систематизации в пределах более крупного раздела.

    Когда же требуется перенос знаний в новую ситуацию и отсутствует предопределенность вида математической модели, учащиеся часто не справляются с решением даже совсем несложных задач, хотя при работе над темой могли решать и более сложные задачи.

    Цель работы: Проанализировать методику обучения решению текстовых задач алгебраическим методом.

    1. Изучить понятие текстовой задачи и этапы ее решения

    2.Рассмотреть сущность алгебраического метода решения текстовых задач.

    3.Изучить примеры текстовых задач решенных алгебраическим способом.

    4.Проанализировать практическое применение методики обучения решению текстовых задач алгебраическим способом.

    5. Разработать и апробировать конспект урока.

    Объект работы: Обучение решению текстовых задач.

    Предмет работы: Методика обучения решению текстовых задач алгебраическим методом.

    Апробация результатов исследования проходит в МБОУ Орловской СОШ Татарского района на 5-6 классах.

    Практическая ценность работы состоит в том, что её содержание можно применять в дальнейшей работе другими педагогами.

    Структура работы: введение, теоретическая часть, выводы к каждой главе, заключение, приложение.

    Глава 1 Характеристика текстовой задачи

    Понятие текстовой задачи

    В обучении математике велика роль текстовых задач.

    Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащихся. Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о её структуре, умел решать такие задачи различными способами.

    Текстовая задача – есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения.

    Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа. [1]

    Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

    Каждая задача – это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое.

    Математическая задача – это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии. [2]

    Любая текстовая задача состоит из двух частей: условия и требования.

    В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними.

    Требования задачи – это указание того, что нужно найти. Оно может быть выражено предложением в повелительной или вопросительной форме.

    В задаче пять неизвестных значений величин, одно из которых заключено в требовании задачи. Это значение величины называется искомым.

    Иногда задачи формируются таким образом, что часть условия или всё условие включено в одно предложение с требованием задачи.

    В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, то есть, такую, которая не нужна для выполнения требования задачи.

    Одна и та же задача может рассматриваться как задача с достаточным числом данных в зависимости от имеющихся и решающих значений.

    Рассматривая задачу в узком смысле этого понятия, в ней можно выделить следующие составные элементы:

    Словесное изложение сюжета, в котором явно или в завуалированной форме указана функциональная зависимость между величинами, числовые значения которых входят в задачу.

    Числовые значения величин или числовые данные, о которых говорится в тексте задачи.

    Задание, обычно сформулированное в виде вопроса, в котором предлагается узнать неизвестные значения одной или нескольких величин. Эти значения называют искомыми.

    Задачи и решение их занимают в обучении школьников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка.

    Функции задач в обучении взаимосвязаны, однако в каждом конкретном случае выделяется и реализуется ведущая функция задачи в соответствии с целевой установкой ее применения.

    Умение решать задачи не находится в прямой зависимости от числа решенных задач, поэтому в психолого-дидактических и методических исследованиях отдается предпочтение приемам формирования общих подходов к задаче как объекту ее изучения, ее анализу. Понимая роль задачи и её место в обучении и воспитании ученика, учитель должен подходить к подбору задачи и выбору способов решения обоснованно и чётко знать, что должна дать ученику работа при решении данной им задачи. [6]

    1.2. Этапы процесса решения задачи

    Если под процессом решения задач понимать процесс, начинающийся с момента получения задачи до момента полного завершения ее решения, то очевидно, что этот процесс состоит не только из изложений уже найденного решения, а из ряда этапов, одним из которых и является изложение решения.

    Из каких же этапов состоит процесс решения задачи?

    Очевидно, получив задачу, первое, что нужно сделать, это разобраться в том, что это за задача, каковы ее условия, в чем состоят ее требования, т.е. провести анализ задачи. Этот анализ и составляет первый этап процесса решения задачи.

    В ряде случаев этот анализ надо как-то оформить, записать. Для этого используются разного рода схематические записи задач, построение которых составляет второй этап процесса решения.

    Анализ задачи и построение ее схематической записи необходимы главным образом для того, чтобы найти способ решения данной задачи. Поиск этого способа составляет третий этап процесса решения.

    Когда способ решения задачи найден, его нужно осуществить, - это будет четвертый этап процесса решения – этап осуществления (изложения) решения.

    После того как решение осуществлено и изложено (письменно или устно), необходимо убедиться, что это решение правильное, что оно удовлетворяет всем требованиям задачи. Для этого производят проверку решения, что составляет пятый этап процесса решения.

    При решении многих задач, кроме проверки, необходимо еще произвести исследование задачи, а именно установить, при каких условиях задача имеет решение и притом, сколько различных решений в каждом отдельном случае; при каких условиях задача вообще не имеет решения и т.д. Все это составляет шестой этап процесса решения. [4]

    Убедившись в правильности решения и, если нужно, произведя исследование задачи, необходимо четко сформулировать ответ задачи, - это будет седьмой этап процесса решения.

    Наконец, в учебных и познавательных целях полезно также произвести анализ выполненного решения, в частности установить, нет ли другого, более рационального способа решения, нельзя ли задачу обобщить, какие выводы можно сделать из этого решения и т.д. Все это составляет последний, конечно не обязательный, восьмой этап решения. [9]

    Итак, весь процесс решения задачи можно разделить на восемь этапов:

    1 этап – анализ задачи;

    2 этап – схематическая запись задачи;

    3 этап – поиск способа решения задачи;

    4 этап – осуществление решения задачи;

    5 этап – проверка решения задачи;

    6 этап – исследование задачи;

    7 этап – формулирование ответа задачи;

    8 этап – анализ решения задачи.

    Приведенная схема дает лишь общее представление о процессе решения задачи, поэтому приведем пример решения задачи.

    Существуют различные методы решения текстовых задач: арифметический, алгебраический, геометрический, логический, практический и др. В основе каждого метода лежат различные виды математических моделей. Например при алгебраическом методе решения задачи составляются уравнения или неравенства, при геометрическом – строятся диаграммы ил графики. Решение задачи логическим методом начинается с составления алгоритма. Различные методы решения конкретной задачи будем называть способами решения.

    Арифметический метод. Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту же задачу во многих случаях можно решить различными арифметическими способами. Задача считается решенной различными способами, если ее решения отличаются связями между данными и искомыми, положенными в основу решений, или последовательностью использования этих связей. [10]

    Пример. Поют в хоре и занимаются танцами 82 студента, занимаются танцами и художественной гимнастикой 32 студента, а поют в хоре и занимаются художественной гимнастикой 78 студентов. Сколько студентов поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый студент занимается только чем то одним?

    2) 192÷2=96 чел. – поют в хоре, занимаются танцами и художественной гимнастикой;

    3) 96_32=64 чел. – поют в хоре;

    4) 96-78=18 чел. – занимаются танцами;

    5) 96-82=14 чел. – занимаются художественной гимнастикой.

    1) 82-32=50 чел. – на столько больше студентов поют в хоре, чем занимаются художественной гимнастикой;

    3) 128÷2=64 чел. – поют в хоре;

    5) 82-64=18 чел. – занимаются танцами.

    Ответ: 64 студента поют в хоре; 14 студентов занимаются художественной гимнастикой; 18 студентов занимаются танцами.

    Алгебраический метод. Решить задачу алгебраическим методом – это значит найти ответ на требование задачи, составив и решив уравнение или систему уравнений. Одну и ту же задачу можно также решить различными алгебраическими способами, если для ее решения составлены различные уравнения или системы уравнений, в основе составления которых лежат различные соотношения меду данными и искомыми. [8]

    1 способ. Пустьx д./день – первоначальная производительность рабочего. Тогда (x+10) д./день – новая производительность, 3x д. – число деталей, которые он должен сделать. По условию получаем уравнение 3x=2(+10), решив, которое найдем x=20. Первоначальная производительность рабочего 20 деталей в день, он должен сделать 60 деталей.

    2 способ. Пусть x д. – число деталей, которое должен сделать рабочий. Тогда x/2 д./день – новая производительность, (x/2-10) д./день – первоначальная производительность рабочего. По условию получаем уравнение x=3(x/2-10), решив которое найдем x=60. Рабочий должен сделать 60 деталей, его первоначальная производительность 20 деталей в день.

    Ответ: 20 деталей в день, 60 деталей.

    Геометрический метод. Решить задачу геометрическим методом – значит найти ответ на требование задачи, используя геометрические построения или свойства геометрических фигур. Одну и ту же задачу можно также решить различными геометрическими способами. Задача считается решенной различными способами, если для ее построения используются различные построения или свойства фигур.

    Практический метод. Решить задачу практическим методом – значит найти ответ на требование задачи, выполнив практические действия с предметами или их копиями (моделями, макетами и т.д.)

    Т.к. тема нашей курсовой методика обучения решению текстовых задач алгебраическим способом, именно его рассмотрим более подробно.

    Алгебраический метод решения задачи позволяет легко показать, что некоторые задачи, отличаются друг от друга лишь фабулой, имеют не только одни и те же соотношения между данными и искомыми величинами, но и приводят к типичным рассуждениям, посредством которых устанавливаются эти соотношения. Такие задачи дают лишь различные конкретные интерпретации одного и того математического рассуждения, одних и тех же соотношений, т.е. имеют одну и туже математическую модель. [15]

    Рассмотрим классификацию задач решаемых алгебраическим способом по фабуле, из-за многообразия уравнений и неравенств.

    Задачи на движение

    К этой группе задач относятся задачи, в которых говорится о трех величинах: пути, скорости и времени. Как правило, в них речь идет о равномерном прямолинейном движении. В этих задачах весьма полезно делать иллюстрированный чертеж, который помогает в составлении уравнений и неравенств.

    Задачи на работу.

    К этой группе задач относятся задачи, в которых говорится о трех величинах: работе, времени, в течение которого производится работа, производительности – работе, произведенной в единицу времени. К задачам на работу относят и задачи, связанные с наполнением и опорожнением резервуаров с помощью труб, насосов и других приспособлений. В качестве произведенной работы в этом случае рассматривают объем перекачанной воды.

    Задачи на работу можно отнести к группе задач на движение, т.к. в задачах такого типа можно считать, что вся работа или полный объем резервуара играют роль расстояния, а производительности объектов, совершающих работу, аналогичны скоростям движения. Однако по сюжету, фабуле эти задачи совершенно отличаются.

    Задачи на смеси и проценты.

    К этой группе задач относятся задачи, в которых речь идет о смешении различных веществ в определенных пропорциях, а также задачи на проценты

    Мы рассмотрели некоторые классификации задач, а сейчас мы бы хотели рассмотреть более подробно решение задач с помощью математического моделирования. [12]

    Задача. Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные – щуки. Сколько щук поймал рыбак?

    Способы решения задачи:

    1. Практический (предметный) способ .

    Учащиеся могут решить эту задачу, опираясь только на свой жизненный опыт и владея счетом от 1 до 10.

    Обозначим каждую рыбу кругом. Нарисуем 10 кругов и обозначим пойманных рыб: л – лещи, о – окуни.

    Для ответа на вопрос задачи можно не выполнять арифметические действия, так как количество пойманных щук соответствует тем кругам, которые не обозначены (их три).

    2. Арифметический способ .

    Этот метод основывается на арифметических действиях.

    1) 3+4=7 (р.) – пойманные рыбы;

    Для ответа на вопрос задачи выполнили 2 действия.

    3. Алгебраический способ .

    Этот способ основывается на введении неизвестной переменной и на нахождении ее.

    Пусть х – пойманные щуки. Тогда количество всех рыб можно записать выражением: 3+4+х – все рыбы.

    По условию задачи известно, что рыбак поймал всего 10 рыб. Значит: 3+4+х=10. Решив это уравнение ответим на вопрос задачи: х=3.

    4. Графический способ.

    Этот способ решения близок к практическому, но носит более абстрактный характер и требует специального разъяснения. Каждый объект задачи обозначается отрезком.

    Этот способ, так же как и практический, позволяет ответить на вопрос задачи, не выполняя арифметических действий.

    5. Комбинированный способ.

    В нем могут быть использованы одновременно графический и арифметический способы.

    1) 3+4=7 (р.) – пойманные рыбы;

    Способы оформления решения задач на примере конкретной задачи

    Задача. У мальчика было 90 книг. 28 он поставил на первую полку, 12 на вторую, остальные – на третью. Сколько книг на третьей полке.

    Различные формы записи решения задачи:

    а) Решение по действиям:

    Ответ: 50 книг на третьей полке.

    б) По действиям с пояснением:

    1) 28+12=40 (к.) – на 1 и 2 полках вместе,

    2) 90–40=50 (к.) – на 3 полке.

    1) Сколько книг на 1 и 2 полках месте?

    2) Сколько книг на 3 полке?

    Ответ: 50 книг на третьей полке.

    При записи решения задачи выражением можно вычислить его значение. Тогда запись решения задачи будет выглядеть так:

    Способы оформления краткой записи на примере конкретной задачи

    Задача. У одной закройщицы было 15 м ткани, у другой – 12 м. Из всей ткани они скроили платья, расходуя на каждое по 3 м. Сколько всего платьев они скроили?

    Читайте также: