Сила тяжести на марсе реферат

Обновлено: 05.07.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Физические условия на поверхности планет Солнечной системы были и остаются в центре внимания астрономии. Определение силы тяжести с необходимой точностью выполняются для планирования и совершения разнообразных межпланетных миссий и применяются в проектах по освоению соседних с Землёй, планет. Необходимо точно представлять себе, какая именно сила будет воздействовать на людей со стороны планеты, чтобы вычислить вес космонавтов. Это поможет при нахождении технических решений для будущих экспедиций, например, при конструировании скафандров.

Объект исследования: сила тяжести планет Солнечной системы

Цель исследования: найти вес человека на планетах Солнечной системы.

Методы исследования: сбор и анализ информации по теме с использованием различных литературных источников.

Основная часть

Планеты нашей Солнечной системы представляли живой интерес для физиков и астрономов с самого момента их обнаружения на обширном космическом пространстве. При их детальном изучении в течение долгого времени было установлено, что все планеты различны по своему весу и размеру, составу поверхности, физическим и химическим свойствам, а в особенности по величине силы тяжести.

Как известно из большинства источников, сила тяжести может быть рассчитана по формуле F =m* g , где масса тела m умножается на величину ускорения свободного падения g. Для примера возьмём вес человека, равный 60 кг и округлим величину g до показателя в 10 м/с., следовательно, на Земле сила тяжести будет равна 600 Н. Аналогично проведём расчёт по формуле силы тяжести для других планет, используя величину свободного ускорения,

полученную астрономом О. Н. Коротцевым. Итак, имеем следующие данные:

Плутон – 36 Н (0,6 м/с * 60 кг)

Меркурий – 222 Н (3,7 м/с * 60 кг)

Марс – 234 Н (3,9 м/с * 60 кг)

Сатурн – 624 Н (10,4 * 60 кг)

Уран – 534 Н (8,9 м/с * 60 кг)

Венера – 540 Н (9 м/с * 60 кг)

Земля – 600 Н (10 м/с * 60 кг)

Нептун – 660 Н (11 м/с * 60 кг)

Юпитер – 1440 Н (24 м/с * 60 кг)

Как видно из расчётов, Земля по показателю силы тяжести находится между гигантами, где на Сатурне и Уране она меньше, а на Юпитере и Нептуне выше. Причём стоит отметить, что на Юпитере ключевой фактор величины силы тяжести не только в его огромных размерах, но и в величине центробежного ускорения. На Венере человек весом в 60 кг будет примерно на 10 % легче, в то время как на Меркурии и Марсе легче почти в 2,6 раза. Наиболее лёгким человек будет на Плутоне, где разница составляет 16,6 раза.

Как итог, сила тяжести на различных планетах действительно различается: на одних разница невелика, а на других может достигать десятки раз. Это зависит не только от размеров планеты, твёрдости или газообразности её поверхности, но и от величины её центробежного ускорения, а также от распределения масс в недрах небесного тела.

Гравитация на планете Марс

Магнитное поле планеты

Одним из непреодолимых пока препятствий становится отсутствие на Марсе планетарной магнитосферы. Остаточные явления магнетизма присутствуют и колеблются, по данным российских исследовательских станций, от 60 гамм на экваторе до 120 — на полюсах, но это более чем в 500 раз меньше напряженности земного аналога.

Вращение земного ядра создает в расплавленной магме конвекционные токи, которые генерируют магнитную напряженность (по принципу динамо-машины). На красной планете этот механизм не работает, что сначала привело к исчезновению почти всей марсианской атмосферы, а сейчас проявляется в постоянном уровне радиации в 220 рад в день на поверхности.

Это на 10% больше нормы, допустимой для космонавтов на МКС, и для возможных колонистов грозит необратимыми последствиями:

  • повышенным риском онкологических заболеваний;
  • изменениями на генетическом уровне;
  • мутациями в последующих поколениях;
  • острой лучевой болезнью и смертью.

Тем не менее существуют явные признаки, что когда-то магнитное поле Марса существовало и функционировало, но процесс этот прекратился в силу неизвестных обстоятельств около 3,2 млрд лет назад.

Почему Марс потерял магнитное поле

Из версий о причинах утраты магнитосферы наиболее убедительной считается гипотеза профессора Джафара Аркани-Хамеда из университета в Торонто. Проведя компьютерное моделирование, он доказал высокую вероятность того, что катастрофа связана со взаимодействием планет солнечной системы, в частности с влиянием Юпитера на пояс астероидов.

Под влиянием этого газового гиганта достаточно массивное тело, сопоставимое по размерам с малой планетой, было вытолкнуто со своей орбиты и, захваченное Марсом, сделалось его спутником с постоянно уменьшающимся радиусом обращения.

При снижении спутника до 50-75 тыс. км возникла конвекционная нестабильность марсианского ядра, что привело его в движение, создав эффект динамо. Возникло общепланетное магнитное поле, которое могло просуществовать до 400 млн лет, надежно прикрывая планету.

Однако сила притяжения Марса продолжала действовать на астероид, заставляя его снижаться до тех пор, пока на пределе Роша (2,44 радиуса планеты) он не разрушился и обломки его не рухнули на поверхность.

Марс получил из космоса удар такой силы, что деформировалась твердая кора планеты.

Астрономы находят этому подтверждение в наличии гигантского кратера в области Эллада (южное полушарие) и антиподной ей группе вулканов во главе с крупнейшей в солнечной системе горой Олимп (северное), поднимающейся над окружающей равниной на 26 км.

Утрата спутника повлекла за собой остановку вращения ядра и исчезновение планетарного поля. Остаточные магнитные явления неравномерно распределились по поверхности Марса и связаны, скорее всего, с особенностями геологических пород.

Расчет марсианской гравитации

Из-за слабого и неравномерного распределения магнетизма по поверхности планеты показатели его гравитации тоже крайне низки.

Сила тяжести на Марсе составляет 38% от земной, что легко рассчитывается по формуле Ньютона:

Соотношение марсианской массы (6,4171 х 10²³ кг) к массе Земли = 0,107, то есть около 10%. Тот же показатель для радиусов планет (3389,5 и 6371 соответственно) = 0,532.

g = 0,107 / 0,532² = 0,376.

То есть тело, имеющее на Земле в состоянии покоя вес 100 кг, на Марсе будет весить 38. А это заставляет вспомнить о негативном воздействии на организм человека слабой гравитации. Космонавты за 4-6 месяцев пребывания на МКС теряли до 15% мышечной массы при интенсивных нагрузочных упражнениях.

Расчет марсианской гравитации

Разрешающая способность современных космических аппаратов позволяет достичь красной планеты только за 8 месяцев. Кроме того, длительное нахождение в подобных условиях пагубно воздействует на плотность костей, сохранность внутренних органов, проявляется в снижении зрения.

Почему на Марсе по другому

Тяготение Марса относительно Земли выражается в пропорциональной зависимости следующих характеристик:

  • массы;
  • расстояния до центра планеты;
  • размера;
  • плотности.

Земля, имеющая превосходство по всем показателям, оказывает большую силу притяжения, которая ослабляется лишь по мере удаления планет друг от друга. Эти же параметры определяют и воздействие на предметы, находящиеся на поверхности каждой из них.

Несмотря на отдельные совпадения и частичное сходство, проявляющиеся в наличии полярных шапок, примерно одинаковом наклоне оси вращения, климатических изменениях, различия между планетами гораздо существенней.

Тяготение Марса относительно Земли

Сравнение с гравитацией Земли

Имея высокие гравитационные показатели, обладая достаточно плотной и высокой атмосферой, защищенная магнитным полем Земля создает для жизни организмов всех уровней оптимальные условия. Тогда как на Марсе недостаточная сила тяготения не в состоянии удержать на поверхности ни одной жидкости. Вода существует там только в твердом или газообразном состоянии.

Разреженная атмосфера, засушливый и холодный климат (средние температуры колеблются от -143ºC зимой до 30ºC летом), низкая гравитация и магнитное поле не допускают возможности присутствия на планете сложных биоструктур.

Исключение могут составлять бактерии и микроорганизмы, приспособляемость которых к самым экстремальным условиям доказана на практике. Они выживают в открытом космосе, при сверхнизких температурах и в радиоактивной воде атомных реакторов. Но для высших форм жизни условия Марса пока неприемлемы.

В статье рассказывается о том, что такое гравитация, какая сила тяжести на других планетах, почему она возникает, для чего нужна, а также воздействие ее на различные организмы.

Космос

О путешествиях к звездам люди мечтали издревле, начиная с тех времен, когда первые астрономы рассмотрели в примитивные телескопы иные планеты нашей системы и их спутники, а значит, по их мнению, они могли быть обитаемы.

С тех пор прошло много веков, но увы, межпланетные и тем более полеты к другим звездам невозможны и сейчас. А единственным внеземным объектом, где побывали исследователи, является Луна. Но уже в начале XX века ученые знали, что сила тяжести на других планетах отличается от нашей. Но почему? Что она собой представляет, отчего возникает и может ли быть губительной? Эти вопросы мы и разберем.

Немного физики

Еще Исаак Ньютон разработал теорию, согласно которой любые два объекта испытывают взаимную силу притяжения. В масштабах космоса и Вселенной в целом подобное явление проявляется очень явственно. Наиболее яркий пример – это наша планета и Луна, которая именно благодаря гравитации и вращается вокруг Земли. Видим проявление гравитации мы и в повседневной жизни, просто привыкли к нему и совсем не обращаем внимание. Это так называемая сила притяжения. Именно из-за нее мы не парим в воздухе, а спокойно ходим по земле. Также она способствует удержанию нашей атмосферы от постепенного улетучивания в космос. У нас она составляет условные 1 G, но какая сила тяжести на других планетах?

сила тяжести на других планетах

Правда, говорить о терраформации пока рано, ведь для начала нужно хотя бы просто высадиться на него и наладить постоянные и надежные полеты. Но все же сила тяжести на Марсе вполне пригодна для обитания будущих поселенцев.

Венера

сила тяжести на марсе

Еще одной самой близкой к нам планетой (кроме Луны) является Венера. Это мир с чудовищными условиями и невероятно плотной атмосферой, заглянуть за которую долгое время никому не удавалось. Ее наличие, кстати, открыл не кто иной как Михаил Ломоносов.

Атмосфера является причиной парникового эффекта и ужасающей средней температуры на поверхности в 467 градусов по Цельсию! На планете постоянно выпадают осадки из серной кислоты и кипят озера жидкого олова. Такая вот негостеприимная планета Венера. Сила тяжести ее составляет 0,904 G от земной, что почти идентично.

Она также является кандидатом на терраформирование, а впервые ее поверхности достигла советская исследовательская станция 17 августа 1970 года.

Юпитер

венера сила тяжести

Еще одна планета Солнечной системы. Вернее, газовый гигант, состоящий в основном из водорода, который ближе к поверхности из-за чудовищного давления становится жидким. По подсчетам кстати, в его глубинах вполне возможно однажды вспыхнет термоядерная реакция, и у нас будет два солнца. Но если это и произойдет, то, мягко говоря, нескоро, так что беспокоиться не следует. Сила тяжести на Юпитере составляет 2,535 g относительно земной.

сила тяжести на юпитере

Как уже говорилось, единственным объектом нашей системы (кроме Земли), где побывали люди, является Луна. Правда, до сих пор не утихают споры, были ли те высадки реальностью или мистификацией. Тем не менее из-за ее малой массы сила тяжести на поверхности составляет всего 0,165 g от земной.

Влияние силы притяжения на живые организмы

Сила притяжения также оказывает различные воздействия на живых существ. Попросту говоря, когда будут открыты другие обитаемые миры, мы увидим, что их обитатели сильно отличаются друг от друга в зависимости от массы их планет. К примеру, будь Луна обитаема, то ее населяли бы очень высокие и хрупкие существа, и наоборот, на планете массой с Юпитер жители были бы очень низкие, крепкие и массивные. А иначе на слабых конечностях в таких условиях попросту не выживешь при всем желании.

Сила притяжения сыграет важную роль и при будущей колонизации того же Марса. Согласно законам биологии, если чем-то не пользуешься, то это постепенно атрофируется. Космонавтов с борта МКС на Земле встречают с креслами на колесах, так как в невесомости их мышцы задействованы очень мало, и даже регулярные силовые тренировки не помогают. Так что потомство колонистов на других планетах будет как минимум выше и физически слабее своих предков.

Температура поверхности: -23°С на большей части поверхности, -150°С на полюсах, 0°С на экваторе.

Расстояние от Солнца (среднее): 1,5237 а.е., то есть 228 млн км

Период обращения по орбите (год): 687 земных суток

Период обращения вокруг собственной оси (сутки): 24,6229 часа

Наклон орбиты к эклиптике: 1°51'

Эксцентриситет орбиты: 0,093

Средняя скорость движения по орбите:24,1 км/с

Ускорение свободного падения:3,72 м/с2

Марс – первая после Земли планета Солнечной системы, к которой человек проявил особый интерес с надеждой, что там есть развитая внеземная жизнь. Вряд ли какая-нибудь планета вызвала у людей столько споров и дискуссий, как Марс. Спорили не только учёные, но и люди самых различных профессий, занятий и возрастов.

Совершенствовались методы исследований, сменяли друг друга астрономы разных поколений, изменялся и сам характер дискуссий. В XIX веке спорили, главным образом, о каналах на Марсе, о наличии там разумных обитателей – марсиан. Спорили о существовании на Марсе растительности и вообще органической жизни.

Какой планете посвящено наибольшее число фантастических романов, повестей, рассказов? Конечно, Марсу. Фантазия писателей подогревала интерес широкой публики к природе загадочной планеты. Астрономов забрасывали вопросами.

Шли десятилетия, менялись методы исследований, накапливались наши знания о природе красной планеты. На место одних загадок вставали другие, росло число учёных, стремившихся проникнуть в тайны Марса. Сейчас, в XXI веке, количество загадок Марса не уменьшилось, а, наоборот, возросло.

Марс на небе, как и все внешние планеты, виден лучше всего в периоды противостояний. Марс может быть как ярче Юпитера, так и слабее его, хотя обычно в этом споре гигантская планета сильнее. В противостояние 1997 года Марс имел блеск m = –1,3m.

Внутреннее строение планеты Марс

По расчетам, ядро Марса имеет массу до 9 % массы планеты. Оно состоит из железа и его сплавов и пребывает в жидком состоянии. Марс имеет мощную кору толщиной 100 км. Между ними находится силикатная мантия, обогащенная железом.

Вследствие малой массы сила тяжести на Марсе почти в три раза ниже, чем на Земле. В настоящее время структура гравитационного поля Марса детально изучена. Она указывает на небольшое отклонение от однородного распределения плотности в планете. Ядро может иметь радиус до половины радиуса планеты. По-видимому, оно состоит из чистого железа или из сплава Fe-FeS (железо-сульфид железа) и, возможно, растворенного в них водорода. По-видимому, ядро Марса частично или полностью пребывает в жидком состоянии.

Марс должен иметь мощную кору толщиной 70-100 км. Между ядром и корой находится силикатная мантия, обогащенная железом . Красные окислы железа, присутствующие в поверхностных породах, определяют цвет планеты . Сейчас Марс продолжает остывать. Сейсмическая активность планеты слабая.

Поверхность Марса, на первый взгляд, напоминает лунную. Однако на самом деле его рельеф отличается большим разнообразием. На протяжении долгой геологической истории Марса его поверхность изменяли извержения вулканов и марсотрясения. Глубокие шрамы на лице бога войны оставили метеориты, ветер, вода и льды.

Поверхность планеты состоит как бы из двух контрастных частей: древних высокогорий, покрывающих южное полушарие, и более молодых равнин, сосредоточенных в северных широтах. Кроме того, выделяются два крупных вулканических района - Элизиум и Фарсида. Разница высот между горными и равнинными областями достигает 6 км. Почему разные районы так сильно отличаются друг от друга до сих пор неясно. Возможно, такое деление связано с очень давней катастрофой - падением на Марс крупного астероида.

Высокогорная часть сохранила следы активной метеоритной бомбардировки, происходившей около 4 млрд. лет назад. Метеоритные кратеры покрывают 2/3 поверхности планеты. На старых высокогорьях их почти столько же, сколько на Луне. Но многие марсианские кратеры из-за выветривания успели "потерять форму". Некоторые из них, по всей видимости, когда-то были размыты потоками воды. Северные равнины выглядят совершенно иначе. 4 млрд. лет назад на них было множество метеоритных кратеров, но потом катастрофическое событие, о котором уже упоминалось, стерло их с 1/3 поверхности планеты и ее рельеф в этой области начал формироваться заново. Отдельные метеориты падали туда и позже, но в целом ударных кратеров на севере мало.

Облик этого полушария определила вулканическая деятельность. Некоторые из равнин сплошь покрыты древними изверженными породами. Потоками жидкой лавы растекались по поверхности, застывали, по ним текли новые потоки. Эти окаменевшие "реки" сосредоточены вокруг крупных вулканов. На окончаниях лавовых языков наблюдаются структуры, похожие на земные осадочные породы. Вероятно, когда раскаленные изверженные массы растапливали слои подземного льда, на поверхности Марса образовывались достаточно обширные водоемы, которые постепенно высыхали. Взаимодействие лавы и подземного льда привело также к появлению многочисленных борозд и трещин. На далеких от вулканов низменных областях северного полушария простираются песчаные дюны. Особенно много их у северной полярной шапки.

Обилие вулканических пейзажей свидетельствует о том, что в далеком прошлом Марс пережил достаточно бурную геологическую эпоху, скорее всего она закончилась около миллиарда лет тому назад. Наиболее активные процессы происходили в областях Элизиум и Фарсида. В свое время они буквально были выдавлены из недр Марса и сейчас возвышаются над его поверхностью в виде грандиозных вздутий: Элизиум высотой 5 км, Фарсида - 10 км. Вокруг этих вздутий сосредоточены многочисленные разломы, трещины, гребни - следы давних процессов в марсианской коре. Наиболее грандиозная система каньонов глубиной несколько километров - долина Маринера - начинается у вершины гор Фарсида и тянется 4 тыс. километров к востоку. В центральной части долины ее ширина достигает нескольких сот километров. В прошлом, когда атмосфера Марса была более плотной, в каньоны могла стекать вода, создавая в них глубокие озера.

Олимп – крупнейшая гора в Солнечной системе.

Вулканы Марса - по земным меркам явления исключительные. Но даже среди них выделяется вулкан Олимп , расположенный на северо-западе гор Фарсида. Диаметр основания этой горы достигает 550 км, а высота - 27 км, т.е. она в три раза превосходит Эверест, высочайшую вершину Земли. Олимп увенчан огромным 60-километровым кратером. К востоку от самой высокой части гор Фарсида обнаружен другой вулкан - Альба. Хотя он не может соперничать с Олимпом по высоте, диаметр его основания почти в три раза больше.

Провал на вершине вулкана равен по площади Лос-Анджелесу

Эти вулканические конусы возникли в результате спокойных излияний очень жидкой лавы, похожей по составу на лаву земных вулканов Гавайских островов. Следы вулканического пепла на склонах других гор позволяют предположить, что иногда на Марсе происходили и катастрофические извержения.

В прошлом огромную роль в формировании марсианского рельефа играла проточная вода. На первых этапах исследования Марс представлялся астрономам пустынной и безводной планетой, но когда поверхность Марса удалось сфотографировать с близкого расстояния, оказалось, что на старых высокогорьях часто встречаются словно бы оставленные текущей водой промоины. Некоторые из них выглядят так, будто много лет назад их пробили бурные, стремительные потоки. Тянутся они иногда на многие сотни километров. Часть этих "ручьев" обладает довольно почтительным возрастом. Другие долины очень похожи на русла спокойных земных рек. Своим появлением они, вероятно, обязаны таянию подземного льда.

Некоторые дополнительные сведения о Марсе удается получить косвенными методами на основе исследований его природных спутников - Фобоса и Деймоса.

Атмосфера и физические условия на Марсе

Атмосфера на Марсе разрежена, так как Марс не способен долго удерживать возле себя молекулы газов. В отдаленном будущем, атмосфера, видимо, совсем растворится в пространстве. А в настоящий момент ее давление у поверхности в лучшем случае составляет лишь один процент от нормального земного атмосферного давления. Однако втрое меньшая сила тяжести на поверхности Марса позволяет даже такому разреженному воздуху поднимать миллионы тонн пыли. Пылевые бури на красной планете - не редкость. Астрономы, стремящиеся что-либо с Земли разглядеть на Марсе, борются уже с двумя атмосферами. Пылевые бури в марсианской атмосфере иногда могут бушевать месяцами. Состоит же эта марсианская воздушная накидка, в основном, из углекислого газа, с незначительными примесями водяных паров и кислорода

На Марсе, из-за низкого давления, не может быть жидкой воды. Она там присутствует либо в газообразном состоянии либо в виде льда. Замерзающие углекислый газ и водяной пар образуют полярные шапки, размер которых с движением Марса по орбите меняется. На Марсе происходит смена времен года, по тем же причинам, что и на Земле. Зимой в Северном полушарии полярная шапка растет, а в Южном почти исчезает: там лето. Через полгода полушария меняются местами. Однако, южная шапка зимой разрастается до половины расстояния полюс-экватор, а северная - только до трети. Почему же так неравноправно распределены роли? Так как орбита Марса весьма вытянута, то один и тот же сезон в разных полушариях Марса протекает по-разному. В южном полушарии планеты зима более холодная, а лето - более теплое. Летом Южного полушария Марс проходит ближайший к Солнцу участок своей орбиты, а зимой - самый удаленный. С Землей, кстати, происходит то же самое. Интересно, что и наклоны осей вращения планет к плоскости орбит почти равны, а сутки различаются лишь на несколько минут

Из неравенства полярных шапок в зимнее время года ученые сделали вывод о том, что зимой Южного полушария в полярной шапке связано больше углекислого газа, и давление в атмосфере Марса падает. Весной южная шапка тает, начинает расти северная, но оставляет атмосфере больше углекислого газа, и ее давление растет. С движением Марса по орбите давление его атмосферы сильно меняется

Небо на Марсе желтое или красноватое, из-за взвешенной в атмосфере пыли, рассеивающей свет. Это видно и на снимках, переданных спускаемыми аппаратами

Температура на поверхности планеты может колебаться от +25°С до -125°С. Атмосфера Марса является плохим защитником от холодного космоса. Поверхность Марса имеет красноватый цвет из-за значительного количества примесей окислов железа. В целом, южное полушарие планеты в большей степени покрыто кратерами. Неведомая катастрофа, возможно, стерла почти все следы древних кратеров к северу от экватора

На Марсе раньше текли реки, от которых остались лишь сухие русла. Кроме этих ископаемых рек, на поверхности Марса есть высокие вулканы, один из которых - Олимп - высочайшая гора в Солнечной системе, его высота - 28 км. Планета изобилует именно щитовыми вулканами, образованными застывшими потоками лавы. Такие вулканы имеют очень пологие склоны и основания большой площади. В прошлом, Марс проявлял завидную вулканическую активность

Марсианская пустыня

Есть ли жизнь на Марсе?

Во втором эксперименте часть пробы загружалась в резервуар с питательным бульоном, в котором имелись радиоактивные атомы. Анализатор детектировал выделявшиеся газы и обнаружил увеличение двуокиси углерода, почти такое же, как при анализе биологически активных образцов земной почвы. Но вскоре и в этом приборе уровень отчётов упал почти до нуля.

В третьем эксперименте регистрировалось поглощение изотопа углерода 14С предполагаемыми органическими соединениями марсианского грунта. Марсианский углекислый газ 12С заменялся на радиоактивный 14С, грунт освещался светом, подобным солнечному. В земных условиях микроорганизмы хорошо усваивают углекислый газ. Затем проба грунта нагревалась, чтобы обнаружить усвоенный радиоактивный углерод 14С. На Марсе этот эксперимент дал неоднозначный результат: то углерод усваивался, то нет.

Спутники Марса

Фобос - больший из двух спутников Марса. Он находится ближе к своей планете, чем любой другой спутник в Солнечной системе, менее чем в 6000 км от поверхности Марса. Он является также одним из самых маленьких из всех спутников.

В Греческой мифологии Фобос - один из сыновей Ареса (Марса) и Афродиты (Венеры). "Фобос" в переводе с греческого означает "страх" (корень "фобия").

Фобос был открыт 12 августа 1877 года Холлом, сфотографирован Маринером-9 в 1971 году, Викингом-1 в 1977 году, и Фобосом в 1988 году.

Фобос облетает по орбите Марс ниже синхронного радиуса орбиты. Он поднимается на западе, очень быстро пересекает небо и останавливается на востоке. Он находится так близко к поверхности Марса, что может быть видим над горизонтом не из всех точек на поверхности Марса.

Фобос совершает обращение вокруг планеты втрое быстрее, чем сам Марс вращается вокруг своей оси. За сутки Марса Фобос успевает совершить три полных оборота и пройти ещё дугу в 78°. Для марсианского наблюдателя он восходит на западе и заходит на востоке. Между последовательными верхними кульминациями Фобоса проходит 11 часов 07 минут.

Фобос обречен: из-за такого расположения приливные силы понижают его орбиту (со скоростью приблизительно 1.8 метра в столетие). Примерно через 50 миллионов лет Фобос или столкнется с поверхностью Марса, или, что более вероятно, разрушится в кольцо.

Фобос и Деймос могут состоять из богатой углеродом горной породы подобно астероидам типа C. Но их плотности настолько низки, что они не могут быть чистой горной породой. Они, вероятно, состоят из смеси горной породы и льда. Новые изображения от Mars Global Surveyor показывают, что поверхность Фобоса покрыта слоем мелкой пыли толщиной около метра, подобно реголиту на Луне.

Советский космический корабль "Фобос - 2" обнаружил слабую, но устойчивую утечку газа из Фобоса. К сожалению, "Фобос - 2" вышел из строя прежде, чем был определен характер этого явления. "Фобос - 2" сделал несколько снимков спутника Марса.

Деймос - меньший и наиболее отдаленный из двух спутников Марса. Это самый маленький из известных спутников в Солнечной системе.

Исследования Марса и его спутников

Полёт к Марсу занимает шесть - восемь месяцев. Поскольку взаимное расположение Земли и Марса всё время меняется, а минимальные расстояния между ними (противостояния) бывают только раз в два года, момент старта выбирается таким образом, чтобы Марс находился на пересечении с траекторией космического аппарата, достигшего к тому времени его орбиты.

Первый запуск в сторону Марса был осуществлён в начале ноября 1962 г. Советский "Марс-1" прошёл на расстоянии 197 тыс. километров от красной планеты. Фотографии её поверхности были получены американским "Маринером-4", запущенным два года спустя и прошедшим 15 июля 1965 г. на расстоянии 10 тыс. километров от поверхности планеты.

Оказалось, что Марс тоже покрыт кратерами. Были уточнены масса планеты и состав её атмосферы. В 1969 г. аппараты "Маринер-6, -7" с расстояния 3400 км от Марса передали несколько десятков снимков с разрешением до 300 м, а также измерили температуру южной полярной шапки, которая оказалась очень низкой (-125°С).

В мае 1971 г. были запущены "Марс-2, -З" и "Маринер-9". Аппараты "Марс-2, -З" массой 4,65 т каждый имели орбитальный отсек и спускаемый аппарат. Мягкую посадку удалось совершить только спускаемому аппарату "Марса-З".

Космические аппараты "Марс-2, -З" вели исследования с орбит искусственных спутников, передавая данные о свойствах атмосферы и поверхности Марса по характеру излучения в видимом, инфракрасном и ультрафиолетовом диапазонах спектра, а также в диапазоне радиоволн. Была измерена температура северной полярной шапки (ниже -110 °С); определены протяжённость, состав, температура атмосферы, температура поверхности планеты; получены данные о высоте пылевых облаков и слабом магнитном поле, а также цветные изображения Марса.

"Маринер-9" тоже был переведён на орбиту искусственного спутника Марса с периодом около 12ч. Он передал на Землю 7329 снимков Марса с разрешением до 100 м, а также фотографии его спутников - Фобоса и Деймоса. На снимках марсианской поверхности хорошо видны гигантские потухшие вулканы, множество крупных и мелких каньонов и долин, напоминающих высохшие русла. Марсианские кратеры отличаются от лунных своими выбросами, свидетельствующими о наличии подпо-верхностного льда, а также следами водной эрозии и ветровой активности.

Целая флотилия из четырёх космических аппаратов "Марс-4, -5, -6, -7", запущенных в 1973 г., достигла окрестностей Марса в начале 1974 г. Из-за неисправности бортовой системы торможения "Марс-4" прошёл на расстоянии около 2200 км от поверхности планеты, выполнив только её фотографирование. "Марс-5" проводил дистанционные исследования поверхности и атмосферы с орбиты искусственного спутника. Спускаемый аппарат "Марса-6" совершил мягкую посадку в южном полушарии. На Землю переданы данные о химическом составе, давлении и температуре атмосферы. "Марс-?" прошёл на расстоянии 1300 км от поверхности, не выполнив своей программы.

Самыми результативными были полёты двух американских "Викингов", запущенных в 1975 г. На борту аппаратов находились телекамеры, инфракрасные спектрометры для регистрации водяных паров в атмосфере и радиометры для получения температурных данных. Посадочный блок "Викинга-1" совершил мягкую посадку на Равнине Хриса 20 июля 1976 г., а "Викинга-2" - на Равнине Утопия 3 сентября 1976 г. В местах посадок были проведены уникальные эксперименты с целью обнаружить признаки жизни в марсианском грунте. Специальное устройство захватывало образец грунта и помещало его в один из контейнеров, содержавших запас воды или питательных веществ. Поскольку любые живые организмы меняют среду своего обитания, приборы должны были это зафиксировать. Хотя некоторые изменения среды в плотно закрытом контейнере наблюдались, к таким же результатам могло привести наличие сильного окислителя в грунте. Вот почему учёные не смогли уверенно отнести эти изменения за счёт деятельности бактерий.

С орбитальных станций было выполнено детальное фотографирование поверхности Марса и его спутников. На основе полученных данных составлены подробные карты поверхности планеты, геологические, тепловые и другие специальные карты.

В задачу советских станций "Фобос- 1, -2", запущенных после 13-летнего перерыва, входило исследование Марса и его спутника Фобоса. В результате неверной команды с Земли "Фобос-1" потерял ориентацию, и связь с ним не удалось восстановить.

"Фобос-2" вышел на орбиту искусственного спутника Марса в январе 1989 г. Дистанционными методами получены данные об изменении температуры на поверхности Марса и новые сведения о свойствах пород, слагающих Фобос. Получено 38 изображений с разрешением до 40 м, измерена температура его поверхности, составляющая в наиболее горячих точках 30 "С. К сожалению, осуществить основную программу по исследованию Фобоса не удалось. Связь с аппаратом была потеряна 27 марта 1989 г.

На этом не закончилась серия неудач. Американский космический аппарат "Марс-Обсервер", запущенный в 1992 г., также не выполнил своей задачи. Связь с ним была потеряна 21 августа 1993 г. Не удалось вывести на траекторию полёта к Марсу и российскую станцию "Марс-96". В июле 1997 г. "Марс-Пасфайндер" доставил на планету первый автоматический марсоход, который успешно исследовал химический состав поверхности и метеорологические условия.

Гравитация на Марсе

Марс

Особенности силы тяжести

Марс значительно меньше в отличие от Земли, именно размером обусловлена меньшая сила тяжести на нём. Ньютон использовал закон всемирного тяготения, чтобы описать, как это работает на Земле. Но уже другим учёным удалось объяснить, какая сила тяжести на Марсе.

Эйнштейн, в свою очередь, сообщил, что гравитационная сила представляет собой не что иное, как искривление, создаваемое за счёт массы тела.

Принцип расчёта гравитации

Где m – соотношение между массами планет, r – аналогичный показатель, только для радиусов космических объектов. На основании этого толкования можно составить следующее равенство:

G = 0,107 / 0,532^2 = 0,376.

Если округлить этот показатель до сотых, получится 0,38, а на Земле 0,99732.

По той простой причине, что гравитация на Марсе традиционно выражается в прямой и непосредственной зависимости между определёнными характеристиками:

  • масса (вес);
  • дистанция до центральной части планеты;
  • уровень плотности;
  • размерные показатели.

Для Земли характерно превосходство по всем этим параметрам, и оно серьёзно влияет на силу притяжения, ослабление которой происходит исключительно по мере удаления объектов друг от друга. Эти же показатели способствуют определению влияния на предметы, которые находятся на поверхностях. Несмотря на то, что учёные обнаружили определённые сходства, различия между планетарными свойствами вполне серьёзные.

Минусы низкой гравитации

Нюансы магнитного поля

Ядро Земли вращается, что приводит к созданию в магме токов. За счёт них происходит генерация особой магнитной напряжённости. На соседней планете данный механизм отсутствует. Поэтому на ней не имеется атмосферы, и наблюдается повышенный уровень радиации.

Тем не менее, учёные, изучающие красную планету, а в частности гравитация на Марсе, отмечают, что есть очевидные признаки существования магнитного поля на планете в прошлом, причём оно справлялось с возложенными на него функциями. И только порядка 3,2 млрд лет тому назад произошло прекращение этого процесса по неизвестным причинам. Возможно притяжение на Марсе как-то на это влияет.

Причины утраты

Читайте также: