Современные методы исследования клетки реферат

Обновлено: 05.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Введение Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой. Клетка — это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.

Существуют растения, построенные из одной-единственной клетки. К ним относятся одноклеточные водоросли и одноклеточные грибы. Обычно это микроскопические организмы, но есть и довольно крупные одноклеточные (длина одноклеточной морской водоросли ацетабулярии достигает 7 см). Большинство растений, с которыми мы сталкиваемся в повседневной жизни, — это многоклеточные организмы, построенные из большого числа клеток. Например, в одном листе древесного растения их около 20 000 000. Если дерево имеет 200 000 листьев (а это вполне реальная цифра), то число клеток во всех них составляет 4000 000 000 000. Дерево в целом содержит еще раз в 15 больше клеток.

Растения, за исключением некоторых низших, состоят из органов, каждый из которых выполняет свою функцию в организме. Например, у цветковых растений органами являются корень, стебель, лист, цветок. Каждый орган обычно построен из нескольких тканей. Ткань — это собрание клеток, сходных по строению и функциям. Клетки каждой ткани имеют свою специальность. Выполняя работу по своей специальности, они вносят вклад в жизнь целого растения, которая состоит в сочетании и взаимодействии разных видов работы различных клеток, органов, тканей.

Основными, самыми общими компонентами, из которых построены клетки, являются ядро, цитоплазма с многочисленными органоидами различного строения и функций, оболочка, вакуоль. Оболочка покрывает клетку снаружи, под ней находится цитоплазма, в ней — ядро и одна или несколько вакуолей. Как строение, так и свойства клеток разных тканей в связи с их разной специализацией резко различаются. Перечисленные основные компоненты и органоиды, о которых речь пойдет дальше, развиты в них в различной степени, имеют неодинаковое строение, а иногда тот или иной компонент может вовсе отсутствовать.

Главнейшими группами тканей, из которых построены вегетативные (непосредственно не связанные с размножением) органы высшего растения, являются следующие: покровные, основные, механические, проводящие, выделительные, меристематические. В каждую группу обычно входит несколько тканей, имеющих сходную специализацию, но построенных каждая по-своему из определенного вида клеток. Ткани в органах не изолированы друг от друга, а составляют системы тканей, в которых элементы отдельных тканей чередуются. Так, древесина — это система из механической и проводящей, а иногда и основной ткани.

Структура растительной клетки

Клетка является основной структурной и функциональной единицей живых организмов.

Клетки эмбриональных (неспециализированных) тканей животных и растений в общем плане строения очень сходны. Именно это обстоятельство в свое время явилось причиной для появления и развития клеточной теории. Морфологические различия проявляются уже в дифференцированных клетках специализированных тканей растений и животных. Особенности строения растительной клетки, как и растения в целом, связаны с образом жизни и способом питания. Большинство растений ведет относительно неподвижный (прикрепленный) образ жизни. Специфика

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный открытием закона Гука). В 1665 году, пытаясь понять, почему пробковое дерево хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа.

Содержание

1. История открытия
2. Методы исследования клеток
3. Оптическая микроскопия
4. Электронная микроскопия
5. Фракционирование клеток
6. Клеточная теория
Список использованных источников

1. История открытия

2. Методы исследования клеток

Впервые клетки удалось увидеть только после создания оптических (световых) микроскопов. С того времени и до сих пор микроскопия остается одним из важнейших методов исследования клеток. Световая микроскопия, несмотря на небольшое разрешение, позволяла наблюдать за живыми клетками. В ХХ веке была изобретена электронная микроскопия, которая позволила изучить ультраструктуру клеток.

Для изучения функций клеток и их частей используют разнообразные биохимические методы — как препаративные, например фракционирование методом дифференциального центрифугирования, так и аналитические. Для экспериментальных и практических целей используют методы клеточной инженерии. Все упомянутые методические подходы могут использоваться в сочетании с методами культуры клеток.

3. Оптическая микроскопия

В оптическом микроскопе увеличение объекта достигается благодаря серии линз, через которые проходит свет. Максимальное увеличение составляет более 1000 раз. Также важной характеристикой является разрешение — расстояние между двумя точками, которые ещё распознаются отдельно. Разрешение характеризует чёткость изображения. Эта величина ограничивается длиной световой волны, и даже при использовании самого коротковолнового света — ультрафиолетового — можно достичь разрешения только около 200 нм; такое разрешение было получено ещё в конце XIX века. Малейшие структуры, которые можно наблюдать под оптическим микроскопом, это митохондрии и бактерии. Их линейный размер составляет примерно 500 нм. Однако объекты размером меньше 200 нм видны в световом микроскопе, если они сами излучают свет. Эта особенность используется в флуоресцентной микроскопии, когда клеточные структуры или отдельные белки связываются со специальными флуоресцентными белками или антителами с флуоресцентными метками. На качество изображения, полученного с помощью оптического микроскопа, влияет также контрастность — её можно увеличить, используя различные методы окраски клеток. Для изучения живых клеток используют фазово-контрастную, дифференциальную интерференционно-контрастную и темнопольную микроскопию. Конфокальные микроскопы позволяют улучшить качество флуоресцентных изображений[2][3].

4. Электронная микроскопия

В 30-х годах XX века был сконструирован электронный микроскоп, в котором вместо света через объект пропускается пучок электронов. Теоретический предел разрешения для современных электронных микроскопов составляет около 0,002 нм, однако из практических причин для биологических объектов достигается разрешение только около 2 нм. С помощью электронного микроскопа можно изучать ультраструктуру клеток. Различают два основных типа электронной микроскопии: сканирующую и трансмиссионную. Сканирующая (растровая) электронная микроскопия (РЭМ) используется для изучения поверхности объекта. Образцы зачастую покрывают тонкой пленкой золота. РЭМ позволяет получать объёмные изображения. Трансмиссионная (просвечивающая) электронная микроскопия (ПЭМ) — используется для изучения внутреннего строения клетки. Пучок электронов пропускается через объект, предварительно обработанный тяжёлыми металлами, которые накапливаются в определённых структурах, увеличивая их электронную плотность. Электроны рассеиваются на участках клетки с большей электронной плотностью, в результате чего на изображениях эти области выглядят темнее[2][3].

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

5. Фракционирование клеток

Для установления функций отдельных компонентов клетки важно выделить их в чистом виде, чаще всего это делается с помощью метода дифференциального центрифугирования. Разработаны методики, позволяющие получить чистые фракции любых клеточных органелл. Получение фракций начинается с разрушения плазмалеммы и образования гомогената клеток. Гомогенат последовательно центрифугируется при различных скоростях, на первом этапе можно получить четыре фракции: (1) ядер и крупных обломков клеток, (2) митохондрий, пластид, лизосом и пероксисом, (3) микросом — пузырьков аппарата Гольджи и эндоплазматического ретикулума, (4) рибосом, в супернатанте останутся белки и более мелкие молекулы. Дальнейшее дифференциальное центрифугирование каждой из смешанных фракций позволяет получить чистые препараты органелл, к которым можно применять разнообразные биохимические и микроскопические методы[1].

6. Клеточная теория

В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э. Страсбургер — у растительных.

Клеточная теория является одной из основополагающих идей современной биологии, она стала неопровержимым доказательством единства всего живого и фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. На сегодняшний день теория содержит такие утверждения:

Клетка — элементарная единица строения, функционирования, размножения и развития всех живых организмов, вне клетки нет жизни.

Клетка — целостная система, содержащая большое количество связанных друг с другом элементов — органелл.

Клетки различных организмов похожи (гомологичны) по строению и основным свойствам и имеют общее происхождение.

Увеличение количества клеток происходит путём их деления, после репликации их ДНК: клетка — от клетки.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Многоклеточный организм — система из большого количества клеток, объединённых в системы тканей и органов, связанных между собой с помощью химических факторов — гуморальных и нервных.

Клетки многоклеточных организмов тотипотентны — любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала этого организма, всеми возможными потенциями для проявления этого материала, — но отличаются по уровню экспрессии для проявления этого материала, — но отличаются по уровню экспрессии (работы) отдельных генов, что приводит к их морфологическому и функциональному разнообразию — дифференцировке[1].

Количество и формулировки отдельных положений современной клеточной теории в разных источниках могут отличаться.

Цель работы - рассмотрение современных методов, используемых для изучения клеток. Отправной точкой станет микроскопия, поскольку клеточная биология началась со световой микроскопии, и этот метод до сих пор остается весьма эффективным инструментом исследования, наряду с более современными устройствами для получения изображения, основанными на электронных пучках или иных формах излучения. Также рассмотрим, как клетки различных типов могут быть отделены от ткани и при этом сохранять способность расти, узнаем, как клетки можно разрушить, а клеточные органеллы и составляющие их макромолекулы выделить в чистом виде.

Содержание
Прикрепленные файлы: 1 файл

Анатомия пищевого сырья.docx

  1. Понятие клетки и история открытия ……………………………………………………… 3
  2. Клеточная теория ……………………………………………………………………………… ….. 5
  3. Методы исследования структуры клетки ……………………………………………. 6

Список используемой литературы ………………………………………………………….. 21

Клетки очень малы по размеру и сложно устроены: трудно рассмотреть их структуру, трудно определить молекулярный состав и еще труднее установить, как функционируют их отдельные элементы. Для изучения клеток разработано множество экспериментальных методов, возможности которых определяют уровень наших знаний в этой области. Успехи в изучении биологии клетки, включая наиболее удивительные достижения последних лет, как правило, связаны с применением новых методических подходов. Поэтому для понимания клеточной биологии необходимо иметь некоторое представление о соответствующих экспериментальных методах.

Цель работы - рассмотрение современных методов, используемых для изучения клеток. Отправной точкой станет микроскопия, поскольку клеточная биология началась со световой микроскопии, и этот метод до сих пор остается весьма эффективным инструментом исследования, наряду с более современными устройствами для получения изображения, основанными на электронных пучках или иных формах излучения. Также рассмотрим, как клетки различных типов могут быть отделены от ткани и при этом сохранять способность расти, узнаем, как клетки можно разрушить, а клеточные органеллы и составляющие их макромолекулы выделить в чистом виде.

1. Понятие клетки и история открытия

Клетка — элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо состоят из множества клеток (многоклеточные животные, растения и грибы), либо являются одноклеточными организмами (многие простейшие и бактерии). Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии.

2. Клеточная теория

Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.

В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э. Страсбургер — у растительных.

Клеточная теория является одной из основополагающих идей современной биологии, она стала неопровержимым доказательством единства всего живого и фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Основные положения клеточной теории не потеряли своей актуальности, однако со времени её создания были дополнены, и теперь она содержит такие утверждения:

Клетка - элементарная единица строения, функционирования, размножения и развития всех живых организмов, вне клетки нет жизни.

Клетка - целостная система, содержащая большое количество связанных друг с другом элементов — органелл.

Клетки различных организмов похожи по строению и основным свойствам и имеют общее происхождение.

Увеличение количества клеток происходит путем их деления, после репликации их ДНК: клетка - от клетки.

Многоклеточный организм — это новая система, сложный ансамбль из большого количества клеток, объединенных и интегрированных в системы тканей и органов, связанных между собой с помощью химических факторов: гуморальных и нервных.

Клетки многоклеточных организмов тотипотентны — любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала этого организма, всеми возможными потенциями для проявления этого материала, — но отличаются по уровню экспрессии (работы) отдельных генов, что приводит к их морфологическому и функциональному разнообразию — дифференцировк

3. Методы исследования структуры клетки

Впервые клетки удалось увидеть только после создания световых микроскопов, с того времени и до сих пор микроскопия остается одним из важнейших методов исследования клеток. Световая (оптическая) микроскопия, несмотря на своё сравнительно небольшое разрешение, позволяла наблюдать за живыми клетками. В ХХ веке была изобретена электронная микроскопия, давшая возможность изучить ультраструктуру клеток.

Для изучения функций клеток и их частей используют разнообразные биохимические методы — как препаративные, например фракционирование методом дифференциального центрифугирования, так и аналитические. Для экспериментальных и практических целей используют методы клеточной инженерии. Все упомянутые методические подходы могут использоваться в сочетании с методами культуры клеток.

Диаметр типичной клетки животных составляет 10-20 мкм, что в пять раз меньше мельчайшей видимой частицы. Только с появлением совершенных световых микроскопов в начале XIX века удалось установить тот факт, что все ткани животных и растений состоят из отдельных клеток. Это открытие, обобщенное в форме клеточной теории Шлейденом и Шванном в 1838 году, знаменует собой начало клеточной биологии.

Будучи чрезвычайно малыми по размерам, животные клетки к тому же бесцветны и прозрачны: следовательно, открытие их основных структур стало возможным благодаря разработке набора красителей в конце XIX столетия. Именно красители обеспечили достаточный контраст для наблюдения субклеточных структур. Сходная ситуация наблюдалась в начале 40-х годов нашего столетия, когда изобретение мощного электронного микроскопа потребовало новых методов сохранения и окраски клеток. И только после того, как они были разработаны, начала проявляться вся сложность клеточной структуры. В основе микроскопии как методологии до сих пор лежат способы приготовления образца и возможности самого микроскопа.

Рассмотрим следующие методы исследования структуры клетки:

1) Световая микроскопия, которая подразделяется на следующие виды: обычная оптическая, флуоресцентная, фазово-контрастная и интерференционная; 2) Электронная микроскопия; 3) Рентгеноскопия; 4) Фракционирование клеток.

1.1. Обычная оптическая микроскопия

В общем случае излучение данной длины волны может быть использовано для изучения только таких структур, минимальные размеры которых еще сопоставимы с длиной волны самого излучения. Этот принцип ограничивает возможности любого микроскопа. Предел разрешения светового микроскопа задается длиной световой волны, которая для видимого света лежит в пределах от 0,4 мкм (фиолетовый) до 0,7 мкм (темно-красный). Из этого следует, что самыми маленькими объектами, которые еще можно наблюдать в световой микроскоп, являются бактерии и митохондрии (их ширина ~ 0,5 мкм). Более мелкие элементы клетки искажаются эффектами, вызванными волновой природой света.

Для приготовления постоянного препарата, который можно окрасить и наблюдать в микроскоп, клетки обрабатывают фиксирующим агентом с тем, чтобы иммобилизировать, убить и сохранить их. В современных методах, как правило, используется обработка альдегидами, например, формальдегидом или глутаральдегидом, которые формируют ковалентные связи со свободными аминогруппами белков и, таким образом, сшивают соседние молекулы.

После фиксации ткани обычно режут на очень тонкие "ломтики" (срезы) на микротоме. Срезы толщиной от 1 до 10 мкм помещают на поверхность предметного стекла. В качестве заключающих сред используют парафин или специальную смолу. В жидком виде эти среды пропитывают и окружают фиксированную ткань: затем они затвердевают при охлаждении или за счет полимеризации, образуя твердый блок, который удобно резать на микротоме.

Существует серьезная опасность того, что процедуры фиксации или заключения могут повредить структуру клеток или клеточных макромолекул. Вот почему предложен другой метод приготовления срезов - быстрое замораживание. Замороженную ткань режут на криостате в специальном микротоме, установленном в холодной камере.

В содержимом большинства клеток, состоящих, как правило, на 70% из воды, практически отсутствуют компоненты, способные помешать прохождению световых лучей. Поэтому в естественном состоянии большинство клеток даже после фиксации и приготовления срезов практически невидимы в обычном световом микроскопе. Одна из возможностей их увидеть состоит в окраске клеток красителями.

1.2. Флуоресцентная микроскопия

Поскольку большинство макромолекул представлены в клетках относительно незначительным числом копий, одна или две молекулы красителя, связанные с макромолекулой, могут оставаться незамеченными. Альтернативный подход к проблеме чувствительности состоит в использовании флуоресценции.

Флуоресцирующие красители поглощают свет одной длины волны и излучают свет другой длины волны, более длинной. Если такое вещество облучить светом, длина волны которого совпадает с длиной волны света, поглощаемого красителем, и затем для анализа использовать фильтр, пропускающий свет с длиной волны, соответствующей свету, излучаемому красителем, флуоресцирующую молекулу можно выявить по свечению на темном поле. Высокая интенсивность излучаемого света является характерной особенностью таких молекул.

Применение флуоресцирующих красителей для окраски клеток предполагает использование специального флуоресцентного микроскопа. Такой микроскоп похож на обычный световой микроскоп, но здесь свет от осветителя, излучаемый мощным источником, проходит через два набора фильтров - один для задержания света перед образцом и другой для фильтрации света, полученного от образца.

Флуоресцентная микроскопия часто используется для выявления специфических белков или других молекул, которые становятся флуоресцирующими после ковалентного связывания с флуоресцирующими красителями. Например, флуоресцирующие красители могут быть связаны с молекулами антител, что сразу же превращает их в высоко специфические и удобные красящие реагенты, селективно связывающиеся со специфическими макромолекулами на поверхности живой либо внутри фиксированной клетки. Для этой цели обычно используют два красителя - флуоресцеин, который дает интенсивную желто-зеленую флуоресценцию после возбуждения светло-голубым светом, и родамин, обусловливающий темно-красную флуоресценцию после возбуждения желто-зеленым светом.

1. Метод дифференциального центрифугирования. При быстром вращении в ультрацентрифуге органоиды клеток располагаются слоями в соответствии со своей плотностью и массой. Более плотные органеллы осаждаются при более низких скоростях, а менее плотные — при более высоких скоростях. Далее исследователи эти слои отделяют и изучают. Данный метод позволяет наблюдать свойства и структуру каждого органоида или макромолекулы клетки.

2. Рентгеноструктурный анализ позволяет определить атомную структуру вещества. Рентгеновские лучи короче ультрафиолетовых.

3. Авторадиография (радиоавтография) — метод изучения распределения радиоактивных веществ в исследуемом объекте, при котором эти вещества как бы сами себя фотографируют. Например, при изучении фотосинтеза биологи с помощью этого метода могут увидеть след радиоактивного диоксида углерода.

4. Световые микроскопы появились еще в XIX веке, они дают увеличение до 1350 раз. Разрешающая способность 0,25 мкм (2,5*10 –7 ). С их помощью можно увидеть ядро, большинство органоидов, хромосомы и деление клеток.

5. Электронный микроскоп дает увеличение в миллион раз (10 –6 ). Появился он в середине XX века. Разрешающая способность 2 нм (2*10 –9 ).

6. Флуоресцентная микроскопия. В ультрафиолетовом свете (его лучи короче лучей видимого света) клеточные компоненты могут светиться. Также они могут светиться при добавлении специальных красителей. С использованием данного метода можно видеть места, где скапливаются нуклеиновые кислоты, жиры, витамины и др.

Физико-химические методы исследования клеток

1. Метод меченых атомов. Используется для изучения биохимических процессов в живых клетках. Чтобы отследить превращения вещества из его предшественника, один из атомов заменяют соответствующим изотопом (водорода, фосфора, углерода). Радиоактивное излучение позволяет наблюдать за соединением, установить этапы его превращения, их продолжительность, зависимость от внешних условий.

2. Хроматография. Метод основан на разнице скорости движения растворенных веществ через адсорбент. Вещества имеют разную молекулярную массу и поэтому с разной скоростью двигаются через волокна фильтровальной бумаги, порошок целлюлозы, другие пористые вещества. Изучаемые вещества, например, основные пигменты экстракта листьев — ксантофилы, каротин, хлорофиллы а, b.

3. Электрофорез. Разделение смеси веществ в растворе обеспечивает электрический ток (в геле). Это помогает разделить смеси веществ в клетке, выделить качественный и количественный состав веществ.

4. Цитохимические методы. Этими методами исследуют препараты костного мозга, крови, различных органов и новообразований. Они основаны на использовании специфических химических цветных реакций для определения в клетках различных веществ. Под действием специально подобранных реактивов происходит окрашивание тех или иных веществ в цитоплазме, а по степени и характеру окраски судят о количестве или активности исследуемых веществ.

В чем разница между цитохимическими методами и хроматографией?

При цитохимических методах ведут цветные химические реакции с помощью специальных реактивов, и по окрашиванию веществ определяют их свойства. В хроматографии выводы о свойствах веществ делают по тому, с какой скоростью они двигаются через пористые вещества.

Методы разделения клеток и их культивирования

1. Методы культуры клеток и тканей. Клетки и ткани выращивают, исследуют, наблюдая за ростом, размножением вне организма, изучают влияние различных веществ, получают гибриды.

2. Метод рекомбинантных ДНК. Вырезают ДНК из клетки, встраивают ее в ДНК бактерий, вирусов, изучают механизм наследственности, мутагенез.

Клетки очень малы по размеру и сложно устроены: трудно рассмотреть их структуру, трудно определить молекулярный состав и еще труднее установить, как функционируют их отдельные элементы. Для изучения клеток разработано множество экспериментальных методов, возможности которых определяют уровень наших знаний в этой области. Успехи в изучении биологии клетки, включая наиболее удивительные достижения последних лет, как правило, связаны с применением новых методических подходов. Поэтому для понимания клеточной биологии необходимо иметь некоторое представление о соответствующих экспериментальных методах.

Целью нашей работы мы поставим рассмотрение современных методов, используемых для изучения клеток. Мы рассмотрим современные методы, используемые для изучения клеток. Мы начнем знакомиться с теми из них, которые позволяют изучать клетку как единое целое, и затем обратимся к анализу составляющих клетку макромолекул. От пассивного наблюдения мы постепенно перейдем к методам, предполагающим активное вмешательство: рассмотрим, как клетки различных типов могут быть отделены от ткани и при этом сохранять способность расти, узнаем, как клетки можно разрушить, а клеточные органеллы и составляющие их макромолекулы выделить в чистом виде. И, наконец, мы изложим суть технологии рекомбинантных ДНК, благодаря которой стало возможным выделять, секвенировать и манипулировать генами и, следовательно, изучать механизмы их действия в клетке. Также мы систематизируем их, выделим основные вехи, которые удалось достигнуть благодаря их применению.

Раздел I . Микроскопические исследования как метод познания клетки

Диаметр типичной клетки животных составляет 10-20 мкм, что в пять раз меньше мельчайшей видимой частицы. Только с появлением совершенных световых микроскопов в начале XIX века удалось установить тот факт, что все ткани животных и растений состоят из отдельных клеток. Это открытие, обобщенное в форме клеточной теории Шлейденом и Шванном в 1838 году, знаменует собой начало клеточной биологии.

Будучи чрезвычайно малыми по размерам, животные клетки к тому же бесцветны и прозрачны: следовательно, открытие их основных структур стало возможным благодаря разработке набора красителей в конце XIX столетия. Именно красители обеспечили достаточный контраст для наблюдения субклеточных структур. Сходная ситуация наблюдалась в начале 40-х годов нашего столетия, когда изобретение мощного электронного микроскопа потребовало новых методов сохранения и окраски клеток. И только после того, как они были разработаны, начала проявляться вся сложность клеточной структуры. В основе микроскопии как методологии до сих пор лежат способы приготовления образца и возможности самого микроскопа.

Читайте также: