Слоистые пластики и пластмассы реферат

Обновлено: 04.07.2024

материалы, состоящие из нескольких слоев ткани, бумаги, шпона, лент или матов (т. н. наполнителя), пропитанных синтетической смолой (связующим). В качестве связующего используют феноло-формальдегидные, полиэфирные, эпоксидные смолы, полиимиды и др. В зависимости от вида наполнителя различают Текстолиты, наполнителями для которых служат ткани различной природы, например асботекстолит (наполнитель — асбестовая ткань; см. Асбопластики), Стеклотекстолит (стеклоткань), текстолит (главным образом хлопчатобумажная или органическая синтетическая ткань), Стеклопластики (наполнитель — стеклянные шпон, ленты, маты), древеснослоистые пластики (древесный шпон; см. Древесные пластики). Все С. п., содержащие в качестве наполнителя различного типа бумагу, называются Гетинаксами, например асбогетинакс. С. п. — важные конструкционные материалы, широко используемые в авиа-, автомобиле-, судостроении и других отраслях промышленности. См. также ст. Пластические массы.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое "Слоистые пластики" в других словарях:

СЛОИСТЫЕ ПЛАСТИКИ — пластмассы, упрочненные параллельно расположенными слоями наполнителя. Подразделяются на текстолиты (наполнитель ткани), гетинакс (бумага), древесно слоистые пластики (древесный шпон) … Большой Энциклопедический словарь

слоистые пластики — пластмассы, упрочнённые параллельно расположенными слоями наполнителя. Подразделяются на текстолиты (наполнитель ткани), гетинакс (бумага), древесно слоистые пластики (древесный шпон). * * * СЛОИСТЫЕ ПЛАСТИКИ СЛОИСТЫЕ ПЛАСТИКИ, пластмассы,… … Энциклопедический словарь

СЛОИСТЫЕ ПЛАСТИКИ — композиц. материалы на основе полимерного связующего с послойным расположением армирующего наполнителя. Связующим служат синтетич. смолы (эпоксидные, полиэфирные, феноло формальд. и др.), кремнийорг. полимеры, полиимиды, полиамиды, фторопласты,… … Химическая энциклопедия

СЛОИСТЫЕ ПЛАСТИКИ — полимерные материалы, в к рых упрочняющий (армирующий) наполнитель расположен парад л. слоями. См., напр., Асбопластики, Гетинакс, Декоративные слоистые пластики, Стеклопластики, Текстолит, Углепластики … Большой энциклопедический политехнический словарь

слоистые пластики с медной фольгой — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN copper clad laminates … Справочник технического переводчика

Декоративные слоистые пластики — полимерные материалы, в простейшем случае состоящие из основного и декоративного слоёв. В зависимости от назначения пластика, природы полимера и наполнителя Д. с. п. могут содержать дополнительно защитный, барьерный и балансирующий слои.… … Большая советская энциклопедия

Древесно-слоистые пластики — (ДСП) Содержание 1 Свойства 2 Получение 3 Применение 4 … Википедия

ДЕКОРАТИВНЫЕ СЛОИСТЫЕ ПЛАСТИКИ — материалы, состоящие в простейшем случае из осн. и декоративного слоев. Осн. слой, определяющий механнч. св ва материала, изготовляют из гетинакса, текстолита, стеклотекстолита, древесных пластиков, декоративный слой из бумаги или хл. бум. ткани… … Большой энциклопедический политехнический словарь

ДРЕВЕСНЫЕ СЛОИСТЫЕ ПЛАСТИКИ — изготовляют прессованием (145°С, 12,5 20 МПа, с послед. снижением т ры и давления) пакета из листов лущеного березового шпона. Предварительно сухой, выдержанный, отсортированный шпон пропитывают спирторастворимой феноло формальд. смолой в… … Химическая энциклопедия

БУМАЖНО-СЛОИСТЫЕ ПЛАСТИКИ — декоративные листовой облицовочный материал толщ. 1 3 мм, получаемый горячим прессованием бумаг, пропитанных термореактивными полимерами. Лицевой слой Б. с. п. образует декоративная бумага (напр., имитирующая ценные породы дерева), пропитанная… … Большой энциклопедический политехнический словарь

Замена в печатных схемах обычного трёхмерного проволочного монтажа двумерным, состоящим из сети проводников, которые размещаются на диэлектрической подложке – это изобретение, связанное с именем К. Паролини (Франция, 1926г.), которое по важности можно сравнить с изобретением книгопечатания Гутенбергом.
Печатная плата (ПП) представляет собой изоляционную пластину, играющую роль механического каркаса ПП, на одну или обе поверхности которой нанесён токопроводящий рисунок (как правило медная фольга), сформированный проводниками, соединяющими электрорадиорадиоэлементы (ЭРЭ) в соответствии с электрической схемой. ЭРЭ крепятся на печатную плату либо запайкой ножек деталей в специальные отверстия в ПП, обеспечивая механический крепёж ЭРЭ (dip-монтаж), либо поверхностным монтажом (пайкой элементов непосредственно на дорожки – chip-монтаж).

Содержание

1. Введение 3
2. Технология получения слоистых пластиков 5
3. Классификация и принцип маркировки 8
4. Физико-химические свойства 10
5. Механическая обработка слоистых пластиков 17
6. Список литературы 21

Прикрепленные файлы: 1 файл

Реферат Слоистые пластики.doc

Механическая прочность. У слоистых пластиков, так же как и у металлов, но в гораздо большей степени, наблюдается зависимость механической прочности от времени приложения механической нагрузки.

Зависимость разрушающих напряжений при изгибе слоистых пластиков от времени приложения механического напряжения.

2 – стеклотекстолит СТ;

3 – стеклотекстолит СТЭФ

Аналогично металлам, разрушение слоистых пластиков при приложении повторно-переменных напряжений можно объяснить тем, что в результате внутреннего трения в материале возникают и постепенно расширяются трещины, ослабляющие его вплоть до разрушения. Так, многократное приложение нагрузки, составляющей всего 75% предела прочности при растяжении в течение 20 с, вызвало следующее изменение механических свойств гетинакса:

Предел прочности при растяжении, % к исходному

После пятидесятого приложения нагрузки

После сотого приложения нагрузки

Для оценки материалов при циклических нагружениях пользуются показателем предела выносливости, который показывает максимальное напряжение, при котором материал выдерживает приблизительно 10 млн. повторных циклов без разрушения. Ниже приводятся ориентировочные данные о пределах выносливости некоторых слоистых пластиков.

Предел выносливости для различных слоистых пластиков, МПа

Предел выносливости слоистых пластиков зависит от содержания связующего. При этом увеличение содержания смолы, например, в гетинаксе, с 40% до 50% уменьшает его предел выносливости примерно на 20%

Влияние нагревания. Механические свойства большинства видов слоистых пластиков довольно сильно изменяются даже при небольшом повышении температуры.

Влияние температуры испытания на предел прочности при растяжении

1 – гетинакс I стеклотекстолит СТ

Зависимость предела прочности слоистых пластиков при сжатии перпендикулярно слоям от температуры

1 – стеклотекстолит СТ-ЭТФ

2 – стеклотекстолит СТЭФ

3 – стеклотекстолит СТ

Как видно из графиков, понижение прочности у различного вида слоистых пластиков происходит в неодинаковой степени и зависит от вида как применяемого связующего, так и наполнителя.

Длительное нагревание слоистых пластиков приводит в конечном счёте к довольно большому снижению их механических свойств.

Зависимость предела прочности при статическом изгибе слоистых пластиков от времени старения при температуре 160°С (измерения при 20°С)

1 – стеклотекстолит СТ

Как видно из графика, некоторое превышение предела прочности при статическом изгибе гетинакса после первого месяца нагревания следует объяснить процессом увеличения степени отверждения связующего, которое при прессовании гетинакса этой марки, по-видимому, прошло не до конца.

Однако нагревание слоистых пластиков при недопустимо высоких температурах может привести к резкой деструкции либо связующего, либо наполнителя. Так, при нагревании слоистых пластиков, изготовленных с применением фенолформальдегидных связующих, начиная примерно с 200°C появляется науглероживание этих связующих, которое усиливается при повышении температуры до 300-400°С. В то же время при нагревании слоистых пластиков, изготовленных с применением эпоксиднофенолформальдегидного связующего, при упомянутых температурах начинается сильная деструкция связующего с возгонкой продуктов деструкции без существенного образования продуктов обугливания. Если в первом случае, даже при полном обугливании связующего, ещё остаётся ощутимая механическая прочность за счёт оставшегося кокса, способного в некоторой степени связывать между собой слои наполнителя, то во втором случае практически наступает полное разрушение пластика.

Помимо падения жёсткости слоистых пластиков по мере увеличения температуры нагревания, также ухудшаются их электрические свойства, что видно из графиков.

Зависимость кратковременной электрической прочности слоистых пластиков от температуры испытания

1 – стеклотекстолит СТ

2 – стеклотекстолит СТК

Однако снижение такого показателя электрических свойств как электрическая прочность, происходит и после теплового старения слоистых пластиков. Из приведённых ниже графиков следует, что если даже кратковременный нагрев до соответствующей температуры может не влиять на электрическую прочность слоистого пластика, то тепловое старение при такой же температуре приводит к снижению его электрической прочности.

Влияние теплового старения Зависимость электрической прочности

на кратковременную электрическую гетинакса I и стеклотекстолита СТ

прочность стеклотекстолита СТК от времени старения при 160°С

(температура испытания 20°С)

1 – стеклотекстолит СТ

Влияние увлажнения. Большинство слоистых пластиков обладает сравнительно высоко влагопоглощаемостью. Исключение составляют такие пластики как текстолит ЛТ и стеклотекстолит СТВЭ, изготовленные с применением негидрофильных наполнителей, у которых водопоглощаемость оказывается и существенно не увеличивается при продолжительном увлажнении. У всех других видов слоистых пластиков с течением времени водопоголощение увеличивается до насыщения. Одновременно с увеличением водопоглощения изменяются и размеры самого пластика.

Зависимость водопоглощения и изменения размеров слоистых пластиков от времени пребывания в воде.

А – водопоглощение Б – изменение размеров

1 – текстолит Вч 1 – длины текстолита Вч

2 – стеклотекстолит СТ 2 – длины стеклотекстолита СТ

3 – стеклотекстолит СТ-1 3 – длины стеклотекстолита СТ-1

4 – толщины текстолита Вч

5 – толщины стеклотекстолита СТ

6 – толщины стеклотекстолита СТ-1

Также увлажнение в заметной степени ухудшает электрические характеристики слоистых пластиков. При этом очень чувствительными показателями оказываются tg d и сопротивление изоляции, что видно из графиков.

Зависимость tg d (при 50 Гц) от времени увлажнения слоистых пластиков при относительной влажности воздуха 98% и температуре 35°С

1 – стеклотекстолит ЛТ

2 – стеклотекстолит ЛТВЭ

3 – стеклотекстолит СТЭФ

5 – стеклотекстолит СТ

При этом сушка слоистых пластиков после увлажнения не всегда приводит к восстановлению электрических свойств до исходного состояния. Так после увлажнения стеклотекстолита СТЭФ при относительной влажности 95-98% и температуре 30°С, tg d его возрастает с 3 до 23-26%. Однако даже после продолжительной сушки при 160°С tg d остаётся выше 10-15%. В меньшей степени ухудшается удельное объёмное сопротивление слоистых пластиков.

Зависимость удельного объёмного сопротивления слоистых пластиков от времени увлажнения при относительной влажности воздуха 95-98% и температуре 35°С

3 – стеклотекстолит СТВЭ

4 – стеклотекстолит СТ

5 – стеклотекстолит СТЭФ

7 – текстолит ЛТ

Влияние времени приложения электрического напряжения. Электрическая прочность слоистых пластиков зависит от продолжительности приложения электрического напряжения. Если причиной понижения механической прочности являются релаксационные процессы, то продолжительное действие электрического напряжения, по-видимому, связано с вызываемыми им процессами ионизации воздуха в порах слоистого пластика и в конечном счёте со сквозным расширением этих пор за счёт ударов ионов воздуха в стенки этих пор. После появления в слоистом пластике за счёт длительного приложения электрического напряжения сквозных пор, наполненных ионизированным воздухом, происходит ионный элестрический пробой материала. Однако если слоистый пластик обладает повышенным значением tg d, то раньше, чем наступит ионный пробой, может вследствие очень сильного разогревания и обугливания слоистого пластика произойти тепловой пробой. Поэтому электрическая прочность большинства слоистых пластиков при высокой частоте, когда степень ионизаци воздуха увеличивается, оказывается существенно более низкой, чем при токе промышленной частоты. Так, если гетинакс, имеющий tg d около 0.1, при температуре 90°С выдерживает в течение 1 мин вдольслоёв при частоте 50 Гц и расстоянии между электродами 50 мм напряжение в 55 кВ, то при частоте тока 100 кГц он выдерживает только 25 кВ.

Зависимость электрической прочности слоистых пластиков перпендикулярно слоям от времени приложения электрического напряжения (частотой 50 Гц)

1 – стеклотекстолит СТЭФ при 20°С

2 – то же при 100°С

3 – гетинакс I при 20°С

4 – то же при 100°С

5 – стеклотекстолит СТ при 20°С

6 – то же при 100°С

5.Механическая обработка слоистых пластиков

Слоистые пластики могут подвергаться всем видам механической обработки, которые применяются для изготовления деталей из металлов. Однако если изготовление деталей из слоистых пластиков не сводится к получению отдельных разовых партий, когда можно пренебречь износом режущего инструмента, то режимы резания и геометрия режущего инструмента отличаются от тех, которые применяются для изготовления деталей из металлов.

В отличие от металлов слоистые пластики обладают меньшей теплопроводностью (в 200 раз меньшей, чем железо, медь). При этом применение охлаждающих жидкостей или воды недопустимо, так как они могут приводить к ухудшению физико-механических и особенно электрических свойств слоистых пластиков. Применение воздуха для охлаждения режущего инструмента и деталей не является достаточно эффективным.

Более эффективным средством для отвода тепла, когда уменьшается контактная площадь соприкосновения режущего инструмента с поверхностью пластмассы, является применение такого инструмента, у которого главные и вспомогательные задние углы максимально увеличены. Одновременно меньшие механическая прочность и твердость слоистых пластиков требуют меньшей силы резания (в 6 – 20 раз меньше, чем у металлов). Это позволяет делать режущую часть инструмента более заостренной, без опасения потерь её прочности.

Однако при всех этих условиях следует учитывать, что при неправильных режимах резания может происходить подгорание пластмасс с поверхности или возникновение вследствие перегрева даже внутри деталей процессов деструкции, приводящих к ухудшению физико-механических и электрических свойств материала деталей. Несмотря на меньшую потребность в усилиях резания, слоистые пластики оказывают довольно большое влияние на износ режущего инструмента. Особенно это относится к стеклотекстолитам, когда абразивные свойства материала приводят к быстрому износу режущего инструмента и даже приходится прибегать к применению алмазного инструмента.

Некоторого уменьшения износа режущего инструмента можно достигнуть путем интенсивного удаления стружки и пыли, которые могут способствовать преждевременному его износу. Такое удаление необходимо также во избежание скапливания в помещении пыли, образующейся при обработке слоистых пластиков. Поэтому оборудование, применяемое для обработки, должно быть снабжено надёжным отсасывающим устройством.

Пластическими массами или просто пластмассами называют композиционные материалы на основе полимеров, обладающие текучестью (пластичностью) и способные при нагревании под давлением принимать заданную форму и устойчиво сохранять ее после охлаждения, т.е обладающие пластическими свойствами в условиях переработки и не обладающие этими свойствами в условиях эксплуатации. Таким образом, при обычных температурах пластмассы представляют собой твердые, упругие тела.

Чтобы лучше представить себе некоторые механические свойства пластмасс, сравним эти свойства с аналогичными свойствами некоторых металлов. Плотность различных пластмасс колеблется от 0,9 до 2,2 г/см­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­3; имеются особые типы пластмасс (пенопласты) с плотностью 0,02 – 0,1 г/см3. В среднем, пластмассы примерно в 2 раза легче алюминия, в 5 – 8 раз легче стали, меди и других металлов, а некоторые сорта пенопластов более чем в 10 раз легче пробки. Прочность некоторых видов пластмасс даже превосходит прочность некоторых марок стали, чугуна, дюралюминия и др.

По химической стойкости пластмассы не имеют себе равных среди металлов. Они устойчивы не только к действию влаги воздуха, но и таких сильнодействующих химических веществ, как кислоты и щелочи.

Обычно пластмассы являются диэлектриками. Отдельные сорта пластмасс представляют собой лучшие диэлектрики из всех известных в современной технике.

В настоящее время известен целый ряд пластмасс, обладающих значительной тепло- и морозостойкостью, что позволяет применять их для изготовления изделий, работающих в широком интервале температур.

Наряду с большой механической прочностью некоторые виды пластмасс обладают прекрасными оптическими свойствами.

Обычно пластмассы имеют твердую, блестящую поверхность, не нуждающуюся в полировке, лакировке или поверхностной окраске. Внешний вид их не изменяется от обычных атмосферных воздействий.

2. Состав пластмасс.

Пластмассы представляют собой смеси полимеров с другими веществами.

Получение полимеров основано на реакциях полимеризации, поликонденсации и обменного взаимодействия полимеров с другими веществами.

Способ производства полимера определяет строение его молекул, среднюю молекулярную массу М, количество остаточных примесей и таким образом влияет на комплекс свойств материала.

Полимеры - основа пластмассы. Полимерами называют вещества высокой относительной молекулярной массы (молекулярного веса). Они состоят из повторяющихся групп атомов, звеньев исходного вещества – мономера. Звенья образуются и последовательно соединяются друг с другом в процессах получения полимеров. Они образуют линейные цепные молекулы (табл.1), длина которых, в тысячи раз превышает длину неполимерных соединений, такие молекулы называют макромолекулами. Чем больше звеньев в макромолекуле полимера (больше степень полимеризации), тем более прочен материал и более стоек к действию нагрева и растворителей. Если в макромолекулы объединены разные звенья, то полимер называется сополимером. Сополимеризация аналогична легированию в сплавах и изменяет свойства материала. Из-за невозможности эффективной переработки мало-плавкого и трудно-растворимого полимера в ряде случаев получают сначала полуфабрикаты - полимеры со сравнительно низкой молекулярной массой - олигомеры, легко доводимые до высоко молекулярного уровня при дополнительной тепловой обработке одновременно с изготовлением изделия.

Наполнители , графит), волокон (хлопчатобумажные, стеклянные, асбестовые, полимерные), листов (бумага, ткани из различных волокон, древесный шпон).добавляют в количестве 40-70% (по массе) для повышения механических свойств, снижения стоимости и изменения других свойств. Наполнители- это органические и неорганические вещества в виде порошков (древесная мука, сажа, слюда, SiO², тальк, TiO

Стабилизаторы - различные органические веществ, которые вводят в количестве нескольких процентов для замедления старения, что стабилизирует свойства и удлиняет срок эксплуатации. Старение представляет необратимое изменение свойств пластмассы под влиянием среды. В основе старения лежат изменения структуры молекул полимера.

Пластификаторы добавляют в количестве 10-29% для уменьшения хрупкости и увеличения формуемости. Пластификаторами являются вещества, которые уменьшают межмолекулярное взаимодействие и хорошо совмещаются с полимерами. Часто пластификаторами служат эфиры, а иногда и полимеры с гибкими молекулами.

Отвердители вводят в количестве нескольких процентов в реактопласты для соединения полимерных молекул химическими связями. В итоге образуется пространственная молекулярная сетка (сетчатая структура), а молекулы отвердителя становятся частями этой сетки. В качестве отвердителей используют серу ( в каучуках), органические перекиси и другие соединения.

Специальные добавки- смазки, красители, добавки для уменьшения статистических зарядов, для уменьшения горючести, для защиты от плесени, ускорители и замедлители отверждения и другие- служат для изменения или усиления какого-либо свойства.

4. Структура полимеров


  • омополимеры - полимеры, состоящие из одинаковых звеньев мономеров;

  • сополимгеры - полимеры, состоящие из разных исходных звеньев мономеров;

  • элементоорганические - соединения с введенными в главную цепь или боковые цепи атомами кремния (кремнийорганические соединения), бора алюминия и др. Эти соединения обладают повышенной теплостойкостью.

  • линейная неразветвленная , допускающая плотную упаковку;

  • разветвленную, труднее упаковываемая и дающая рыхлую структуру;

  • сшитая – лестничная;

  • сетчатая;

  • паркетная;

  • сшитая трехмерно-объемная , с густой сеткой поперечных химических связей.

Структуру изделия с кристаллическим полимером характеризует определенная степень кристалличности (от 60 до 95%) и неравномерность кристаллических областей по сечению. Свойства таких изделий, полученных в разных условиях переработки, несмотря на морфологическую схожесть структуры, различны. Показатели качества изделий из полимерных материалов зависят от свойств, условий подготовки, переработки и физической модификации материала. Внешний вид изделий зависит от условий переработки, чистоты материала, влажности.

Диэлектрические показатели и химическая стойкость зависят от химической структуры и модификации полимера. Механические свойства - прочность, ударная стойкость, деформация, жесткость, теплостойкость - зависят от надмолекулярной структуры, а коэффициент трения и износостойкость, стойкость к горению зависят от химической структуры и модификации. Эксплуатационные свойства - размерная точность и размерная стабильность - зависят, как от химической структуры, молекулярных характеристик, технологических свойств, так и от технологии переработки и технологичности конструкции. Термостабильность полимеров. Основным показателем в этом случае является деструкция.

Деструкция полимеров - это изменение строения макромолекул. Деструкция может протекать под действием тепла, кислорода, химических агентов (в том числе воды), света, излучений высокой энергии, механических напряжений и т.п., как от отдельного, так и от совокупности параметров. Она сопровождается уменьшением молекулярной массы, выделением газообразных и низкомолекулярных продуктов, изменением окраски и появлением запаха. Деструкция может сопровождаться не только разрушением макромолекул, но и сшиванием их (структурированием), что вызывает увеличение массы и вязкости расплава. Следствием этого является нарушение всех свойств материала, снижение стабильности свойств изделий. При переработке полимеров может происходить как термоокислительная, так и механическая деструкция, а у гигроскопических материалов еще и гидролиз.


  • омополимеры - полимеры, состоящие из одинаковых звеньев мономеров;

  • сополимгеры - полимеры, состоящие из разных исходных звеньев мономеров;

  • элементоорганические - соединения с введенными в главную цепь или боковые цепи атомами кремния (кремнийорганические соединения), бора алюминия и др. Эти соединения обладают повышенной теплостойкостью.

  • линейная неразветвленная , допускающая плотную упаковку;

  • разветвленную, труднее упаковываемая и дающая рыхлую структуру;

  • сшитая – лестничная;

  • сетчатая;

  • паркетная;

  • сшитая трехмерно-объемная , с густой сеткой поперечных химических связей.

5.Классификация пластмасс

Наиболее характерные особенности пластмасс: малый вес, хорошая химическая стойкость, высокие электрические свойства, низкая теплопроводность, сравнительно большое термическое расширение.

Пластмассы, получаемые на основе термопластичных полимеров , называют термопластичными, или термопластами, а получаемые на основе термореактивных полимеров — реактопластами. В строительстве широко применяют термопласты на основе поливинилхлорида — декоративные пленки, линолеумы для покрытия полов, трубы и т. д.; полиэтилена — трубы, пленки, соединительные детали; полипропилена — ручки для окон и дверей, декоративные и вентиляционные решетки, корпуса для различных изделий. В качестве реактопластов используют бумажно-слоистые и древесно-слоистые пластики на основе фенолоформальдегидных и мочевиноформальдегидных смол.

По композиционному составу различают два вида пластмасс; ненаполненные и наполненные.

Ненаполненные пластмассы состоят только из полимера и некоторых специальных добавок. К ним относятся полиэтиленовая пленка, полистирольные изделия и др.

Наполненные пластмассы содержат кроме полимера наполнители, стабилизаторы, пигменты. К наполненным пластмассам относятся различные виды линолеума и погонажные изделия из поливинилхлорида, бумажно-слоистые пластики и др.

По виду наполнителя пластмассы подразделяют на: пресс-порошки, волокниты и слоистые пластики. В пресс- порошках используются порошковые наполнители, в волокнитах – волокна, в слоистых пластиках-листы наполнителя.

В зависимости от физико-механических свойств при нормальной температуре, в основе которых лежит модуль упругости, пластмассы делят на жесткие, полужесткие, мягкие и эластичные.

Жесткие пластмассы (предел прочности при сжатии при 50%-ной деформации более 0,15 Мпа) — твердые упругие материалы аморфной структуры. Характеризуются незначительным удлинением, хрупким разрушением при разрыве. Примерами жестких пластмасс служат фенопласты и аминопласты.

Полужесткие пластмассы — твердые вязкоупругие материалы кристаллической структуры. Характеризуются высоким относительным удлинением при разрыве. К таким пластмассам относятся полипропиленовые трубы, полиамидные пластики.

Мягкие пластмассы обладают высоким относительным удлинением при разрыве и низким модулем упругости. К ним относятся полиэтиленовая пленка, трубы, поливинилацетатные пленки.

Эластичные пластмассы(предел прочности при сжатии при 50%-ной деформации менее 0,01 Мпа) — мягкие, гибкие материалы, характеризующиеся большими деформациями при растяжении. Примером эластичных пластмасс служат каучуковые резины.

По назначению и отличительным признакам пластмассы бывают общего назначения, высокопрочные, антикоррозионные, прозрачные, морозо- и теплостойкие, электроизоляционные.

Пластмассы общего назначения — материалы, к показателям физико-механических и химических свойств которых не предъявляют особых требований. К этим материалам относятся отделочные, декоративные, упаковочные, хозяйственно-бытовые и другие изделия из пластмасс (поливинилхлорида, полипропилена, фенопластов и др.).

Высокопрочные пластмассы — полиформальдегид, полиэфирные пластики, поликарбонаты — характеризуются высоким пределом прочности при сжатии и изгибе, большой износостойкостью и высоким коэффициентом трения (фрикционные свойства). Эти материалы способны заменить бронзу и баббит, например, в подшипниках, втулках; их используют для изготовления труб, зубчатых колес, гребных винтов.

Антикоррозионные пластмассы — каучуки, полиизобутилен, эпоксипласты — обладают высокой химической стойкостью к воде, кислотам, растворам солей и органическим растворителям. Эти материалы используют вместо металлических деталей в оборудовании и конструкциях, эксплуатирующихся в агрессивных средах, из них изготовляют контейнеры-цистерны жидкого топлива.

Прозрачные пластмассы — полиметилметакрилат, полистирол — пропускают лучи света в широком диапазоне волн, и в частности ультрафиолетовую часть спектра, благодаря чему они не уступают по своим оптическим свойствам лучшим сортам стекла и хрусталя и значительно превосходят в этом силикатное стекло. Из таких пластмасс изготовляют оптические системы осветительной арматуры.

Морозостойкие пластмассы — полиизобутилен, этилцеллюлоза, поликарбонат — сохраняют эластичные свойства и гибкость при низких (минусовых) температурах. Изделия и конструкции, изготовленные из таких пластмасс, можно эксплуатировать в атмосферных условиях.

Теплостойкие пластмассы — полиорганосилоксаны, политрихлор-этилен, фенопласты — обладают способностью не размягчаться при повышении температуры. Такие пластмассы широко применяют в промышленности и быту, в отдельных случаях они заменяют металл и керамику.

Электроизоляционные пластмассы — полиэтилен, поливинилхлорид, полистирол — характеризуются низкой диэлектрической постоянной, высокой электрической прочностью, высоким объемными поверхностным сопротивлением. Их применяют для изоляции проводов и электрооборудования в электротехнике, для замены эбонита.

Теплоизоляционные пластмассы — поливинилхлорид, полистирол, полиуретан, фенопласты — отличаются низкой теплопроводностью. К таким пластмассам относятся пористые газонаполненные материалы — пенопласты и поропласты, применяемые для теплоизоляции холодильных приборов и установок, жилых помещений, многослойных стеновых панелей и т. п.

6.Свойства пластмасс.


Все свойства полимеров зависят от их химического состава и молекулярной массы. Прочность, твердость, температура перехода, диэлектрическая проницаемость, электрическая прочность, электросопротивление, тангенс угла диэлектрических потерь и другие свойства у различных полимеров изменяются в широком диапазоне .

6.1. Плотность.Полимеры имеют плотность от 0,9 до 2,2 г/см³; самые легкие –полиэтилен и полистирол, а самый тяжелый фторопласт-4 с плотностью 2,2 г/см³. Плотность пластмасс обычно равна 1,1-1,6 г/см³, а у пористых пластмасс- всего 0,01-0,2г/см³.

6.2.Стойкость в агрессивных средах. Полимеры стойки против долговременного действия промышленных агрессивных сред, включая щелочи и концентрированные кислоты и применяются для изготовления защитных покрытий на металлы. В отличие от металлов полимеры не подвержены электрохимической коррозии. В то же время для каждой группы полимеров известны вещества, с которыми они взаимодействуют химически. К ним относятся окислители (азотная, хромовая и серная кислоты, органические перекиси), галоиды, амины, щелочи. Некоторые полимеры гидролизуются, для них опасны вода и водяной пар при температурах выше 100 ° С.

Термопластичные полимеры растворяются, а термореактивные с сетчатой структурой лишь набухают в органических растворителях. При растворении химических изменений не происходит и полимерные молекулы не разрушаются. При впитывании растворителя ослабляется межмолекулярное притяжение, понижается прочность и твердость, а также изменяются и другие свойства.

Под действием окружающей среды полимеры медленно стареют. При старании происходит как разрыв макромолекул на куски, так и соединение кусков и самих молекул друг с другом поперечными связями. Старение развивается при одновременном или раздельном действии нагрева, окисления, ионизации, механических напряжений, облучения ( свет, γ-излучение, потоки электронов и нейтронов). Интенсивность старения определяется условиями эксплуатации и структурой. Материалы, стойкие в одних условиях, в других быстро разрушаются. Термопласты и резины стареют быстрее, чем реактопласты.

Все полимеры разрушаются при нагреве и большинство разлагается при температурах 150-300°С. Стойкость сложных пластмасс зависит от свойств наполнителей, пластификаторов и других составляющих. Пластмассы с неорганическими наполнителями ( стеклянное волокно, асбест, графит и другие) более стойки, чем пластмассы с органическими наполнителями ( бумага, дерево, хлопчатобумажное волокно). Некоторые полимеры (полистирол, органическое стекло, а также пористые пластмассы на их основе) огнеопасны. Горючесть их устраняется специальными добавками или модифицированием полимеров.

6.3. Теплофизические свойства. Полимеры плохо проводят теплоту, сильно расширяются при нагреве и имеют значительную теплоемкость(0,3-0,5 кал/г.°С).

Теплопроводность полимеров в десятки и сотни раз меньше, чем у металлов. Коэффициент теплопроводности λ у полимеров не превышает 10∙10 -4 кал/см∙г.°С∙с. Пластмассы, наполненные графитом или металлическими порошками значительно лучше проводят теплоту. Наименьшую теплопроводность имеют простые пористые пластмассы (λ=0,5-1∙10 -4 кал/см∙г.°С∙с).

Коэффициенты теплового расширения полимеров (60÷100∙10 -6 °С -1 ) в 10-30 раз больше, чем металлов. Термопластичные полимеры расширяются сильнее термореактивных с сетчатой структурой. Из-за различия коэффициентов теплового расширения полимеров и металлов возникают термические напряжения при плотном соединении материалов друг с другом. Термические напряжения возникают в проводниках электрического тока, залитых пластмассами, клеевых швах, в пластмассовых деталях с металлическими вставками и т.д. Термическое расширение пластмасс можно уменьшить, используя неорганические наполнители с низким коэффициентом линейного расширения (стекло, порошки Al2O3; TiO2 и др.).

Пластмассы (пластики) представляют собой органические материалы на основе полимеров, способные при нагреве размягчаться и под давлением принимать определённую устойчивую форму.

Полимеры – это соединения, которые получаются путем многократного повторения (рис. 1), то есть химического связывания одинаковых звеньев – в самом простом случае, одинаковых, как в случае полиэтилена это звенья CH2, связанные между собой в единую цепочку. Конечно, существуют более сложные молекулы, вплоть до молекул ДНК, структура которых не повторяется, очень сложным образом организована.

Формы макромолекул полимеров

Формы макромолекул полимеров

Рис. 1. Формы макромолекул полимеров

1. Компоненты, входящие в состав пластмасс

В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы. Свойства полимеров могут быть в значительной степени улучшены и изменены, в зависимости от требований, предъявляемых различными отраслями техники, с помощью различных составляющих пластмассы.

Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Наполнителями могут быть ткани, а также порошкообразные и волокнистые вещества.

Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификаторов применяют дибутилфталат, трикрезилфосфат и др. Их содержание колеблется в пределах 10 – 20 %.

Стабилизаторы – вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности, повышенных температур и других факторов. Для стабилизации используют ароматические амины, фенолы, сернистые соединения, газовую сажу.

Красители добавляют для окрашивания пластических масс. Применяют как минеральные красители (мумия, охра, умбра, литопон, крон и т. д.), так и органические (нигрозин, родамин).

Смазочные вещества – стеарин, олеиновая кислота, трансформаторное масло – снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.

2. Классификация пластмасс

В зависимости от поведения связующего вещества при нагреве пластмассы разделяют на термореактивные и термопластичные.

Термореактивные пластмассы при нагреве до определенной температуры размягчаются и частично плавятся, а затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Термореактивные пластмассы необратимы: отходы в виде грата и бракованные детали обычно используют после измельчения только в качестве наполнителя при производстве пресспорошков.

Термопластичные пластмассы при нагреве размягчаются или плавятся, а при охлаждении твердеют. Термопластичные пластмассы обратимы, но после повторной переработки пластмасс в детали физико-механические свойства их несколько ухудшаются.

К группе термореактивных пластмасс относятся пресспорошки, волокниты и слоистые пластики. Они выгодно отличаются от термопластичных пластмасс отсутствием хладотекучести под нагрузкой, более высокой теплостойкостью, малым изменением свойств в процессе эксплуатации. Термореактивные пластмассы перерабатывают в детали (изделия) преимущественно методом прессования или литьё под давлением (рис. 2).

Схема получения деталей из термореактивных пластмасс

установка получения деталей из термореактивных пластмасс

Рис. 2. Схема и установка для получения деталей из термореактивных пластмасс

В таблице 1 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс. На рис. 3 показаны некоторые изделия из термореактивных пластмасс.

свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс

Изделия из термореактивных пластмасс

Рис. 3. Изделия, где применены термореактивные пластмассы

Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная масса попадает в специальную форму, где происходит прессование и дальнейшее охлаждение (рис. 4). Как правило, большинство термопластов может быть использовано вторично.

Пресс-форма для литья пластмасс

Рис. 4. Пресс-форма для литья пластмасс

В таблице 2 приведены свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс. На рис. 5 показаны некоторые изделия из термопластичных пластмасс.

свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс

Изделия из термопластичных пластмасс

Рис. 5. Изделия из термопластичных пластмасс

Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).

3. Механические свойства пластмасс

Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).

Механические испытания пластмасс на деформацию

Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)

Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.

Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).

Детали конструкционного применения из пластмасс

Рис. 7. Детали конструкционного применения из пластмасс

В таблице 3 указаны механические свойства термопластов общего назначения.


Несколько примеров по обозначению (см. табл. ниже).


4. Сварка пластмасс

Сварке подвергаются только так называемые термопластичные пластмассы (термопласты), которые при нагревании становятся пластичными, а после охлаждения принимают первоначальные вид и свойства. Кроме них, существуют термореактивные пластмассы, которые изменяют свои свойства при нагреве. Нагревать пластмассы при сварке следует не выше температуры их разложения, т. е. в пределах 140—240 °С.

Пластмассы можно сваривать различными способами:

  • нагретым газом;
  • контактной теплотой от нагревательных элементов;
  • трением;
  • ультразвуком (рис. 8).

Основные условия для получения качественного соединения пластмасс при сварке следующие:

  1. Диаметр присадочного прутка не должен превышать 4 мм для достаточно быстрого его нагрева и обеспечения необходимой производительности сварки.
  2. Сварку следует вести по возможности быстро во избежание термического разложения материала.
  3. Необходимо точно выдерживать температуру сварки во избежание недостаточного нагрева или перегрева свариваемого материала.

На рис. 8 показано оборудование и методы сварки пластмасс.

Сварочный экструдер для сварки пластмасс, полимеров

Рис. 8. Сварочный экструдер для сварки пластмасс, полимеров

5. Другие свойства пластмасс

Химическая стойкость. Химическая стойкость пластмасс, как правило, выше, чем у металлов. Химическая стойкость пластмасс в основном определяется свойствами связующего (смолы) и наполнителя. Наиболее химически стойкими в отношении всех агрессивных сред являются фторсодержащие полимеры —фторопласты 4 и 3. К числу кислотостойких пластмасс в отношении концентрированной соляной кислоты могут быть отнесены винипласт и фенопласты с асбестовым наполнителем. Стойкими к действию щелочей являются винипласт и хлорвиниловый пластик.

Электроизоляционные свойства. Почти все пластмассы — хорошие диэлектрики. Этим объясняется их широкое применение в электро- и радиотехнике. Большинство пластмасс плохо переносит т. в. ч. и поэтому они применяются в качестве электроизоляционных материалов для деталей, которые предназначаются для работы при частоте тока 50 Гц. Однако такие ненаполненные высокополимеры, как фторопласт и полистирол, практически не меняют своих диэлектрических качеств в зависимости от частоты тока и могут работать при высоких и сверхвысоких частотах.

Повышение температуры, как правило, ухудшает электроизоляционные характеристики пластмасс. Исключение составляет полистирол, сохраняющий электроизоляционные свойства в интервале температур от —60 до +60° С, и фторопласт 4 — в интервале температур от —60 до +200°. С.

Фрикционные свойства. В зависимости от условий работы пластмассовые детали могут обладать различными по величине фрикционными характеристиками. Так, например, текстолит при малых нагрузках имеет малый коэффициент трения, что и позволяет широко использовать его вместо бронзы, антифрикционных чугунов и т. д. Коэффициент трения тормозных материалов типа КФ-3 высок, что и отвечает назначению этих материалов. Из этих двух примеров следует, что утверждение, высказанное выше, справедливо

Читайте также: