Реферат уран и нептун

Обновлено: 07.07.2024

Нептун - восьмая от Солнца большая планета Солнечно й системы, относится к планетам-гигантам. Ее орбита пересекается с орбитой Плутона в некоторых местах. Еще орбиту Нептуна пересекает комета Галилея. Астрологический знак Нептуна J.

Нептун движется вокруг Солнца по эллиптической, близкой к круговой (э к сцентриситет 0,009), орбите; его среднее расстояние от Солнца в 30,058 раз больше, чем у Земли, что составляет примерно 4500 млн. км. Это значит, что свет от Солнца доходит до Нептуна немногим более чем за 4 часа. Продолжительность года, то есть время одного полного оборота вокруг Солнца 164,8 земных лет. Экваториальный радиус планеты 24750 км, что почти в четыре раза превосходит радиус Земли, притом собственное вращение настолько быстрое, что сутки на Нептуне длятся всего 17,8 часов. Хотя средняя плотность Нептуна, равная 1,67 г/см3, почти втрое меньше земной, его масса из-за больших размеров планеты в 17,2 раза больше, чем у Земли. Нептун выглядит на небе как звезда 7,8 звездной величины (недоступна невооруженному глазу); при сильном увеличении имеет вид зеленоватого диска, лишенного каких-либо деталей.

Нептун обладает магнитным полем, напряженность которого на полюсах примерно вдвое больше, чем на Земле.

Эффективная температура поверхностных областей ок. 38 К, но по мере приближения к центру планеты она возрастает до (12-14)·103 К при давлении 7-8 мегабар.

Состав и внутреннее строение.

Из всех элементов на Нептуне преобладают водород и гелий примерно в таком же соотношении, как и на Солнце: на один атом гелия приходится около 20 атомов водорода. В несвязанном состоянии водорода на Нептуне значительно меньше, чем на Юпитере и Сатурне. Присутствуют и другие элементы, в основном легкие. На Нептуне, как и на других планетах-гигантах, произошла многослойная дифференциация вещества, в процессе которой образовалась протяженная ледяная оболочка как на Уране. По теоретическим оценкам, имеется и мантия, и ядро. Масса ядра вместе с ледяной оболочкой согласно расчетным моделям может достигать 90% всей массы планеты.

Спутники Нептуна.

Около Нептуна движутся 6 спутников. Самый крупный из них Тритон , спутник Нептуна, открыт У. Ласселлом (о. Мальта, 1846). Расстояние от Нептуна 394 700 км, сидерический период обращения 5 сут 21 ч 3 мин, диаметр ок. 3200 км и радиус 1600 км, что немногим (на 138 км) меньше радиуса Луны, хотя масса его на порядок меньше. Возможно, имеет атмосферу.

Второй по величине спутник, Нереида, спутник Нептуна, открыт Дж. Койпером (США, 1949). Среднее расстояние от Нептуна 6,2 млн. км, диаметр ок. 200 км. и радиус 100 км. Масса в 20000 раз меньше , чем масса Луна еднственный спутник планет с сильно вытянутой орбитой (эксцентриситет 0,75). Сидерический период обращения ок. 358 сут.

Возможно, имеет атмосферу.

Удаленность Нептуна от Земли существенно ограничивает возможности его исследования.

Адамс получил возможность приступить к решению этой задачи только через два года, и к октябрю 1843 предварительные вычисления были закончены. Адамс решил показать их Эри, однако встретиться с королевским астрономом ему не удалось. Адамсу оставалось лишь вернуться в Кембридж, оставив для Эри результаты проведенных расчетов. По непонятным причинам Эри отреагировал на работу Адамса отрицательно, ценой чего явилась потеря Англией приоритета в открытии новой планеты.

Получив второй трактат Леверье, Эри обратил внимание на очень близкое совпадение результатов исследований Адамса и Леверье, относящихся к движению предполагаемой планеты, возмущающей движение Урана, и даже подчеркнул это на специальном заседании Совета инспекторов Гринвича. Но он, как и ранее, не торопился начать поиски и стал хлопотать о них только в июле 1846, поняв, какое негодование может вызвать впоследствии его пассивность.

Тем временем Леверье 31 августа 1846 закончил еще одно исследование, в котором была получена окончательная система элементов орбиты искомой планеты и указано ее место на небе. Но во Франции, как и в Англии, астрономы все не приступали к поискам, и 18 сентября Леверье обратился к И. Галле, ассистенту Берлинской обсерватории, который, получив разрешение директора обсерватории, 23 сентября вместе со студентом ДАрре начал поиски. В первый же вечер планета была обнаружена, она находилась всего в 52 от предполагаемого места.

Около года между Францией и Англией шла борьба за приоритет открытия, к которой, как это часто бывает, сами герои непосредственного отношения не имели. В частности, между Адамсом и Леверье установилось полное взаимопонимание, и они оставались друзьями до конца жизни.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Уран, Нептун, Плутон.

По своим физическим свойствам Уран и Нептун схожи друг с другом. Видимая поверхность каждой планеты представляет собой плотные слои протяженной атмосферы, состоящих из молекулярного водорода (50%), гелия (15%), метана (20%), аммиака (не менее 5%), находящегося в стадии насыщения, т.е. часть его, присутствует в жидком и даже кристаллическом виде. По условиям обогревания солнечными лучами атмосферы Урана должна быть близка к -220 о С, а Нептуна к -230 о С. Однако по радиоизлучения планет температура Урана оказалось равной -150 о С, а Нептуна близкой к -170 о С и повышаться в глубинных слоях, что свидетельствует о горячих недрах этих планет.

Радиус Урана равен 25700 км (4 радиуса Земли), масса почти 14,6 земной массы, средняя плотность 1,3г/см 3 , а период вращения вокруг своей оси близок к 16 ч 48 м . Плоскость экватора планеты образует с плоскостью её орбиты угол равен 82 о , но планета вращается в обратном направлении.

У Нептуна радиус равен 24300 км, масса 17,2 земной массы и средняя плотность 1,72 г/см 3 . Ось вращения наклонена на угол в 29 о , и планета вращается в прямом направлении в 17 ч 48 м , а обращается вокруг солнца почти за 165 лет.

У Нептуна два спутника. Близкий и наиболее крупный, Тритон. Диаметр спутника оценивается примерно в 3500 км.

Дальний спутник Нереида (диаметр около 40 км), обращается в прямом направлении за 360 суток по очень вытянутой эллиптической орбите с большой полуосью в 5510000 км.

О физической природе Плутона известно очень мало. Он вращается вокруг оси в обратном направлении (как Уран и Венера), а обращается вокруг солнца за 248 лет. Плоскость экватора планеты образует с плоскостью её орбиты угол в 65 о , но из-за обратного вращения угол принимается равным 115 о . 22 июня 1978 г. американский астроном Дж. Кристи открыл у Плутона спутник, названный Хароном, отстоящий от планеты на расстоянии 17000 км и обращающийся вокруг неё в плоскости её экватора с периодом в 6д 9,4ч т.е. равным периоду вращения Плутона. Следовательно, оба тела повернуты одним полушарием друг к другу, и Харон постоянно находиться в зените одной из точек экватора планет.

Вычисленная по обращению Харона масса Плутона оказалось поразительно малой, всего лишь 0,0015 массы Земли, т.е. примерно в 8 раз меньше массы Луны, а у Харона – ещё в два раза меньше!

Диаметр Плутона равен 2200 км, а Харона близок к 1300 км, так что оба тела можно считать одной планетой.

Изучая атмосферы планет, мы видим, что, несмотря на различие их химический состав и физических условий, в их свойствах есть много общего. В основе образования облаков на любой планете лежат процессы испарения, сублимации, конденсации, десублимации, которые совершаются в веществе, содержащемся в ее атмосфере. Этим веществом может быть вода, сера и серная кислота, метан и аммиак, но сущность физических процессов и происходящих при этом изменения одна и та же.

Они похожи почти как близнецы: практически одинаковые размеры, очень близкие массы и периоды вращения, очень похожий состав, тонкие и слабые кольца. Есть и ещё одна вещь, которая их связывает — история их открытия.

Уран Нептун
Масса в массах Земли 15 17
Радиус в радиусах Земли 4,0 3,9
Расстояние до Солнца 19 а. е. 30 а. е.
Период обращения вокруг Солнца 84 года 165 лет
Период вращения вокруг оси 17 часов 16 часов
Известные спутники 27 14, крупный — Тритон

Задача

Конечно, нет! Ведь объём сферического слоя зависит не только от его толщины, но и от радиуса — например, на большой воздушный шар нужно больше резины, даже если толщина шарика одна и та же. (По той же причине, например, на большую коробку потратится больше картона, чем на маленькую коробочку из картона той же толщины.) Можно сравнить объёмы атмосферы и ядра: объём шара пропорционален его радиусу в кубе. Значит, объём ядра равен (1/5) 3 = 1/125 от объёма планеты, а объём атмосферы 1 − (4/5) 3 = (125 − 64)/125 ≈ 1/2 объёма планеты, примерно в 60 раз больше. Если массы равны, то плотность атмосферы во столько же раз меньше.

Спутник Урана Ариэль и его каньоны

И Уран, и Нептун окружены кольцами, но кольца эти слабые и состоят из тёмных частиц — вид совсем не тот, что у Сатурна. По тому, какие они тонкие и какие широкие между ними промежутки (см. фото) похоже, что это останки совсем недавно разрушенных приливными силами маленьких спутников.

Вот и подошло к концу наше путешествие по восьми большим планетам Солнечной системы и их лунам. Но секреты и загадки Солнечной системы на этом, конечно, не кончаются.

Астрофизическая характеристика Юпитера, Сатурна, Урана и Нептуна как планет-гигантов Солнечной системы. Плотность, масса и температура планет-гигантов. Изучение строения магнитосферы Юпитера и газовое свечение планет. Строение атмосферы Сатурна и Урана.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 18.01.2014
Размер файла 450,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство высшего и средне - специального образования

Реферат на тему:

ЮПИТЕР, САТУРН, УРАН И НЕПТУН

атмосфера магнитосфера плотность планета юпитер

г. Ташкент 2006 г.

ЮПИТЕР, САТУРН, УРАН И НЕПТУН

Эти четыре планеты, часто называемые планетами-гигантами, по своим размерам, массе, плотности, внутреннему строению и составу резко отличаются от планет земной группы. Отличительными свойствами планет-гигантов являются:

1. Большие массы: от 15 земных масс у Урана до 318 у Юпитера.

2. Низкие средние плотности: от 0,70 г/см 3 у Сатурна до 1,71г/см 3 у Нептуна.

3. Быстрое вращение вокруг оси (периоды вращения от 9 час. 50 мин. у Юпитера до 15 час. 48 мин. у Нептуна). Юпитер и Сатурн вращаются не как твердые тела: период вращения у них растет от экватора к полюсам. Возможно, что то же самое имеет место у Урана и Нептуна.

4. Планеты-гиганты не имеют твердой поверхности. Наблюдаемые в телескоп поверхности этих планет образованы плотными облаками.

5. Атмосферы планет-гигантов (как и все их вещество) имеют в основном водородно-гелиевый состав. Кроме чистого молекулярного водорода (Н2) в спектрах этих планет наблюдаются полосы поглощения соединений водорода: метана (СН4) и аммиака (NН3). За последнее время в спектре Юпитера обнаружены также этан (С2Н6), ацетилен (С2Н2), фосфен (РН3) и даже водяной пар (Н2О), правда, в ничтожных количествах. Все это тоже соединения водорода.

Оси вращения планет-гигантов расположены весьма разнообразно. Ось Юпитера почти перпендикулярна к плоскости его орбиты, Ось Сатурна наклонена к ней на угол 62° (близкий к углам наклона осей Земли и Марса), а ось Урана лежит почти в плоскости орбиты: она наклонена к этой плоскости на угол в 8°, но так, что вращение планеты, как и у Венеры, является обратным направлению вращения всех остальных планет.

Своеобразное положение оси Урана приводит к тому, что за длительный период обращения его вокруг Солнца (84 года) Солнце на небе планеты перемещается от северного небесного полюса до южного, а затем снова через экватор до северного полюса.

В телескоп на диске Юпитера (рис. 30) видны темные полосы, параллельные экватору планеты, разделенные светлыми промежутками -- зонами. Полярные области всегда темные -- их называют полярными шапками, хотя они ничего общего не имеют с полярными шапками Марса, поскольку представляют собой облачные образования.

Полосы на диске Сатурна (рис. 31) видны значительно хуже, они бледнее, детали в них наблюдаются редко. Но все же иногда они появляются: -- примером может служить яркое белое пятно, наблюдавшееся на диске Сатурна в 1933 г.

В сильные телескопы бледные полосы видны и на дисках Урана и Нептуна (рис. 32).

В 30-е гг. в спектрах всех четырех планет-гигантов были обнаружены мощные полосы поглощения, интенсивность которых усиливалась по мере перехода от Юпитера к Нептуну (рис. 12). Они были отождествлены с полосами метана (СН4). Наиболее интенсивные полосы метана расположены на длинах волн 6190, 7020 и 7250 А. Позднее было обнаружено много полос метана в инфракрасной области спектра. Большинство этих полос наблюдается в спектрах всех четырех планет, но по мере перехода от Юпитера к Нептуну ширина полос растет, и в спектрах Урана и Нептуна многие полосы в красной и ближней инфракрасной частях спектра сливаются, образуя сплошную область поглощения, так, что в этой области планета почти не отражает солнечного излучения.

Совсем иначе ведет себя аммиак (NH3). Достоверно его полосы поглощения обнаружены только в спектре Юпитера. В видимой части спектра имеется лишь одна полоса на 6450 А, в инфракрасной области их около десяти. Но уже в спектре Сатурна наличие полосы 6450 А весьма сомнительно (одни астрономы наблюдали на этой волне следы поглощения, другие нет). Другие полосы аммиака вовсе отсутствуют. Не наблюдаются они также в спектрах Урана и Нептуна. Причина этого состоит в том, что с понижением температуры аммиак конденсируется, переходя в жидкое и твердое состояние.

Уже в 60-е гг. в спектре Юпитера, а затем и других планет-гигантов были обнаружены полосы поглощения молекулярного водорода, основного компонента атмосфер этих планет. В основном наблюдаются две так называемые квадрупольные полосы около 6435 и 8270 А.

Хотя линии гелия непосредственно в спектрах планет-гигантов с Земли не наблюдаются, ни у кого не вызывало сомнения, что гелий наряду с водородом является одним из основных компонентов атмосфер планет-гигантов. Дело в том, что, как следовало из наблюдений покрытия Юпитером звезды о Овна, средний молекулярный вес атмосферы этой планеты близок к трем, т.е. атмосфера никак не может быть чисто водородной *). Метан и аммиак с их молекулярными весами 16 и 17 составляют лишь небольшие добавки к основным компонентам атмосферы и не могут существенно влиять на ее средний молекулярный вес. Поскольку молекулярный вес водорода равен двум, а гелия четырем, их доли должны быть сравнимы. Учитывая некоторое преобладание водорода в Солнечной системе вообще и на Солнце в частности, при построении моделей строения Юпитера и Сатурна принимали, что водород составляет около 70%, а гелий -- 30% общего состава атмосферы. На долю метана приходится не более 0,2%, на долю аммиака (в атмосфере Юпитера) -- не более 0,1%.

В 1956 г. было обнаружено радиоизлучение Юпитера на волне 3 см. Измеренная тогда радиояркостная температура планеты оказалась равной 145°К, тогда как измерения в инфракрасном диапазоне давали 130°К. Причина этого небольшого расхождения состояла в том, что радиоволны приходят к нам с большей глубины и сообщают температуру не верхней границы облаков, как инфракрасное излучение, а некоторого слоя под облаками. Вскоре наблюдения на более длинных (дециметровых) волнах показали, что помимо теплового радиоизлучения Юпитер испускает нетепловое излучение, имеющее электромагнитную природу. Радиояркостная температура такого излучения растет с длиной волны, достигая на волне 10 см 650°К, на волне 20 см 2900°К, на волне 70 см -- 26 000°К и т.д. Источником этого радиоизлучения являются быстрые (релятивистские) электроны, разгоняемые, а затем тормозящиеся в сильном магнитном поле планеты. В пользу этого заключения свидетельствует тот факт, что размеры излучающей области в несколько раз превышают диаметр самого Юпитера.

Строение магнитосферы Юпитера

В качестве возможных причин этих всплесков в разное время был выдвинут целый ряд механизмов. Среди них и гипотеза о настоящих грозовых (т. е. электрических) разрядах в атмосфере планеты, и о так называемых свистящих атмосфериках, т.е. разрядах, уходящих в космос вдоль силовых линий магнитного поля планеты, и об излучении электронов в магнитном поле Юпитера.

Наиболее обоснованной теоретически является гипотеза советского радиоастронома В. В. Железнякова о том, что всплески на декаметровых волнах порождаются плазменными колебаниями в ионосфере Юпитера. Причин таких колебаний может быть много: нестабильность ионосферной плазмы за счет неоднородности и колебаний магнитного поля и сложного вида распределения заряженных частиц до скоростям, потоки частиц из радиационных поясов, вспышки на Солнце и, наконец, модулирование магнитного поля Юпитера его спутником Ио.

Впрочем, возможно, что энергия недр Юпитера сохранялась еще с момента его образования из первичной туманности. Эта энергия и определяет всю метеорологию планеты. Данные инфракрасного радиометра показывают, что темные полосы Юпитера теплее светлых зон. Их образование связывается с нисходящими и восходящими движениями в атмосфере планеты.

Фотография Юпитера с

Пока еще не удалось объяснить цвет полос и зон Юпитера и других планет-гигантов. Светлые зоны имеют желтоватую, а темные полосы красновато-белую окраску. Все газы, обнаруженные в атмосфере Юпитера (водород, гелий, метан, аммиак, водяной пар и др.), бесцветны. Какое же вещество придает окраску его деталям? Почему Красное пятно -- красное? В качестве красящих веществ различными учеными предлагались сульфид и гидросульфид аммония, свободные радикалы,; различные органические соединения и сложные неорганические полимеры. Однако конвекция должна увлекать все эти соединения вниз, где они при высоких температурах должны диссоциировать. Значит, при вертикальных движениях вверх эти вещества должны вновь восстанавливаться. Поскольку бесцветные светлые зоны расположены выше, чем окрашенные полосы, можно считать, что вещество зон состоит из кристаллов аммиака, тогда как красящие вещества формируются ниже, на уровне полос.

У Сатурна скорость вращения на экваторе 9,5 км/сек, а запасы внутренней энергии в атмосфере, вероятно, слабее, чем у Юпитера, поэтому полосатая структура на Сатурне не столь заметна. Если бы Сатурн получал тепло только от Солнца, его равновесная температура была бы 77°К. В действительности же температура наружного облачного слоя Сатурна 97°К, что соответствует выходу тепла, в 2,5 раза большему, чем тепло, получаемое планетой от Солнца. Значит, Сатурн подобно Юпитеру имеет внутренние источники энергии, скорее всего той же природы (гравитационное сжатие).

На радиочастотах яркостная температура Сатурна хотя и растет с длиной волны, но гораздо медленнее, чем у Юпитера, достигая на волне 20 см значения 300°К (у Юпитера на этой волне температура в 10 раз выше). Поэтому нет оснований считать радиоизлучение Сатурна на сантиметровых волнах нетепловым: скорее всего, более длинные волны приходят к нам из более глубоких слоев, где температура выше.

Читайте также: