Реферат закон распределения дискретной случайной величины в экономике

Обновлено: 08.07.2024

Случайной величинойназывается величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретнойслучайной величины.

Закон распределения может быть задан аналитически, в виде таблицы или графически.

Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения.

Графическое представление этой таблицы называется многоугольником распределения. При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.

При построении многоугольника распределения надо помнить, что соединение полученных точек носит условный характер. В промежутках между значениями случайной величины вероятность не принимает никакого значения. Точки соединены только для наглядности.

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания.

1) Математическое ожидание постоянной величины равно самой постоянной.

2) Постоянный множитель можно выносить за знак математического ожидания.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания.

1) Дисперсия постоянной величины равна нулю.

2) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат.

3) Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин.

4) Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин.

Справедливость этого равенства вытекает из свойства 2.

Средним квадратическим отклонениемслучайной величины Х называется квадратный корень из дисперсии.

Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньшее х.

Функцию распределения также называют интегральной функцией.

Функция распределения существует как для непрерывных, так и для дискретных случайных величин. Она полностью характеризует случайную величину и является одной из форм закона распределения.

Для дискретной случайной величины функция распределения имеет вид:

Знак неравенства под знаком суммы показывает, что суммирование распространяется на те возможные значения случайной величины, которые меньше аргумента х.

Функция распределения дискретной случайной величины Х разрывна и возрастает скачками при переходе через каждое значение хi.

Свойства функции распределения..

1) значения функции распределения принадлежат отрезку [0, 1].

2) F(x) – неубывающая функция.

3) Вероятность того, что случайная величина примет значение, заключенное в интервале (a, b) , равна приращению функции распределения на этом интервале.

4) На минус бесконечности функция распределения равна нулю, на плюс бесконечности функция распределения равна единице.

5) Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Таким образом, не имеет смысла говорить о каком – либо конкретном значении случайной величины. Интерес представляет только вероятность попадания случайной величины в какой – либо интервал, что соответствует большинству практических задач.

Функция распределения полностью характеризует случайную величину, однако, имеет один недостаток. По функции распределения трудно судить о характере распределения случайной величины в небольшой окрестности той или иной точки числовой оси.

Плотностью распределения вероятностей непрерывной случайной величины Х называется функция f(x) – первая производная от функции распределения F(x).

Плотность распределения также называют дифференциальной функцией. Для описания дискретной случайной величины плотность распределения неприемлема.

Смысл плотности распределения состоит в том, что она показывает как часто появляется случайная величина Х в некоторой окрестности точки х при повторении опытов.

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Позднее развитие теории вероятностей определились в работах многих ученых. Большой вклад в теорию вероятностей внесли ученые нашей страны: П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.

1. Случайные величины

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

2. Равномерное распределение

Пусть сегмент оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от места отрезка на шкале. Отметка указателя прибора есть случайная величина могущая принять любое значение из сегмента . Поэтому

Если, далее, и ( 0 . Смысл параметров a и будет установлен в дальнейшем. Исходя из связи между плотностью распределения и функцией распределения , имеем

График функции симметричен относительно прямой x=a. Несложные исследования показывают, что функция достигает максимума при x=a, а ее график имеет точки перегиба при и . При график функции асимптотически приближается к оси Ox. Можно показать, что при увеличении кривая плотности распределения становится более пологой. Наоборот, при уменьшении график плотности распределения сжимается к оси симметрии. При a=0 осью симметрии является ось Oy . На рис. 3 изображены два графика функции y =. График I соответствует значениям a =0,=1, а график II - значениям a =0, =1/2.


Покажем, что функция удовлетворяет условию, т.е. при любых a и выполняется соотношение


В самом деле, сделаем в этом интеграле замену переменной, полагая . Тогда


В силу четности подинтегральной функции имеем




В результате получим


(4)


Найдем вероятность . По формуле имеем

Сделаем в этом интеграле замену переменной, снова полагая


Тогда , и
(5)


Как мы знаем, интеграл не берется в элементарных функциях. Поэтому для вычисления определенного интеграла (5) вводится функция (6)
называемая интегралом вероятностей. Для этой функции составлены таблицы ее значений для различных значений аргумента (см. табл. II Приложения). Используя формулу (6) получим




(7)

Легко показать, что функция Ф(х) (интеграл вероятностей) обладает следующими свойствами.

2°. ; при величина практически равна 1/2 (см. табл. II).

3°. =- т.е. интеграл вероятностей является нечетной функцией.

График функции изображен на рис. 4.

Таким образом, если случайная величина нормально распределена с параметрами a и , то вероятность того, что случайная величина удовлетворяет неравенствам , определяется соотношением (7).

Пусть . Найдем вероятность того, что нормально распределенная случайная величина отклонится от параметра a по абсолютной величине не более, чем на , т.е. .


Так как неравенство равносильно неравенствам то полагая в соотношении (7) , получим


Вследствие того, что интеграл вероятностей - нечетная функция, имеем (8)

Пример 1. Пусть случайная величина подчиняется нормальному закону распределения вероятностей с параметрами a=0, =2.


1) Используя формулу (7), имеем

Из табл. II находим, что Ф(1)=0,34134 , Ф(1,5)=0,43319. Следовательно 3

2) Так как a=0 , то . По формуле (8) находим

Пример 2. В каких пределах должна изменяться случайная величина, подчиняющаяся нормальному закону распределения, чтобы
)=0,9973

Решение: По формуле (8) имеем

Следовательно, . Из табл. II находим, что этому значению соответствует =3,откуда.

Из последнего примера следует, что если случайная величина подчиняется нормальному закону распределения, то можно утверждать с вероятностью, равной 0,9973 , что случайная величина находится в интервале . Так как данная вероятность близка к единице, то можно считать, что значения нормально распределенной случайной величины практически не выходят за границы интервала Этот факт называют правилом трех сигм.

6.Условные законы распределения

Как было показано выше, зная совместный закон распределения можно легко найти законы распределения каждой случайной величины, входящей в систему.

Однако, на практике чаще стоит обратная задача – по известным законам распределения случайных величин найти их совместный закон распределения.

В общем случае эта задача является неразрешимой, т.к. закон распределения случайной величины ничего не говорит о связи этой величины с другими случайными величинами.

Кроме того, если случайные величины зависимы между собой, то закон распределения не может быть выражен через законы распределения составляющих, т.к. должен устанавливать связь между составляющими.

Все это приводит к необходимости рассмотрения условных законов распределения.

Распределение одной случайной величины, входящей в систему, найденное при условии, что другая случайная величина приняла определенное значение, называется условным законом распределения.

Условный закон распределения можно задавать как функцией распределения так и плотностью распределения.

Условная плотность распределения вычисляется по формулам:



Условная плотность распределения обладает всеми свойствами плотности распределения одной случайной величины.


Таблица I: Значения функции:

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Позднее развитие теории вероятностей определились в работах многих ученых. Большой вклад в теорию вероятностей внесли ученые нашей страны: П.Л.Чебышев, А.М.Ляпунов, А.А.Марков, А.Н.Колмогоров. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения. Они используются в физике, технике, экономке, биологии и медицине. Особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий (температура, влажность и т.п.), мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. Даже многократные измерения не дают возможности точно предсказать результат следующего измерения. В этом смысле говорят, что результат измерения есть величина случайная. Еще более наглядным примером случайной величины может служить номер выигрышного билета в лотерее. Можно привести много других примеров случайных величин. Все же и в мире случайностей обнаруживаются определенные закономерности. Математический аппарат для изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных событий и связанных с ними случайных величин.1. Случайные величины

Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.

Таким образом, случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).

Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Современная теория вероятностей предпочитает, где только возможно, оперировать не случайными событиями, а случайными величинами, для которых был разработан более гибкий и универсальный математический аппарат. Случайная величина – это величина, которая в результате опыта может принимать то или иное значение, заранее не известно, какое именно. Случайными величинами являются, например, количество очков, выпадающих при бросании игрального кубика, число посетителей аптеки в течение случайно взятого дня, температура больного в наугад выбранное время суток, рост случайно выбранного студента и тому подобное. Случайные величины принято обозначать прописными буквами латинского алфавита – Х, У, Z и т.д., а их возможные значения – соответствующими строчными буквами с числовыми индексами. Например, значения случайной величины Х обозначают следующим образом: 1 2 3 х , х , х , …. Пример: Если Х - количество очков, выпадающих при бросании игрального кубика, тогда данная случайная величина принимает следующие значения X = < 1,2,3,4,5,6 >, где 1, х1 = х2 = 2 и т.д. Таким образом, значения случайной величины образуют полную группу событий.

ГЛАВА 1. ВИДЫ И НАЗНАЧЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

Случайные величины бывают: а) непрерывные – значения которых непрерывно заполняют какой-либо промежуток (например: давление крови человека, температура его тела или состав крови); б) дискретные – принимающие отдельные друг от друга значения (например: число звонков на станцию скорой помощи в течение часа или количество очков, выпадающих при бросании игрального кубика). Каждое свое значение случайная величина может принимать с разной вероятностью. Основная задача теории вероятностей, оперирующей случайными величинами, – это определение закона распределения случайной величины, то есть установление соответствия между возможными значениями случайной величины и вероятностью наблюдения этих значений.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий, мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. В этом смысле говорят, что результат измерения есть величина случайная.

Содержание работы

Введение
3
1.
Случайные величины
4
2.
Классификация случайных величин
5
3.
Закон распределения случайной величины
6
4.
Функция распределения случайной величины и ее свойства
7
5.
Числовые характеристики непрерывных случайных величин
9
5.1
Математическое ожидание случайной величины, его вероятностный смысл и свойства
9
5.2
Дисперсия случайной величины и ее свойства
13
5.3
Среднеквадратическое отклонение
16

Файлы: 1 файл

случ.величина.docx

ФГОУ ВПО Государственный аграрный университет Северного Зауралья

Институт экономики и финансов

Кафедра математических наук

Выполнила: студентка 2 курса

группы Б-ЭБ24 Глухова Н.Д

Проверила: доцент кафедры математики

Классификация случайных величин

Закон распределения случайной величины

Функция распределения случайной величины и ее свойства

Числовые характеристики непрерывных случайных величин

Математическое ожидание случайной величины, его вероятностный смысл и свойства

Дисперсия случайной величины и ее свойства

Теория вероятностей является одним из классических разделов математики. Она имеет длительную историю. Основы этого раздела науки были заложены великими математиками. Назову, например, Ферма, Бернулли, Паскаля. Вероятностные и статистические методы в настоящее время глубоко проникли в приложения, особенно возросла их роль в связи с развитием вычислительной техники.

Например, для изучения физических явлений производят наблюдения или опыты. Их результаты обычно регистрируют в виде значений некоторых наблюдаемых величин. При повторении опытов мы обнаруживаем разброс их результатов. Например, повторяя измерения одной и той же величины одним и тем же прибором при сохранении определенных условий, мы получаем результаты, которые хоть немного, но все же отличаются друг от друга. В этом смысле говорят, что результат измерения есть величина случайная.

Одним из основных понятий в теории вероятностей является понятие случайной величины. Случайная величина является числовой характеристикой результата эксперимента, которая принимает свои значения в зависимости от элементарного события. Примером случайной величины могут быть: число очков, выпадающих при одном бросании игральной кости, число граждан, которые имеют высшее образование среди взятых наугад n человек, число бракованных изделий в партии из N штук, время безотказной работы прибора и т.д.

Случайная величина обычно обозначается прописной латинской буквой , ее конкретные значения – строчными буквами .Случайной величиной называется функция , определенная на множестве элементарных событий , .

2.Классификация случайных величин

Случайные величины делятся на дискретные и непрерывные. Величина называется дискретной, если она может принимать определенные, фиксированные значения.

Случайная величина называется непрерывной, если она может принимать значения, сколь угодно мало отличающиеся друг от друга. Пусть дискретная случайная величина может принимать значений: . Для полной характеристики этой случайной величины должны быть заданы еще и вероятности появления указанных значений .

3.Закон распределения случайной величины

Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.

Законом распределения случайной дискретной величины называется совокупность пар чисел ( ), где – возможные значения случайной величины, а – вероятности, с которыми она принимает эти значения, причем .

Таблицу значений дискретной случайной величины , если это целесообразно, формально всегда можно пополнить конечным набором любых чисел, считая их значениями с вероятностями, равными нулю.

Случайные величины и называются независимыми, если возможные значения и закон распределения каждой из них один и тот же при любом выборе допустимых значений другой и не зависит от того, какое возможное значение приняла другая величина. В противном случае эти величины называются зависимыми. Несколько случайных величин называются взаимно независимыми, если возможные значения и законы распределения любой из них не зависят от того, какие возможные значения приняли остальные случайные величины.

4. Функция распределения случайной величины и ее свойства

Как для дискретной величины, так и для непрерывной вводится понятие функции распределения.

Пусть – случайная величина, определенная на множестве элементарных событий , , а – произвольное действительное число. В общем случае функция должна быть такова, чтобы для любых событие , состоящее в том, что случайная величина попадает в интервал , принадлежала полю событий и, таким образом, для любого такого события была определена вероятность .

Тогда вероятность того, что примет значение, меньшее, чем , равна значению функции распределения вероятностей данной случайной величины , соответствующее значению аргумента , т.е. функция распределения вероятностей данной случайной величины представляет собой вероятность события , где – задаваемые непрерывно изменяющиеся значения, т.е. .

Рассмотрим функцию распределения случайной дискретной величины , принимающей значения .

Если , то , так как в этом случае событие является невозможным.

Если , то событие наступит тогда и только тогда, когда наступит событие , поэтому .

Если , то событие равно сумме событий , и .

Аналогично, если , то .

Таким образом, функция распределения случайной дискретной величины равна , где , и суммирование производится по тем , для которых .

Если дискретные значения случайной величины расположены в порядке возрастания, то каждому значению этих величин ставится в соответствие сумма вероятностей всех предыдущих значений и вероятности , это указано в таблице (см.Приложение1)

В точках функция распределения имеет скачки, равные вероятности того, что случайная величина примет соответствующее значение.

Свойства функции распределения:

Функция распределения принимает значения из промежутка : .

Вероятность того, что случайная величина примет значение из полуинтервала , равна разности : .

Функция распределения – неубывающая функция, т.е. при .

5. Числовые характеристики непрерывных случайных величин

5.1 Математическое ожидание случайной величины, его вероятностный смысл и свойства

В некоторых случаях закон распределения случайной величины неизвестен, или просто целесообразно использовать не таблицу или функцию распределения для представления случайной величины, а так называемые числовые характеристики ее распределения, в частности математическое ожидание.

Математическое ожидание дискретной случайной величины – это сумма парных произведений всех возможных ее значений на соответствующие вероятности:

Очевидно, математическое ожидание случайной величины не изменится, если таблицу значений этой случайной величины пополнить конечным числом любых чисел, считая, что вероятности этих чисел равны нулю. Математическое ожидание случайной величины есть величина постоянная и поэтому представляет числовую характеристику случайной величины .Вероятностный смысл математического ожидания: математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания можно сформулировать в виде теорем.

1. Теорема. Математическое ожидание постоянной величины равно этой величине.

Доказательство. Постоянную величину можно рассматривать как случайную дискретную величину, принимающую лишь одно возможное значение с вероятностью . Поэтому .

2. Теорема. Математическое ожидание суммы двух (или нескольких) случайных величин и равно разности их математических ожиданий

1) Пусть случайная величина принимает значения с вероятностями ( ), а случайная величина принимает значения с вероятностями ( ). Тогда возможными значениями случайной величины будут суммы , вероятности которых равны:

Как уже отмечалось ранее, все комбинации ( ) ( , ) можно считать допустимыми, причем, если сумма невозможна, то полагаем, чт .

Сумма представляет собой вероятность события, состоящего в том, что случайная величина принимает значения при условии, что случайная величина примет одно из своих возможных значений (что достоверно); это сложное событие, очевидно, эквивалентно тому, что принимает значение и поэтому

Для нескольких случайных величин, например для трех , и , имеем:

Следствие. Если – постоянная величина, то:

3. Теорема. Математическое ожидание произведения двух независимых случайных величин и равно произведению их математических ожиданий:

Доказательство. Пусть случайная величина принимает значения ( , ) ( ) и ( , ) ( ) – законы распределения случайных величин и . Так как и – независимы, то полный набор значений случайной величины состоит из всех произведений ( , ), причем вероятности этих значений по теореме умножения для независимых событий равны

Следствие. Постоянный множитель можно выносить за знак математического ожидания, т.е. . Если – постоянная величина и – любая случайная величина, то, учитывая, что и – независимы, получим:

Следствие. Математическое ожидание разности двух случайных величин и равно разности их математических ожиданий:

Читайте также: