Роль нуклеотидов и витаминов в осуществлении процессов жизнедеятельности организмов реферат

Обновлено: 05.07.2024

Витамины – это незаменимые органические вещества, различного химического происхождения.

Витамины не участвуют в пластических процессах и не служат поставщиками энергии, но им отводится одна из основных ролей в обмене веществ. Польза витаминов для организма определяется участием во множестве биохимических реакций, где они выполняют функции катализатора ферментов, или выступают посредниками, регулируя уровень гормонов.

Свойства витаминов

У витаминов отмечается высокая биологическая активность, при этом потребность организма в них ограничивается несколькими миллиграммами в день.

Большинство витаминов не синтезируется в организме, а поступает вместе с продуктами питания.

Недостаточность того или иного витамина вызывает снижение активности соответствующего фермента, в результате чего замедляется и биохимическая реакция, в которой этот фермент играл роль катализатора.

Дефицит витаминов в организме вызывает гиповитаминоз, полное отсутствие – авитаминоз; избыток витаминов – гипервитаминоз.

Принято деление витаминов на:

  • Водорастворимые: С, В1, В2, В3, В5, В6, В7, В9, В12.
  • Жирорастворимые: А. Д, Е, К.

Водорастворимые витамины не накапливаются в организме, поэтому для поддержания концентрации на нормальном уровне, требуется постоянное регулярное поступление их вместе с пищей.

Жирорастворимые витамины создают депо в жировой ткани и в печени, поэтому при переизбытке может наблюдаться гипервитаминоз.

Основные функции витаминов в организме

Витамины, где содержатся и для чего нужны

Витамин А

Принимает активное участие в окислительно-восстановительных процессах, регулирует синтез белков, поддерживает нормальный обмен веществ, необходим для роста новых клеток, формирования костей, зубов и жировой ткани. Является антиоксидантом, замедляет старение.

Повышает барьерную функцию слизистых оболочек и кожи, обеспечивает нормальную деятельность зрительного анализатора, участвует в синтезе зрительного пигмента сетчатки и восприятия света.

Витамин А поддерживает и восстанавливает иммунитет, защищает от простуд и инфекций дыхательных путей, нормализует работу пищеварительного тракта и мочеполовой системы.

Содержится в продуктах животного происхождения: печени, яичном желтке, сливочном масле, сливках. В растительных продуктах (морковь, красный перец, тыква) представлен в виде каротиноидов, которые в организме превращаются в ретинол.

Витамин Е

Витамин Е – мощный антиоксидант, защищает клетки от повреждения, замедляет окисление липидов, блокирует формирование свободных радикалов.

Токоферол принимает участие в синтезе коллагеновых и эластичных волокон, составляющих основу межклеточного вещества, улучшает циркуляцию крови, препятствует тромбообразованию, снижает давление, предупреждает развитие катаракты.

Источники витамина: нерафинированные растительные масла (подсолнечное, оливковое), орехи (миндаль, арахис), зелень, злаковые, бобовые, овсянка, печень, молоко, яичный желток, проростки пшеницы.

Витамин К

Обладает антигеморрагическим свойством, выполняет важную роль в формировании и восстановлению костей, препятствует остеопорозу, участвует в окислительно-восстановительных реакциях организма.

Источники витамина К: зеленые листовые овощи, шпинат, зеленые томаты, брюссельская и цветная капуста, крапива, овес, соя, пшеница.

Витамин Д

Витамин Д поступает в организм вместе с некоторыми продуктами, кроме того, способен синтезироваться в коже под влиянием ультрафиолета. Участвует в регуляции всасывания кальция в кишечнике и в процессе образования костной ткани. У детей нехватка витамина Д приводит к рахиту, у взрослых к остеопорозу.

Для профилактики гиповитаминоза Д – достаточное пребывание на солнце и включение в рацион продуктов: печени трески, жирных сортов рыбы, морепродуктов, мяса, молока, сыров, сливочного масла.

Витамин С

Является одним из сильнейших антиоксидантов. Регулирует окислительно-восстановительные процессы, принимает участие в синтезе коллагена, обмене фолиевой кислоты и железа, производстве стероидных гормонов.

Мощный фактор защиты от неблагоприятных внешних влияний: усиливает восстановительные процессы, повышает устойчивость к инфекциям, токсинам, аллергенам.

Участвуя в липидном обмене, предупреждает раннее развитие атеросклероза. Препятствует тромбообразованию, необходим для процессов кроветворения, обладает противовоспалительным и противоаллергическим действием.

Аскорбиновая кислота содержится в основном в растительных продуктах – овощах и фруктах: цитрусовых, во всех видах капусты, черной смородине, плодах шиповника, облепихе, болгарском перце и многих других.

В животных продуктах присутствует в малых количествах: в печени, почках.

Витамин В1

Поддерживает деятельность мозга, нормализует работу сердечно-сосудистой, пищеварительной, эндокринной систем, активизирует метаболизм углеводов для получения энергии, улучшает кровообращение.

Содержится во многих продуктах питания, особенно много в зерновых (пшенице, овсе), фруктах, овощах (апельсинах, спарже), в свинине, семенах льна, подсолнечника, орехах.

Витамин В2

Источники витамина В2: печень, дрожжи, яйца, молоко, зерновые, бобовые, капуста, томаты.

Витамин В3

Участвует в ферментативных процессах и метаболизме энергии, нормализует работу нервной и пищеварительной систем, регулирует холестериновый обмен, поддерживает хорошее состояние кожи.

Витамин В5

Основные биохимические процессы в организме проходят с его участием: синтез жирных кислот, липидов, стероидных гормонов, гемоглобина.

Витамин В5 нужен для усвоения других витаминов и для нормального функционирования иммунной системы.

Источники: печень, почки, дрожжи, яичный желток, бобовые, орехи, семена. Частично вырабатывается в кишечнике.

Витамин В6

Участвует в обмене аминокислот, липидов, углеводов, в процессах кроветворения (синтез гемоглобина), в регуляции деятельности нервной системы: активизирует работу мозга, улучшает память. Поддерживает хорошую работу сердечно-сосудистой и иммунной систем.

Содержится в продуктах питания: мясе птицы, рыбе, морепродуктах, зерновых, яйцах, овощах и фруктах.

Витамин В9

Регулирует процессы кроветворения, участвует в синтезе гемоглобина и производстве эритроцитов, корректирует уровень холестерина. Улучшает работу печени, кишечника, стимулирует синтез соляной кислоты в желудке, координирует процессы торможения и возбуждения нервной системы, предупреждает развитие стрессов.

При беременности снижает риск самопроизвольных выкидышей, преждевременных родов, послеродовых кровотечений. Необходимый уровень витамина обеспечивает нормальное формирование всех органов и тканей плода.

В животных продуктах витамин В9 (фолиевая кислота) содержится в сыре, почках, печени, икре, пивных дрожжах.

В продуктах растительного происхождения: капусте, салате, бобовых, муке грубого помола, в свекле, моркови, бобовых культурах.

Витамин В12

От достаточного уровня этого витамина в организме зависит состояние кроветворной и иммунной систем, здоровье кожи и слизистых. Вместе с фолиевой кислотой отвечает за производство нуклеиновые кислот. Принимает участие в липидном и углеводном обмене, играет важную роль в образовании миелиновой оболочки нервных стволов.

Витамин В12 практически не содержится в растительной пище. Основным источником этого витамина являются субпродукты (печень, почки, сердце), а также морепродукты, сыр, молоко, рыба, яичный желток.

Суточные нормы витаминов

Суточные нормы витаминов варьируют в больших пределах, что определяется возрастом, полом, состоянием здоровья человека, перенесенными заболеваниями, окружающей средой, индивидуальными особенностями организма.

Средние суточные нормы витаминов

Название витамина Дозы
А – ретинол 1 мг
Бета-каротин 2-6 мг
Д – кальциферол 2-5 мкг
Е – токоферол 10-15 мг
К – филлохиноны 5-100 мкг
С – аскорбиновая кислота 70-150 мг
В1 - тиамин 2 мг
В2 - рибофлавин 2-3 мг
В3 - ниацин 20 мг
В5 – пантотеновая кислота 10 мг
В6 - пиридоксин 2 мг
В12 - цианокобаламин 2-3 мкг
РР – никотиновая кислота 10-20 мг
В9 – фолиевая кислота 400 мкг

Потребность в витаминах у каждого человека индивидуальна, различны также процессы всасывания, усвоения и переносимости этих нутриентов. Невозможно создать универсальный комплекс витаминов, подходящий для всех. Разработаны специальные поливитамины для разных категорий людей: для детей, беременных, пожилых людей, спортсменов и другие.

За счет пищи даже при сбалансированном и рациональном питании не удается полностью удовлетворить потребности организма в витаминах.

По высокому риску развития гиповитаминоза выделены группы лиц, которые нуждаются в синтетических витаминах, независимо от характера питания:

  • Дети и подростки в периоды интенсивного роста.
  • Люди, испытывающие значительные физические нагрузки: спортсмены, работники тяжелого физического труда.
  • Больные хроническими заболеваниями, длительно принимающие лекарственные средства, разрушающие витамины: гормоны, антибиотики, психотропные и противовоспалительные препараты.
  • Периоды беременности и лактации у женщин.
  • Люди, находящиеся на жестких диетах с ограничением в питании большинства продуктов, вегетарианцы.
  • Взрослые и дети с низким социально-экономическим уровнем жизни (скудное, однообразное меню).
  • Пожилые люди.
  • Лица с вредными привычками: курение, алкоголизм, наркомания.

Как принимать витамины, чтобы получить максимальную пользу от употребления витаминных комплексов:

  1. Пить витамины следует в одно и то же время, лучше утром перед завтраком, чтобы интервал между приемами составлял не менее 24 часов.
  2. Жирорастворимые витамины А, Е, Д, К лучше усваиваются, если их пить во время еды.
  3. Если комплекс витаминов состоит из двух таблеток (витамины, минералы), то витамины принимать утром, а минералы в обед.
  4. Витамины запивают водой объемом до 200 мл.
  5. Применяя витамины, следует учитывать их совместимость с другими лекарственными средствами. Так, витамин А несовместим с антибиотиками, витамин Д – с диуретиками, антацидами; витамин Е и К не рекомендуется принимать вместе с лекарствами, укрепляющими сосуды.
  6. Не принимать витамины натощак.

Эффективность синтетических витаминов

Витамины в таблетках – есть ли польза – медики до сих пор не пришли к единому мнению по поводу того, стоит ли дополнительно к питанию использовать синтетические поливитамины с профилактической целью.

Сторонники использования витаминов с целью профилактики утверждают, что гиповитаминоз – постоянный спутник современного человека, что неизменно приводит к ослаблению иммунитета и развитию многих болезней. По их мнению, это связано с тем, что большая часть витаминов разрушается при термической обработке, при длительном хранении. Состав овощей и фруктов меняется, так как применяются новые технологии выращивания и хранения, что приводит к значительному ухудшению качественных характеристик продуктов питания. Витаминов, поступающих в организм с пищей, не хватает для обеспечения полноценного функционирования органов и систем. В результате приходится восполнять этот недостаток с помощью поливитаминов.

Приверженцы естественного насыщения организма витаминами с помощью разнообразного и сбалансированного питания считают, что дополнительный прием поливитаминов бесполезен, а иногда даже вреден.

Для изучения действия антиоксидантов – витаминов А, С, Е на людей, страдающих патологиями сердечно-сосудистой системы, а также с высоким риском развития онкологических заболеваний проводились масштабные медицинские исследования. Выраженного защитного действия синтетических витаминов, в виде предупреждения сердечных приступов, инсультов и рака выявлено не было.

Гост

ГОСТ

Исходя из опытов и наблюдений исследователи еще в давние времена пришли к выводу, что недостаточно сбалансированное питание является одной из причин появления болезней. Но научно сформулирована эта мысль была лишь к концу 19 –ого века. Лишь к этому времени врачи стали догадываться, что конкретные продукты питания имеют в своем составе некоторые особые вещества, которые и могут предупредить развитие определенного недуга.

Только в 20 веке ученые стали исследовать химическое происхождение витаминов, их роль в организме человека, а также природу гиповитаминозов.

Определение понятия витамины

Витамины - это низкомолекулярные органические соединения, они имеют разное природное происхождение, различное строение. Главным образом они образуются путем синтеза в растениях, частично – путем синтеза в микроорганизмах. Человек в основном получает витамины из пищи, но в ней они содержатся в очень небольших количествах, поэтому ученые относят их к микронутриентам.

К витаминам не относятся микроэлементы и аминокислоты. Витамины играют важную роль в метаболизме человека, но они не являются источниками энергии или строительным материалом для тканей организма. Для нормальной жизнедеятельности человеческому организму нужно небольшое поступление витаминов в организм, но в случае их нехватки наступают опасные для здоровья состояния. Если витаминов поступает неправильное количество, то может развиться 3 опасных патологических состояния:

  • гиповитаминоз – то есть нехватка витамина
  • авитаминоз – то есть отсутствие витамина
  • гипервитаминоз – то есть переизбыток витамина

Готовые работы на аналогичную тему

Классификация витаминов

Классификация витаминов строится на тех или иных свойствах, эффектах, которые они оказывают на системы организма человека, особенностях химического строения этих соединений. В этой статье мы будем делить все витамины на две основные традиционные группы:

  • Водорастворимые витамины
  • Жирорастворимые витамины

Водорастворимые витамины: влияние на организм, источники

Водорастворимые витамины поступают в организм человека путем всасывания в кишечнике и затем поступают в кровь через печень они попадают в кровь.

Витамин В1 (тиамин) очень важен для процессов метаболизма углеводов, жиров и белков. Тиамин в основном сосредоточен в скелетных мышцах, а также в мозге, сердце, печени и почках. Этот витамин необходим для правильного развития и роста организма. Оказывает положительное влияние на работу сердечно-сосудистой, нервной и пищеварительной систем. Основные источники тиамина — это пшеничный хлеб, фасоль, шпинат, печень, почки, свинина.

Витамин В2 (рибофлавин) необходим для нормального состояния волос, кожи, ногтей, учувствует в образовании эритроцитов и клеток иммунитета, отвечает за репродуктивную функцию и функцию щитовидной железы. Этим витамином богаты следующие продукты: печень, почки, яйца, миндаль, грибы, творог, брокколи.

Витамин РР (никотиновая кислота, никотинамид) - в больших количествах этот уникальный витамин снижает концентрацию холестерина. За счет способности расширять сосуды, улучшает мозговое кровообращение, имеет не сильно выраженное антикоагулянтное действие, повышает фибринолитическую активность крови. Источниками этого витамина являются печень, орехи, яичный желток, молоко, рыба, мясо, бобовые, гречка.

Витамин В5 (пантотеновая кислота). Главное свойство этого витамина заключается в его способности продуцировать гормоны надпочечников – глюкокортикоиды. Благодаря этому витамину в нашем организме формируются антитела, а также он способствует усвоению других витаминов. Источниками являются икра рыб, яичный желток, капуста, зелёные части растений, молоко.

Витамин В6 (пиридоксин) это собирательно названии для группы, которая включает в себя пиридоксин, пиридоксаль, пиридоксамин, пиридоксальфосфат. Эти вещества помогает организму усваивать белки и жиры. Помогают в борьбе с различными кожными и неврологическими заболеваниями. Уменьшает ночные спазмы мышц, судороги икроножных мышц, онемение рук. Является природным мочегонным. Этого витамина содержится много в печени, почках, сердце, дыне, капусте, молоке, яйцах, брокколи, треске.

Витамин Н (биотин) регулирует белковый и жировой баланс, учувствует в синтезе ферментов, которые регулируют обмен углеводов. Является источником серы, которая принимает участие в синтезе коллагена. Богатые источники этого вещества - печень, почки, цветная капуста, шпинат, томаты.

Витамин В9 (фолиевая кислота) очень важен в период раннего развития организма – на стадии внутриутробного развития и в раннем детстве. От недостатка фолиевой кислоты страдает костный мозг. Употребляйте больше зеленых овощей, они помогут вам восполнить запасы фолиевой кислоты.

Витамин В12 (кобаламин) стимулирует кроветворение, учувствует в развитии нервной системы, учувствует в создании ДНК человека. Источниками являются морепродукты, мясо, яйца, молочные продукты.

Витамин С (аскорбиновая кислота) участвует в превращении холестерина в желчные кислоты, стимулирует синтез интерферона, улучшает всасывание железа, оказывает омолаживающий эффект на кожные покровы. Главными источниками этого витамина являются шиповник, облепиха, черная смородина, цитрусовые, киви, шпинат и т д.

Витамин Р (биофлавоноиды) участвует в окислительно-восстановительных процессах, увеличивает эластичность капилляров, регулирует количество холестерина в организме, замедляет процессы старения организма. Источниками являются каперсы, черные оливки, гречиха, спаржа (сырая), виноград, малина, яблоки, сливы, абрикосы, вишня, смородина, ежевика, черника, лимоны, апельсины, мандарины, плоды шиповника.

Жирорастворимые витамины: влияние на организм, источники

Витамин А (или ретинол) оказывает влияние на иммунную систему. Положительно влияет на состояние кожи, зубов, волос, ногтей. Витамин А способствует правильному функционированию дыхательной и мочевыводящей систем, полезен для зрения. Главные источники продукты животного происхождения, красные фрукты и овощи.

Витамин D. Одна из главных функций витамина Д — это катализация усвоение кальция и магния, которые так необходимы для костной системы. Он также учувствует в процессе роста и развития клеток организма человека, влияет на уровень глюкозы в крови. Этот витамин образуется в организме под действием ультрафиолетовых лучей и поступает в организм человека с пищей, например, его много в рыбьем жире, сливочном масле, сыре, икре.

Витамин Е (токоферол) обладает антиоксидантным свойством, благоприятно влияет на состояние кожи, способствует регенерации тканей, улучшает циркуляцию крови, способствует усвоению витамина А. В больших количествах витамин Е присутствует в яблоках, миндале, арахисе, зеленых листовых овощах, злаковых, бобовых, орехах, брюссельской капусте, яйцах, печени, молоке и молочных продуктах, говядине.

Витамин К играет большую роль в способности крови свертываться, а также оказывает влияние на метаболизм костных тканей. Витамин К присутствует в различных видах капусты, в листовых овощах, молоке, мясе, петрушке.

Нажмите, чтобы узнать подробности

1.1 Причины возникновения патологий обмена витаминов……….

1.2 Профилактика гиповитаминозов и гипервитаминозов…………

1.2.1 Профилактика гиповитаминозов………………..………..

1.2.2 Профилактика гипервитаминозов………..……..………..

1.3 Классификация витаминов………………………………….……

Глава 2. ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ………………….……

2.2 Кальциферол (Витамин D) …………………………………….…

Глава 3. ВОДОРАСТВОРИМЫЕ ВИТАМИНЫ……………………….

3.5 Аскорбиновая кислота (Витамин С)………………………….….

3.6 Витамин Р (биофлавоноиды, полифенолы)……………………..

3.7 Витамин РР (ниацин, никотиновая кислота, витамин B5).

3.9 Пантотеновая кислота (витамин B3)……………………………..

Кушать овощи и фрукты,

Вот полезная еда,

(А. Болюбаш)

Витамины – жизненно важные вещества, необходимые нашему организму для поддержания многих его функций. Поэтому достаточное и постоянное поступление витаминов в организм с пищей крайне важно.

Биологическое действие витаминов в организме человека заключается в активном участии этих веществ в обменных процессах. В обмене белков, жиров и углеводов витамины принимают участие либо непосредственно, либо входя в состав сложных ферментных систем. Витамины участвуют в окислительных процессах, в результате которых из углеводов и жиров образуются многочисленные вещества, используемые организмом, как энергетический и пластический материал. Витамины способствуют нормальному росту клеток и развитию всего организма. Важную роль играют витамины в поддержании иммунных реакций организма, обеспечивающих его устойчивость к неблагоприятным факторам окружающей среды. Это имеет существенное значение в профилактике инфекционных заболеваний.

Витамины смягчают или устраняют неблагоприятное действие на организм человека многих лекарственных препаратов. Недостаток витаминов сказывается на состоянии отдельных органов и тканей, а также на важнейших функциях: рост, продолжение рода, интеллектуальные и физические возможности, защитные функции организма. Длительный недостаток витаминов ведет сначала к снижению трудоспособности, затем к ухудшению здоровья, а в самых крайних, тяжелых случаях это может закончиться смертью.

Только в некоторых случаях наш организм может синтезировать в небольших количествах отдельные витамины. Витамины необходимы для синтеза гормонов – особых биологически активных веществ, которые регулируют самые разные функции организма. Они необходимы для гормональной системы и ферментной системы нашего организма. Также регулируют наш обмен веществ, делая организм человека здоровым, бодрым и красивым.

Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микроорганизмами, однако в этом случае их бывает не всегда достаточно. Многие витамины быстро разрушаются и не накапливаются в организме в нужных количествах, поэтому человек нуждается в постоянном поступлении их с пищей.

Применение витаминов с лечебной целью (витаминотерапия) первоначально было целиком связано с воздействием на различные формы их недостаточности. С середины XX века витамины стали широко использовать для витаминизации пищи, а так же кормов в животноводстве.

Ряд витаминов представлен не одним, а несколькими родственными соединениями. Знание химического строения витаминов позволило получать их путем химического синтеза; наряду с микробиологическим синтезом это основной способ производства витаминов в промышленных масштабах. Существуют также вещества, близкие по строению к витаминам, так называемые провитамины, которые, поступая в организм человека, превращаются в витамины. Существуют химические вещества, близкие по своему строению к витаминам, но они оказывают на организм прямо противоположное действие, поэтому получили название антивитаминов. К этой группе относят также вещества, связывающие или разрушающие витамины. Антивитаминами являются и некоторые лекарственные средства (антибиотики, сульфаниламиды и др.), что служит еще одним доказательством опасности самолечения и бесконтрольного употребления лекарств.

Первоисточником витаминов являются растения, в которых витамины накапливаются. В организм витамины поступают в основном с пищей. Некоторые из них синтезируются в кишечнике под влиянием жизнедеятельности микроорганизмов, но образующиеся количества витаминов не всегда полностью удовлетворяют потребности организма. Витамины участвуют в регуляции обмена веществ; они являются биологическими катализаторами или реагентами фотохимических процессов, протекающих в организме, также они активно участвуют в образовании ферментов.

Витамины влияют на усвоение питательных веществ, способствуют нормальному росту клеток и развитию всего организма. Являясь составной частью ферментов, витамины определяют их нормальную функцию и активность. Недостаток, а тем более отсутствие в организме какого-либо витамина ведет к нарушению обмена веществ. При недостатке их в пище снижается работоспособность человека, сопротивляемость организма к заболеваниям, к действию неблагоприятных факторов окружающей среды. В результате дефицита или отсутствия витаминов, развивается витаминная недостаточность.

Глава 1. О ВИТАМИНАХ, ИХ КЛАССИФИКАЦИИ И ПРИЧИНАХ ВОЗНИКНОВЕНИЯ ПАТОЛОГИЙ ОБМЕНА ВИТАМИНОВ

Человеческий организм в полной мере неспособен синтезировать витамины, и поэтому должен получать их из внешней среды. Витамины являются биологически активными веществами, необходимыми для жизнедеятельности организма в малых количествах. Содержание витаминов в продуктах, однако, значительно ниже, чем основных нутриентов — белков, жиров и углеводов, и не превышает, как правило, 10-100 мг/100 г продукта.

Поступая в организм витамины переходят в свои активные формы, входят в состав ферментов, в виде коферментов и простетических групп и участвует в химических процессах. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур. Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений деятельности органов и систем при дефиците любого из витаминов.

Причины возникновения патологий обмена витаминов.

Гиповитаминозы.

Гиповитаминоз представляет собой комплекс нарушений, возникающий в организме при недостаточном поступлении тех или иных витаминов. Крайней степенью витаминной недостаточности является авитаминоз. При чрезмерном употреблении некоторых витаминов возникают патологические состояния, называемые гипервитаминозами.

Причины гиповитаминоза могут быть экзогенными и эндогенными.

К экзогенным причинам относятся:

1. Недостаток витамина в пище

Отсутствие в рационе продуктов, содержащих витамин

Разрушение витаминов при кулинарной обработке пищи, транспортировке, хранении продуктов. Самые неустойчивые витамины - С и А, они расщепляются на свету, воздухе, при термической обработке.

2. Несбалансированное и некачественное питание:

Неправильное соотношение между белками, жирами и углеводами в рационе.

Например, при недостатке жиров снижается усвояемость жирорастворимых витаминов. При недостаточном поступлении в организм белков может наблюдаться гиповитаминоз А, нарушение усвояемости витаминов группы В в некоторых тканях и др.

3. Условия внешней среды.

Например, при недостатке ультрафиолетовой радиации в детском возрасте может развиваться рахит вследствие недостаточного образования витамина D.

4. Повышенные физические и психические нагрузки.

При этом организм нуждается в повышенном поступлении витаминов, поэтому возникает относительный гиповитаминоз.

5.Воздействие вредных профессиональных факторов

Факторов, таких как: вибрация, холод и др.

6. Применение антибиотиков широкого спектра действия и химиопрепаратов (в особенности группы ГИНК).

Развивается дисбактериоз, который приводит к гиповитаминозу вследствие нарушения витаминсинтезирующей функции микрофлоры.

Эндогенные причины:

1. Нарушение всасывания витаминов при заболеваниях ЖКТ.

язвенная болезнь желудка и двенадцатиперстной кишки, гастрит с пониженной секрецией и др.), при глистных инвазиях, после резекции желудка кишки, при дефиците эндогенного фактора Касла (витамин В) и т.д.

2. Повышенная потеря витаминов с мочой при заболеваниях почек, применении мочегонных средств

3. Заболевания печени

4. Усиленная потеря витаминов при диарее (например, при ряде инфекционных заболеваний)

Гипервитаминозы.

Гипервитаминоз – это острое расстройство в результате интоксикации сверхвысокой дозой одного или нескольких витаминов (содержащихся в пище или витаминсодержащих препаратах).

Чаще всего гипервитаминозы вызываются приёмом резко повышенных доз витаминов А и D. Лечение производится отменой приёма витаминов, обильным питьём (форсированный диурез), антидотами.

Причины гипервитаминозов:

1. Употребление витаминных препаратов с лечебно-профилактическими целями

2. Употребление больших количеств продуктов, богатых данным витамином

3. Случайные отравления.

Профилактика гиповитаминозов и гипервитаминозов.

Профилактика гиповитаминозов.

Как уже упоминалось, одной из экзогенных причин гиповитаминоза может быть неправильное хранение, транспортировка, кулинарная обработка. Для того, чтобы избежать значительных потерь витаминов необходимо (на примере витамина С):

1. Осуществлять транспортировку овощей только в деревянной таре.

2. Хранение в вакууме при температуре не выше +1-3°С.

3. Правильная кулинарная обработка чрезвычайно важна для сохранения витаминов.

Профилактика гипервитаминозов:

1. Принимать препараты витаминов только по назначению врача

2. Соблюдать рекомендуемую дозировку препаратов

Классификация витаминов

Современная классификация витаминов не является совершенной. Она основана на физико-химических свойствах (в частности, растворимости) или на химической природе, но до сих пор сохраняются и буквенные обозначения. В зависимости от растворимости в неполярных органических растворителях или в водной среде различают жирорастворимые и водорастворимые витамины.


Рис. 1. Органеллы, в которых содержится ДНК

Нуклеиновые кислоты являются биополимерами, которые состоят из мономеров – нуклеотидов. Молекула нуклеотида состоит из трех составных частей: из пятиуглеродного сахара – пентозы, из азотистого основания и остатка фосфорной кислоты (рис. 2).


Рис. 2. Нуклеотиды

Сахар, входящий в состав нуклеотида, представляет собой пентозу, то есть он является пятиуглеродным сахаром. В зависимости от вида пентозы (дезоксирибоза или рибоза) различают молекулы ДНК и РНК (рис. 3).


Рис. 3. Химический состав нуклеотидов

Азотистые основания. Во всех типах нуклеиновых кислот: ДНК или РНК, содержатся основания четырех разных видов (рис. 4). В ДНК: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В РНК вместо тимина (Т) урацил (У).


Рис. 4. Азотистые основания нуклеотидов ДНК и РНК

Фосфорная кислота. Нуклеиновые кислоты являются кислотами, потому что в их состав входит остаток фосфорной кислоты. Обратите внимание на то, что остаток фосфорной кислоты присоединен к сахару по гидроксильной группе 3 ’ и 5 ’ углеродом атома (рис. 5).


Рис. 5 Фосфодиэфирная связь между отдельными нуклеотидами в цепочке нуклеиновой кислоты

Это очень важно для понимания того, каким образом нуклеотиды образуют нуклеиновую кислоту. Они соединяются друг с другом с помощью т. н. фосфодиэфирной связи.

Два нуклеотида образуют динуклеотид путем конденсации. В результате между фосфатной группой одного нуклеотида и гидроксигруппой сахара другого образуется т. н. фосфодиэфирная связь (рис. 6).


Рис. 6. Фосфодиэфирная связь

При синтезе полинуклеотидной цепи эта реакция повторяется несколько миллионов раз. Таким образом, полинуклеотид (рис. 7) строится путем образования фосфодиэфирных мостиков между 3 ’ и 5 ’ углеродами сахаров.


Рис. 7. Полинуклеотид

Фосфодиэфирные мостики возникают за счёт прочных ковалентных связей, это сообщает всем полинуклеотидным цепям прочность и стабильность, что очень важно, поскольку уменьшается риск повреждения (поломки) молекул ДНК.

Итак, нуклеиновые кислоты – это биополимеры, которые состоят из мономеров – нуклеотидов. В состав нуклеотидов входят три основные части, а именно пятиуглеродный сахар – пентоза, азотистые основания и остаток фосфорной кислоты. В зависимости от природы пентозы различают ДНК и РНК.

В состав ДНК входят аденин, цитозин, гуанин и тимин.

В состав РНК входят аденин, цитозин, гуанин, урацил.

Объединение нуклеотидов в нуклеиновую кислоту идет за счёт образования фосфодиэфирных мостиков, или фосфодиэфирной связи.

Структура молекулы ДНК

Нуклеиновые кислоты, как и белки, имеют первичную, вторичную и третичную структуру. Первичная структура ДНК – это последовательность нуклеотидных остатков в полинуклеотидных цепях.

Вторичная структура – пространственная конфигурация полинуклеотидных цепей ДНК

В формировании вторичной структуры полинуклеотидной цепи важное значение имеют водородные связи, которые возникают на основе принципа комплементарности, то есть дополнительности или соответствия между парами оснований: аденином и тимином, гуанином и цитозином (рис. 8).


Рис. 8. Водородная связь и вторичная структура ДНК

Иллюстрация принципа комплементарности.

Эти комплементарные пары способны образовывать между собой прочные водородные связи. Так, между аденином и тимином формируются две водородные связи, а между гуанином и цитозином – три водородные связи.

В 1953 году Джеймс Уотсон и Френсис Крик предложили пространственную модель структуры ДНК (рис. 9).


Согласно этой модели, молекула ДНК представляет собой двухцепочечную правозакрученную спираль, состоящую из комплементарных друг другу антипараллельных цепей.

Между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.

Третичная структура ДНК

У всех живых организмов молекула ДНК плотно упакована с образованием сложных трехмерных структур. Нахождение ДНК в суперспирализованном состоянии дает возможность сделать молекулу более компактной (рис. 10).


Рис. 10. Третичная структура ДНК. Сверхплотная упаковка ДНК с белками-гистонами образует хромосому

У всех живых организмов двуспиральная молекула ДНК плотно упакована и образует сложные трехмерные структуры (рис. 11).


Рис. 11. Модели двухцепочечных ДНК

Двухцепочная ДНК бактерий имеет кольцевидную форму и образует суперспираль. Суперспирализация необходима для упаковки громадной по клеточным меркам ДНК в малом объеме клетки.

Например, ДНК кишечной палочки имеет длину более 1 мм, в то время как длина клетки не превышает 5 мкм (в 1 мм = 1000 мкм) (рис. 12).



Рис. 12. ДНК в нуклеоиде бактерий (слева) и в клетках тела человека (справа)

Хромосомы эукариот представляют собой суперспирализованные линейные молекулы ДНК (рис. 13).


Рис. 13. Хромосомы эукариот

В процессе упаковки эукариотическая ДНК обматывает белки – гистоны, располагающиеся вдоль ДНК через определенные интервалы. Эти белки образуют нуклеосомы (рис. 14). Вторым уровнем пространственной организации ДНК является образование хроматина – волокон, из которых состоят хромосомы.


Рис. 14. Третичная структура ДНК

В ядре каждой клетки тела человека, кроме половых клеток, содержится 23 пары хромосом (рис. 15). На каждую из них приходится по одной молекуле ДНК. Длина всех 46 молекул ДНК в одной клетке человека почти равна двум метрам, а число нуклеотидных пар в ней 3,2 млрд.


Рис. 15. Хромосомы человека. Кариотип мужчины

Так что, если бы молекула ДНК не была организована в плотную структуру, то наша жизнь была бы невозможна геометрически.

Функции молекулы ДНК

Функции ДНК – хранение и передача наследственной информации.

Хранение наследственной информации. Порядок расположения нуклеотидных остатков в молекуле ДНК определяет последовательность аминокислот в молекуле белка. В молекуле ДНК зашифрована вся информация о признаках и свойствах нашего организма.

Передача наследственной информации следующему поколению. Эта функция осуществляется, благодаря способности молекулы ДНК к самоудвоению – репликации. ДНК может распадаться на две комплементарные цепочки, и на каждой из них на основе того же принципа комплементарности восстановится исходная последовательность нуклеотидов.

История открытия нуклеиновых кислот

В научной литературе посвященной изучению строению молекулы ДНК, как правило, упоминается Джеймс Уотсон и Френсис Крик (рис. 9).

Но первооткрывателями нуклеиновых кислот был Фридрих Иоганн Мишер (рис. 16), швейцарский ученый, который работал в Германии.


Рис. 16. Первооткрыватель нуклеиновых кислот

В 1869 году Мишер занимался изучением животных клеток – лейкоцитов. Для получения лейкоцитов он использовал гнойные повязки, которые ему доставлялись из больниц. Он брал гной, отмывал лейкоциты и выделял из них белок.

В процессе исследований Мишеру удалось установить, что кроме белков, в лейкоцитах содержится ещё какое-то неизвестное вещество.

Оно выделялось в виде нитевидного или хлопьевидного осадка при создании кислой среды. При добавлении щелочи этот осадок растворялся.

Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов соляной кислотой от них остаются ядра. Он сделал вывод, что в ядрах имеется неизведанное вещество, то есть новое вещество, которое он назвал нуклеином, от слова nucleus – ядро.

Кроме этого, по данным химического анализа Мишер установил, что это новое вещество состоит из углерода, водорода, кислорода и фосфора. Фосфорорганических соединений в то время было известно очень мало, поэтому Мишер пришел к выводу, что открыл новый класс соединений в ядре.

Так в XIX веке стало известно о существовании нуклеиновых кислот, но тогда никто не мог предположить, какая огромная роль принадлежит нуклеиновым кислотам в сохранении разнообразия наследственных признаков организмов.

Первые доказательства того, что молекула ДНК заслуживает довольно серьёзного внимания, были получены 1944 году группой бактериологов во главе с Освальдом Эвери. Он много лет изучал пневмококки – микроорганизмы, вызывающие воспаления легких, или пневмонию. Эвери смешивал два вида пневмококков, один из которых вызывал заболевание, а другой – нет. Предварительно болезнетворные клетки убивали, и затем добавляли к ним пневмококки, которые не вызывали заболевание.


Рис. 17. Опыты Эвери и Гриффитса

Результаты опытов были удивительны. Некоторые живые клетки после контакта с убитыми научились вызывать болезнь. Эвери удалось выяснить природу вещества, участвующего в процессе передачи информации от мертвых клеток живым (рис. 17). Этим веществом оказалась молекула ДНК.

Домашнее задание

1. Какие вещества называют нуклеиновыми кислотами?

2. Что такое ДНК? Какова роль ДНК в жизнедеятельности живых организмов?

3. В каких органоидах клетки содержится ДНК? Почему ДНК содержится в этих органоидах?

4. Какие химические особенности ДНК позволяют ей выполнять её биологические функции?

5. Что такое нуклеотид? Из чего он состоит?

6. Какие уровни структурной организации ДНК вам известны?

7. Какие возможности перед наукой и практикой были открыты благодаря установлению структуры и функций ДНК?

8. Почему за модель двойной спирали ДНК Д. Уотсон и Ф. Крик были награждены Нобелевской премией?

Читайте также: