Реферат ядерная энергия мифы и реальность

Обновлено: 04.07.2024

Атомная энергетика вызывает у людей куда больше эмоций, чем прочие способы генерации энергии. Каких только мифов не породило массовое сознание в отношении данной отрасли. Где заканчивается правда и начинается вымысел?

Миф 1. АЭС — главный враг природы

Но парадокс в том, что атомная генерация и есть один из самых чистых способов производства энергии, доступных человечеству на сегодняшний день. В отличие от электростанций, работающих на газе, мазуте и угле, АЭС не являются источником выбросов углекислого газа. Таким образом, переход к применению атомных станций — важный шаг в борьбе с изменениями климата.

В Европе АЭС позволяют избежать эмиссии около 700 млн тонн углекислого газа, в России — около 210 млн тонн в год.

Миф 2. Все отработанное ядерное топливо мертвым грузом оседает в могильниках

На самом деле отработанное ядерное топливо — ценный ресурс. В нашей стране порядка 97% урана из топливных сборок водо-водяных реакторов (ВВЭР) отправляется на последующую переработку и вторичное использование. В результате длинной технологической цепочки по регенерации топлива удается выделить уран-238 и плутоний, пригодные для дальнейшего применения в различных отраслях. В частности, эти вещества могут служить источником для МОКС-топлива, пригодного для реакторов на быстрых нейтронах (БН).

Реакторы типа БН делают, казалось бы, несовместимые вещи. Во-первых, поглощают отработавшее топливо, во-вторых, генерируют энергию, в-третьих, нарабатывают свежее топливо для реакторов типа ВВЭР.

Параллельно с загрузкой реактора БН-800 МОКС-топливом отраслевая команда специалистов Росатома продолжает развитие технологий производства такого топлива на ГХК. В частности, освоено производство свежего топлива с применением высокофонового плутония, извлеченного из облученного топлива реакторов ВВЭР: все технологические операции полностью автоматизированы и выполняются без присутствия персонала в непосредственной близости. Уже изготовлены и прошли приемку первые 20 МОКС-ТВС с высокофоновым топливом, которые планируется загрузить в 2022 году. Передовые технологии рециклинга ядерных материалов и рефабрикации ядерного топлива в перспективе позволят перерабатывать облученное топливо вместо его хранения, а также снизить образующиеся объемы высокоактивных отходов.

При условии замкнутости топливного цикла атомную энергетику вполне можно отнести к категории возобновляемых источников энергии.

Миф 3. Атомная станция опасна как источник радиации

В штатном режиме АЭС не создает дополнительного радиационного фона. Дозовые нагрузки на критическую группу населения столь малы, что их невозможно обнаружить практическими методами.

Но и в случае нештатных ситуаций вероятность выхода в окружающую среду радиоактивных веществ настолько мала, что специалисты затрудняются привести пример события, которое повлекло бы такие последствия. Современные блоки проектируются таким образом, чтобы выдержать землетрясение, наводнение, прямое попадание снаряда и падение самолета.

Миф 4. В водоемах, охлаждающих АЭС, водятся рыбы-мутанты

Вода, снимающая тепло с реактора — если мы говорим о блоках типа ВВЭР — циркулирует по замкнутому кругу и ни в коем случае не соприкасается с чистой водой из пруда-охладителя. (В блоках типа БН в реакторе и вовсе циркулирует натрий, а не вода). То есть ни о каком проникновении радиации не может быть и речи.

Многие атомные станции создают на своих водоемах рыбные хозяйства. К примеру, на Белоярском водохранилище разводят карпов, осетра, стерлядь и амура. Рыба совершенно безопасна, и ее продают не только работникам станции, но и в рестораны Екатеринбурга.

Экологическую проблему представляет разве что более высокая температура воды в водохранилище из-за теплых сбросов. В летнюю жару в южных регионах страны это может приводить к гибели рыбы. Но, к счастью, на лето, как правило, выпадает период плановых ремонтов и перегрузки топлива. Кроме того, АЭС регулярно занимаются искусственным зарыблением своих водоемов. Это позволяет увеличивать популяцию ихтиофауны. Рыбы, в свою очередь, поедают микроскопические водоросли, что препятствует обильному цветению воды.

В целом, говоря о прудах-охладителях, нужно понимать, что это в первую очередь — гидротехническое сооружение, созданное специально для нужд АЭС. И хотя его можно использовать в рекреационных целях, это не является его основным предназначением.

Миф 5. Во всем мире идет отказ от атомной энергетики

Это утверждение в корне неверно. На сегодняшний день по всему миру строится десятки энергоблоков.

Мир постепенно входит в эпоху ренессанса атомной энергетики. Для этого есть немало предпосылок: отсутствие эмиссии углекислого газа, современные технологии обеспечения безопасности, независимость от цен на энергоносители на мировых рынках и долгий срок службы энергоблоков — 60-80 лет.


Миф 1. Фукусима положила конец атомному возрождению

За пределами Японии наиболее решительная реакция на Фукусиму последовала в Германии, где на улицу вышли сотни тысяч протестующих, а канц­лер Ангела Меркель заявила о постепенной остановке всех девяти работающих станций страны. Но большинство немцев были против атомной энергии и до 2011 года — благодаря не столько Фукусиме, сколько Чернобылю, загрязнение от аварии которого в 1986 году пролилось дождями за 1400 км от станции, в Баварии. И хотя коалицию Меркель на последующих выборах изрядно потрепали настроенные против атомной энергетики зеленые, спад ее популярности на самом деле начался несколькими месяцами ранее. Да и решение Меркель об отказе от атомной энергетики не было такой уж новостью — Германия больше десяти лет назад взяла на себя обязательство не строить новых станций.

Миф 2. Аварии на АЭС неизбежны

Необязательно. За полвека мировая атомная энергетика пережила три бед­ствия, настолько жуткие, что имена станций — Три-Майл-Айленд, Чернобыль, а теперь и Фукусима — стали синонимами промышленной катастрофы. Но каждая из них была результатом провала не только техники, но и организационной культуры, и извлеченные из них уроки помогают не допустить повтора допущенных ошибок. Вскоре после аварии на Три-Майл-Айленде атомная промышленность США начала амбициозную программу по пересмотру техники безопасности. С тех пор в стране не было аварий ни на одном из ста с лишним работающих реакторов.

Последовавшая семью годами позже авария в Чернобыле была особым случаем, неразрывно связанным с патологиями позднесоветской системы, — наспех слепленный, устаревший тип реактора без нормальной защитной оболочки и самонадеянные инженеры, не терявшие уверенности в том, что ничего страшного случиться не может, даже когда они загоняли реактор все глубже и глубже в опасную зону. Тем не менее и эта катастрофа привела к пересмотру стандартов — в частности, на свет появилась Всемирная ассоциация операторов атомных электростанций, которая за время своего существования уже проинспектировала фактически все 432 коммерческих реактора в мире.

Уже в наше время авария на Фукусиме была вызвана в равных частях исключительным невезением и особенностями управленческой культуры, из-за которых проблемы на станции игнорировались до аварии. Реакторам на Фукусиме было от 32 до 40 лет, и опасения по поводу их состояния возникали едва ли не с самого запуска. Как признали уже после аварии члены правления, руководство Токийской электроэнергетической компании годами замалчивало нарушения техники безопасности. К тому же в Японии не было ни надзорного органа, ни независимых экспертов, которые могли бы в него входить.

Как и в случае первых двух катастроф, уроки Фукусимы уже усваиваются. Южнокорейское правительство распорядилось создать надзорный орган с большими полномочиями, призванный не допустить повторения катастрофы, постигшей соседнюю страну. Конечно, лучше всего было бы с самого начала не допускать этих трех чудовищных ошибок, но хоть каким-то утешением нам должно служить то, что до сих пор мы избегали их повторения.

Миф 3. Атомная энергия обходится слишком дорого

И да, и нет. На самом деле функционирование атомной станции относительно дешево — проблема в том, что сначала ее надо построить. Большой реактор может обойтись в несколько миллиардов долларов, и срыв сроков строительства вкупе с неизбежными юридическими разбирательствами, случалось, доводили стоимость постройки до миллиона долларов в день.

В этой проблеме нет ничего нового — она преследовала атомную энергетику с 1970-х. За годы до того, как катастрофа Три-Майл-Айленда восстановила общественное мнение против атома, ядерный сектор в США уже испытывал серьезные проблемы из-за юридических норм, облегчавших остановку строительства по судебным искам. Это пугало инвесторов, которые, в свою очередь, поднимали ставки по кредитам на строительство станций. Сегодня, как утверждают энергетики, строительство новых АЭС возможно только при условии федеральных кредитных гарантий на десятки миллиардов долларов, перекладывающих финансовые риски на налогоплательщиков. Но дело в том, что атомная энергетика нигде еще не добивалась успеха без масштабной государственной поддержки. До 2004 года французское правительство полностью владело Electricité de France, управляющей всеми АЭС во Франции, и на сегодняшний день более 80% компании все еще принадлежит правительству. Все китайские АЭС также принадлежат правительству — полностью или по большей части. И если учитывать внешние затраты, атом вряд ли окажется единственным источником энергии, не выдерживающим столкновения со свободным рынком. А для таких стран, как Япония или Южная Корея, фактически лишенных собственных источников энергии, атомные станции вполне могут стоить тех денег, которые за них приходится выложить вперед, если они дают хоть какую-то долю энергетической безопасности. Остальному же миру цена атомных станций тоже может показаться вполне доступной, как только мы заложим в расчеты все риски, связанные с глобальным изменением климата.

Миф 4. Распространение атомной энергетики повышает риск распространения ядерного оружия

Возможно. Установки для обогащения и переработки сырья для мирных реакторов легко могут быть использованы для изготовления бомб. У Аргентины, Бразилии, Германии, Ирана, Нидерландов и Японии есть установки для обогащения урана, но нет ядерного оружия — и только одна из этих шести стран не дает по ночам спать борцам с его распространением. Всему остальному миру с тем или иным успехом удается придерживаться договоренностей вроде тех, что были достигнуты в 2009 году между США и ОАЭ, которые приняли закон, запрещающий сооружение установок для обогащения и переработки урана, получив взамен доступ к надежному источнику ядерного топлива. Соглашения такого рода могли бы поддерживать статус-кво — до тех пор, пока одинаковые стандарты применяются ко всем.

Миф 5. Атомная энергетика поможет электрификации беднейших стран мира

Проблема в том, что большая часть спроса на энергию сейчас — в развивающемся мире, тогда как около 85% атомной энергетики сосредоточено в наиболее развитых странах. Причины довольно бесхитростны: стоимость запуска атомной станции с нуля — астрономическая, и большие АЭС требуют развитой электросети — оба эти обстоятельства делают АЭС заранее недоступными для 1,6 из 7 млрд жителей Земли. Пусть Нигер — пятый по объему производитель урана в мире, сооружение реактора, в котором этот уран нашел бы применение, стоило бы больше половины ВВП страны. В последние годы многие представители отрасли превозносили роль маленьких реакторов как возможного решения проблемы — эти модульные блоки, в 3-50 раз меньше тех бегемотов, что используются сейчас, при необходимости могут быть постепенно наращены до нужного масштаба и обходятся гораздо дешевле. Но в пересчете на киловатт/час запуск и работа маленьких реакторов обходятся дороже, чем у их старших собратьев. При этом большинство сложностей, затрудняющих развитие атомной энергетики, остаются: потребность в высококвалифицированном персонале, процедуры и оборудование для безопасного хранения радиоактивных отходов, защита от нападений, похищения материала и диверсий.

Все это означает, что надежды людей, живущих без электричества, на быстрое и чистое подключение к сети будут по-прежнему связаны с возобновляемыми источниками энергии — ветром, солнцем, — равно как с инновациями в хранении электроэнергии, будь то водородные аккумуляторы или еще неизвестные науке изобретения.

Миф 6. Ахиллесова пята ядерной энергетики — радиоактивные отходы

Неверно. Радиоактивные отходы — проблема решаемая, стоит обзавестись нужными технологиями и политическими решениями (и именно в таком порядке). Загрязнение почвы и воды отходами АЭС можно предотвратить на десятки тысячелетий, если захоронить их в правильных геологических условиях вроде стабильных гранитных слоев, или как минимум на век, если хранить их в сухотарных бочках. Немецкое хранилище в бывшей соляной копи в Морслебене дает безопасный приют отходам уже три десятилетия. Сухотарный метод уже четверть века применяется без единого инцидента на АЭС Сарри в Вирджинии.

Планы по хранению отходов дают осечку, когда верх над техническими соображениями берет политика. Самый печально известный пример — хранилище в Юкка-Маунтин, комплекс в невадской пустыне, строительство которого, общей стоимостью более $50 млрд, было остановлено в 2009 году. Место его расположения было выбрано еще в 1980-х, и не благодаря идеальным геологическим условиям для хранения отходов (которых там не было), а из-за того, что представители Невады в Вашингтоне оказались слабее и проиграли в подковерной борьбе штатам вроде Техаса, которые могли бы предоставить больше хранилищ и в лучших условиях.

А теперь рассмотрим шведский опыт с АЭС Форсмарк. 30 лет назад, когда Швеция начала планировать собственное хранилище радиоактивных отходов, проект сталкивался с заметным сопротивлением общества. Но и правительство, и отрасль взяли курс, противоположный американскому, обеспечив участие в дискуссии всех заинтересованных сторон — от Greenpeace и общественных организаций до представителей ядерной энергетики. Научному обследованию и публичным обсуждениям подверглись многие возможные места расположения хранилища, и процесс выбора был прозрачным и исходил из идеальности геологических условий. Хранилище должно заработать на полную мощность в 2020 году и, как ожидается, прослужит сто тысяч лет. Как и в случае с взрывом на реакторе, мораль та же: самый большой риск для атомной энергии представляет не техника, а человеческие институты, определяющие, как мы ею пользуемся.

Миф 7. Ветряки смогут стать заменой реакторам

В ближайшие десятилетия — нет. В идеальном мире наше снабжение энергией не сопровождалось бы сносками про грозящие планете климатические изменения — с одной стороны, и отходы, сохраняющие токсичность на тысячелетия — с другой. И именно это, разумеется, сулят нам возобновляемые источники энергии, в освоении которых мы в последние годы достигли значительных успехов. Сейчас это самый быстрорастущий сектор энергетики: объем добываемой солнечной энергии с 2000 года увеличивается в среднем на 40% в год, а ветряной — в среднем на 27% с 2004-го.

Но все дело в контексте. Речь идет о сугубо нишевых источниках, и даже сегодня на их долю приходится лишь 3% мирового энергетического портфеля. Солнечная энергия все еще требует серьезных субсидий от государства, чтобы выйти на более низкие цены и экономию от масштаба. Пока технологии умной сети и системы хранения энергии не получили развития и широкого распространения, энергия солнца и ветра останется слишком непостоянной для того, чтобы поспорить с атомом и ископаемым топливом как источниками бесперебойного снабжения. В США и ряде других стран заметную роль играет гидроэнергетика, но ее рост жестко ограничен опасениями защитников окружающей среды относительно ущерба, вызываемого плотинами.

Короче говоря, ко всем источникам прилагаются свои недостатки — и не в последнюю очередь к атому, пока не оправдавшему обещания его первых адептов, которые с горящими глазами сулили миру невероятно дешевую и изобильную энергию. Глядя на все доступные нам сейчас источники энергии, мы должны понимать все связанные с ними риски и затраты. Это первый шаг к осознанию того, что человечество больше не может требовать все больше и больше энергии, отказываясь платить ее цену.

Ядерная энергетика вызывает больше дискуссий, чем другие виды энергетики. Существуют диаметрально противоположные точки зрения по вопросам её безопасности, воздействия на компоненты биосистем и даже на стоимость киловатт-часа при этом способе его выработки. Изначально ядерная отрасль развивалась для военных целей, а гражданская энергетика была побочной ветвью. На сегодняшний день энергия атома широко используется во многих отраслях экономики. Строятся мощные подводные лодки и надводные корабли с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы.

Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоронивать, и хранить продолжительное время в безопасных условиях.

АЭС экономичнее обычных тепловых станций, а, самое главное, при правильной их эксплуатации - это чистые источники энергии.

Вместе с тем, развивая ядерную энергетику в интересах экономики, нельзя забывать о безопасности и здоровье людей, так как ошибки могут привести к катастрофическим последствиям.

"Чистая и дешевая энергия для всех" - так еще в 70-е годы прошлого века превозносили атомную энергию. Ей предвещали золотой век: к 2000 году АЭС во всем мире должны были вырабатывать от 3600 до 5000 ГВт. Но к концу 2012 года в электросети поступало всего 335 ГВт - менее одной десятой от запланированного объема. После Чернобыля и особенно Фукусимы эйфория окончательно угасла.


  • локальное механическое воздействие на рельеф - при строительстве;

  • повреждение особей в технологических системах - при эксплуатации;

  • сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты;

  • изменение характера землепользования и обменных процессов в

  • непосредственной близости от АЭС;

  • изменение микроклиматических характеристик прилежащих районов;

  • сбросы технологических вод, содержащих разнообразные химические компоненты оказывают травмирующее воздействие на популяции, флору и фауну экосистем.

Отметим важность не только радиационных факторов возможных вредных воздействий АС на экосистемы, но и тепловое и химическое загрязнение окружающей среды, механическое воздействие на обитателей водоемов-охладителей, изменения гидрологических характеристик прилежащих к АС районов, т.е. весь комплекс техногенных воздействий, влияющих на экологическое благополучие окружающей среды.
ВОЗДЕЙСТВИЕ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ НА ЧЕЛОВЕКА
Различные радиоактивные вещества по-разному проникают в организм человека. Это зависит от химических свойств радиоактивного элемента. Альфа-частицы представляют собой атомы гелия без электронов, т.е. два протона и два нейтрона. Эти частицы относительно большие и тяжелые, и поэтому легко тормозят. Их пробег в воздухе составляет порядка нескольких сантиметров. В момент остановки они выбрасывают большое количество энергии на единицу площади, и поэтому могут принести большие разрушения. Из-за ограниченного пробега для получения дозы необходимо поместить источник внутрь организма.

Изотопами, испускающими альфа- частицы, являются, например, уран (235U и 238U) и плутоний (239Pu). Бета-частицы - это отрицательно или положительно заряженные электроны (положительно заряженные электроны называются позитроны). Их пробег в воздухе составляет порядка нескольких метров. Тонкая одежда способна остановить поток радиации, и, чтобы получить дозу облучения, источник радиации необходимо поместить внутрь организма, изотопы, испускающие бета-частицы - это тритий (3H) и стронций (90Sr).

Гамма-радиация - это разновидность электромагнитного излучения, в точности похожая на видимый свет. Однако энергия гамма-частиц гораздо больше энергии фотонов. Эти частицы обладают большой проникающей способностью, и гамма-радиация является единственным из трех типов радиации, способной облучить организм снаружи. Два изотопа, излучающих гамма-радиацию, - это цезий (137Сs) и кобальт (60Со).

Пути проникновения радиации в организм человека:

1.Радиоактивные изотопы могут проникать в организм вместе с пищей или водой. Через органы пищеварения они распространяются по всему организму.

2. Радиоактивные частицы из воздуха во время дыхания могут попасть в легкие. Но они облучают не только легкие, а также распространяются по организму.

3. Изотопы, находящиеся в земле или на ее поверхности, испуская гамма-излучение, способны - облучить организм снаружи. Эти изотопы также переносятся атмосферными осадками.

Воздействие радиоактивного излучения. Под действием радиоактивного излучения происходит разрыв химических связей и разрушение молекул. Образующиеся при этом радикалы вступают в различные химические реакции, нарушая нормальное функционирование клеток. Глубина проникновения в организм лучей зависит от их типа. Так, а - лучи через кожу практически не проникают, Р-лучи -- проникают на глубину 10-- 20 мм, у-лучи и рентгеновские лучи через организм проникают практически беспрепятственно. Чрезвычайно опасно попадание в организм радиоактивных веществ с пищей и питьем. Воздействие радиоактивных веществ зависит от их природы. Так, излучение стронция - 90, замещающего кальций в костях, вызывает раковые заболевания. Криптон - 85 воздействует на кожу и легкие.

Тяжелые короткоживущие а - излучатели исключительно вредны с точки зрения радиоактивного отравления. Попадание внутрь организма всего лишь нескольких микрограммов этих веществ может вызвать опасные заболевания.

Опасность внутреннего облучения возникает при попадании источников ионизирующих излучений в организм через дыхательные пути, через желудочно-кишечный тракт или кожу. При этом в зависимости от поглощенной дозы первыми происходят сначала изменения в крови и структуре клеток, а затем развивается лучевая болезнь. При внешнем облучении действие источника ионизирующих излучений прекращается после удаления источника.

ПЕРСПЕКТИВЫ РАЗВИТИЯ ЯДЕРНОЙ И АТОМНОЙ ЭНЕРГЕТИКИ
Авторы недавно выпущенного Массачусетским технологическим институтом (МТИ) доклада об атомной энергетике утверждают, что ядерная энергия может играть большую роль в энергетической политике будущего, нацеленной на сокращение выбросов углекислого газа и сохранение глобального климата. Однако они предупреждают, что высокие затраты, нерешенная проблема радиоактивных отходов, противоречивые подходы к топливным циклам и растущий риск ядерного распространения могут привести к полному исчезновению атомной индустрии из энергетической системы человечества.

Кончина мировой атомной промышленности может наступить уже в конце 21 века, говорят авторы доклада, если только серьезные проблемы атомной энергетики не будут эффективно решены в течение ближайших десяти лет. атомный ядерный энергетический


  • Затратность: Ядерная энергетика требует гораздо более значительных расходов на всем протяжении срока эксплуатации объектов использования атомной энергии, по сравнению с природным газом;

  • Небезопасность: После того, как в 1979 году едва удалось предотвратить оплавление активной зоны реактора - и неминуемую экологическую катастрофу - на американской атомной электростанции (АЭС) Три Майл Айленд (Three Mile Island), но не удалось избежать Чернобыльской аварии в 1986 году, опасности, связанные с применением атомной энергии, для окружающей среды и здоровья человека стали хорошо известны и доказаны документально, однако эффективные решения для того, чтобы исключить возникновение подобных рисков, отсутствуют;

  • Распространение ядерных материалов: Использование атомной энергии влечет за собой потенциальный риск применения ее в преступных целях либо в целях ядерного устрашения, прежде всего, риск использования коммерческих ядерных предприятий с криминальными намерениями с целью получения технологий и материалов, пригодных для производства ядерного оружия. Особенную тревогу вызывает эксплуатация топливных циклов, связанных с химической переработкой отработанного топлива с целью выделения применяемого в оружии плутония и урана, особенно, учитывая тот факт, что эти технологии продолжают оказываться на вооружении государств, представляющих риск ядерного распространения;

  • Отходы: Ядерная энергетика продолжает накапливать проблемы долгосрочного обращения с радиоактивными отходами. Эффективные и реализуемые решения найдены пока не были, и вряд ли будут в ближайшем будущем. Даже если проект строительства могильника в горе Юкка Маунтин покажет свою целесообразность как метод безопасного обращения с высокорадиоактивными отходами и ОЯТ, работа могильника сможет только облегчить - но не решить окончательно - ситуацию с хранением отходов с Соединенных Штатах, особенно, если объемы использования атомной энергии в США и других странах продемонстрируют в будущем значительный рост.

Однако самым большим риском в обращении с атомной энергией, возможно, является то обстоятельство, что в мире до сих пор отсутствуют успешные методы избавления от высокорадиоактивных отходов. ОЯТ, остающееся от отработки топлива на атомных электростанциях, содержит радиоактивные материалы, которые остаются опасными для здоровья человека и благосостояния окружающей среды тысячи лет, а принятым на данный момент в мире методам хранения отработанного топлива вынести такой ядерный багаж столь долгое время не по силам.

Задачу безопасной изоляции радиоактивных отходов от биосферы земли могут выполнять геологические могильники - такие как могильник в горе Юкка Маунтин в Соединенных Штатах, проект строительства которого осуществляется в данное время. Однако, как уже доказывает проект Юкка Маунтин, выбор подходящего места и само строительство геологических могильников - предприятие дорогостоящее и требующее чрезвычайных усилий, которое возлагает огромную ношу на надзорные ведомства и политические организации, а также и на те организации и должностные лица, в чьей ответственности будет поддержание этих могильников на безопасном уровне.

Однако, если проводимая сегодня политика в сфере обращения с отходами, дорогостоящие исследования в области закрытого топливного цикла, непоследовательная практика ядерного надзора и широкомасштабное распространение ядерных материалов и технологий не прекратятся, атомная энергетика, скорее всего, уже в этом столетии придет к упадку и, возможно, полностью исчезнет как составляющая мирового потенциала производства электроэнергии, предупреждают специалисты МТИ.
ЗАКЛЮЧЕНИЕ
В конечном итоге можно сделать следующие выводы:

Атомная энергетика является на сегодняшний день лучшим видом получении Ядерной энергии. Экономичность, большая мощность, экологичность при правильном использовании.

Атомные станции по сравнению с традиционными тепловыми электростанциями обладают преимуществом в расходах на топливо, что особо ярко проявляется в тех регионах, где имеются трудности в обеспечении топливно-энергетическими ресурсами, а также устойчивой тенденцией роста затрат на добычу органического топлива.

Атомным станциям не свойственны также загрязнения природной среды золой, дымовыми газами с CO2, NOх, SOх, сбросными водами, содержащими нефтепродукты.

Последствия аварий на АЭС.

Локальное механическое воздействие на рельеф - при строительстве.

Повреждение особей в технологических системах - при эксплуатации.

Сток поверхностных и грунтовых вод, содержащих химические и радиоактивные компоненты.

Изменение характера землепользования и обменных процессов в непосредственной близости от АЭС.

Изменение микроклиматических характеристик прилежащих районов.
СПИСОК ИСТОЧНИКОВ
1. АТОМНАЯ ЭНЕРГЕТИКА СЕГОДНЯ В. Ф. Меньшиков Россия в окружающем мире: 2004 (Аналитический ежегодник). Отв. ред. Н. Н. Марфей. Под общ. ред.: Н. Н. Марфенина, С. А. Степанова.-- М.: МодусК -- Этерна, 2005.

3. Ядерная и термоядерная энергетика будущего/Под ред. Чуянова В.А. - М.: Энергоатомиздат, 1987.

4. Ядерный след/ Губарев В.С., Камиока И., Лаговский И.К. и др.; сост. Малкин Г. - М.: ИздАТ, 1992.

5. Ефимова Н. Ядерная безопасность: у кого искать защиты? / "Экономика и время", №11 от 20 марта 1999.

Безопасность: важный вопрос для ядерной энергетики. Ядерная защита от изменения климата. Ядерные катастрофы, произошедшие в Харрисбурге в марте 1979 года и Чернобыле в апреле 1986 года. Исследование процесса возведения реакторов третьего поколения.

Подобные документы

Становление ядерной энергетики: этапы развития. Отношение граждан к ядерной энергетике и перспективам ее развития. Массовые протесты населения и экологических движений против ядерной энергетики. Необходимость строительства новых энергоблоков АЭС.

реферат, добавлен 10.05.2011

История развития, перспективы и основы атомной энергетики. Особенности ядерного реактора как источника теплоты. Устройство энергетических ядерных реакторов. Цепная ядерная реакция в реакторе и использование замедлителя. Безопасное хранение отходов.

реферат, добавлен 02.12.2015

Определение понятия ядерной энергии. Разработка программы быстрого роста атомной энергетики. Принципы управления работой ядерного реактора, его устройство. Мировой опыт и перспективы развития ядерной энергетики. Проблемы экологи, защиты окружающей среды.

реферат, добавлен 05.05.2014

Открытие нейтрона и создание нейтронно-протонной модели атомного ядра в 1932 году. Предмет изучения ядерной физики, основы ядерной энергетики деления и запуск первой атомной электростанции в СССР. Ядерные реакции, где нейтрон захватывается ядром алюминия.

реферат, добавлен 01.02.2015

Технические основы ядерной энергетики. Особенности ядерного реактора как источника теплоты. Устройство энергетических ядерных реакторов. Основные требования к конструкциям активной зоны реактора и ее характеристики. Общие сведения о радиоактивности.

реферат, добавлен 02.05.2010

Знакомство с особенностями теоретической и экспериментальной ядерной физики. Рассмотрение причин возникновения первой атомной электростанции с реактором деления. Анализ деятельности М. Гепперт-Майера и И. Йенсена. Рассмотрение основ ядерной энергетики.

реферат, добавлен 28.03.2015

Конструкция, виды и области применения модульных многоцелевых свинцово-висмутовых быстрых реакторов для ядерной энергетики, обеспечение их безопасности. Использование газотурбинных установок для резервирования собственных нужд атомной электростанции.

реферат, добавлен 31.10.2012

Особенность современной ядерной энергетики, целесообразность ее развития. Типы атомных электростанций. Перспективы развития ядерной и термоядерной энергетики. Требования к экономическим параметрам АЭС. Будущее ядерной энергетики в Республики Беларусь.

реферат, добавлен 09.04.2012

Овладение ядерной энергией – величайшее достижение науки. Ресурсы, проблемы и перспективы развития, экономика атомной энергетики. Альтернативная энергетика. Теория и реальность. Использование солнечной энергии, энергии ветра, волн и других источников.

курсовая работа, добавлен 16.03.2010

Анализ мирового состояния ядерной энергетики. Описание внутренних недостатков, присущих энергоблокам, работающим на уране-235. Принцип работы термоядерной бомбы. Направления современных исследований, направленных на создании реакторов на легких частицах.

Атомная энергия: мифы и реальность.

Первое, что приходит многим на ум при упоминании об атомной энергии,- бомбы, сброшенные на Хиросиму и Нагасаки, и авария в Чернобыле. Но на самом деле в современном мире куда больше проблем, связанных с атомной энергией, чем может показаться на первый взгляд.

Миф 1. Реактор Фукусимы до сих пор не находится под контролем

Фукусима - реальная угроза.

В 2011 году на японский город Фукусима обрушилось огромное цунами, которое привело к существенным разрушениям. К сожалению, цунами стало причиной еще одной беды. Во время катастрофы пострадал один из ядерных реакторов АЭС Фукусима, что привело к гигантскому выбросу радиации в океан и воздух. Правительство предприняло огромные усилия по очистке территории, а компания TEPCO, которая управляет электростанцией, заявила всему миру, что она взяли ситуацию под полный контроль.

В конце концов, шумиха в новостях поутихла, и люди решили, что катастрофа на Фукусиме ликвидирована. Но на самом деле всё только начинается. TEPCO быстро потеряла доверие японской общественности, поскольку начали вскрываться все новые подробности. Недавно было обнаружено, что компания не сообщала об утечке зараженной дождевой воды в течение 10 месяцев. Расплавившиеся реактор и топливо все еще находятся под водой, как и большая часть поврежденного объекта. Это, наряду с невероятно высоким уровнем радиации, привело к тому, что практически невозможно оценить состояние реакторов.

Миф 2: Стать ядерной страной просто

На электростанции.

Многие люди обеспокоены тем, что некоторые страны собирается приобрести ядерное оружие под носом международного сообщества, а затем использовать его против своих врагов, что может привести к ядерной войне, которая уничтожит большую часть земного шара. Тем не менее, паникерам не нужно беспокоиться, поскольку стать полноценной ядерной страной с точки зрения возможности производства оружия - очень дорого, отнимает много времени, и это почти невозможно сделать без привлечения внимания.

Миф 3: Утечки радиации происходят нечасто

Утечки радиации происходят достаточно часто.

Как уже упоминалось выше, у TEPCO есть проблемы утечки радиации на поврежденной АЭС. На самом деле, подобные случаи не единичны - во многих странах, особенно в Соединенных Штатах, места хранения ядерных отходов дают серьзные утечки. В США есть единственное место постоянного хранения ядерных отходов - в Карлсбаде, Нью-Мексико. Когда-то в этом городе добывали поташ и под городом остались пещеры. Вначале жители были довольны, когда возникла идея о хранении ядерных отходов под землей, потому что это означает крупные поступления в бюджет города. Однако, недавно в Карлсбаде произошла утечка, и 13 сотрудников получили высокую дозу радиации. И это далеко не единичный случай в мировой практике.

Миф 4: Аварии на реакторах - главная проблема

Репозиторий Юкка Маунтин — сухое хранилище отработанного ядерного топлива.

В то время как в людей вселяют страх аварии на реакторах, большинство не задумывается об огромном количестве ядерных отходов. Учитывая длительность полураспада большинства радиоактивных веществ, это представляет серьезную проблему. Радиоактивные материалы невероятно трудно и небезопасно хранить, а учитывая их количество, то проблема становится еще большей. Как несложно представить, большинство людей не хотят, чтобы отходы хранились где-то рядом с ними.

Миф 5: Радиация повышается только после аварии на реакторе

Опасно для жизни!

Большинство людей думает, что радиация может появиться только в результате серьезной катастрофы. При распаде урана образуется радиоактивный и очень опасный газ радон. Учитывая, что уран присутствует почти везде на Земле, в любом месте есть свой радиационный фон. В большинстве мест это не составляет большой проблемы, но во многих ситуациях радон с течением времени приводит к раку легких у людей. По некоторым оценкам, 1 из 15 домов на планете имеет опасный уровень радона, который может привести к увеличению риска развития рака легких у людей, в нём живущих. Радон убивает более 20 000 человек в год, что делает его второй по величине причиной рака легких после курения сигарет.

Миф 6: Мобильный телефон - источник опасной радиации

Не всё так плохо.

В течение некоторого времени существует идея, что мобильные телефоны могут вызвать рак. Чтобы определить возможность этого, были проведены многочисленные исследования, но ни одно из них окончательно не доказало насколько эти опасения обоснованы. Существуют стандарты для удельного коэффициента поглощения (SAR) мобильных телефонов. Все производители сотовых телефонов обязаны проверить SAR каждой новой модели и указать результаты в руководстве по использованию телефона.

Миф 7: Холодный синтез

Холодный синтез.

Около двух десятков лет назад ученые Мартин Флейшман и Стенли Пон утверждали, что они нашли способ создать ядерную реакцию при комнатной температуре. Это явление было названо "холодным синтезом". Если бы подобное удалось сделать, то люди смогли бы использовать ядерную энергию, не заботясь об опасном уровне радиации и широкомасштабных разрушениях окружающей среды. К сожалению, никто не смог повторить эксперимент.

Миф 8: Низкий уровень радиационного облучения

Малые дозы радиации.

Некоторые ученые считают, что любой уровень излучения вреден для человека. Другие утверждают, что даже при длительном воздействии низкий уровень излучения абсолютно безвреден для организма. Ученый Джон Кэмерон из университета Висконсин-Мэдисон считает, что малые дозы радиации могут стимулировать иммунную систему.

Миф 9: Ядерные взрывы редкость

Когда речь заходит о ядерных взрывах, большинство людей сразу же подумают о Хиросиме и Нагасаки. Также, наверняка, вспомнят о катастрофе в Чернобыле и недавней аварии на Фукусиме. На самом деле, это всего лишь капля в море по сравнению с абсурдным количества ядерного вооружения, которое существует в разных странах мира. Несмотря на то, что ядерные бомбы почти никогда не использовались в качестве оружия, проводились сотни испытаний. Такие страны как США, Россия, Великобритания и Франция в течение нескольких десятилетий провели огромное количество испытаний ядерных бомб. Видео демонстрирует, где и каким странами проводились ядерные взрывы.

Миф 10: Степень развития ядерной программы Северной Кореи

Ядерная угроза.

В последнее время обеспокоенность мирового сообщества вызывает политика Северной Кореи, которая провела несколько тестов, как предполагают международные наблюдатели, атомного оружия. После последнего испытания в 2013 году Северная Корея заявила, что начала устанавливать миниатюрные ядерные боеголовки на ракеты.

Учёные стремятся обезопасить "общение" человека с атомом и изобретают самую различную роботизированную технику. Так, во время аварии на ЧАЭС были роботы, которые помогали людям в ликвидации последствий . Сейчас они стали экспонатами музея.

Читайте также: