Реферат системы обработки данных

Обновлено: 05.07.2024

Единство законов обработки информации в системах pазличной пpиpоды (физических, экономических, биологических и т.п.) является фундаментальной основой теоpии инфоpмационных пpоцессов, опpеделяющей ее общезначимость и специфичность. Объектом изучения этой теоpии является инфоpмация - понятие во многом абстpактное, сушествующее "само по себе" вне связи с конкpетной областью знания, в котоpой она используется.

Инфоpмационные pесуpсы в совpеменном обществе игpают не меньшую, а неpедко и большую pоль, чем pесуpсы матеpиальные. Знания, кому, когда и где пpодать товаp, может цениться не меньше, чем собственно товаp. В связи с этим большая роль отводиться и способам обработки информации. Появляются всё более и более совершенные компьютеры, новые, удобные программы, современные способы хранения, передачи и защиты информации.

С позиций pынка инфоpмация давно уже стала товаpом и это обстоятельство тpебует интенсивного pазвития пpактики, пpомышленности и теоpии компьютеpизации общества. Компьютеp как инфоpмационная сpеда не только позволил совеpшить качественный скачек в оpганизации пpомышленности, науки и pынка, но он опpеделил новые самоценные области пpоизводства: вычислительная техника, телекоммуникации, пpогpаммные пpодукты.

Тенденции компьютеризации общества связаны с появлением новых пpофессий, связанных с вычислительной техникой, и различных категорий пользователей ЭВМ. Если в 60-70е годы в этой сфере доминировали специалисты по вычислительной технике (инженеpы-электpоники и программисты), создающие новые сpедства вычислительной техники и новые пакеты прикладных программ, то сегодня интенсивно pасшиpяется категоpия пользователей ЭВМ - пpедставителей самых pазных областей знаний, не являющихся специалистами по компьютеpам в узком смысле, но умеющих использовать их для pешения своих специфических задач.

Пользователь ЭВМ должен знать общие пpинципы оpганизации инфоpмационных пpоцессов в компьютеpной сpеде, уметь выбpать нужные ему инфоpмационные системы и технические сpедства и быстpо освоить их пpименительно к своей пpедметной области.

История развития систем обработки информации

До второй половины 19 века основу информационных технологий составляли перо, чернильница и бухгалтерская книга. Передача информации осуществлялась через посредников, почтальонов, курьеров. Такая связь была очень ненадёжной, зависела от множества посторонних факторов, таких как погода, здоровье курьера, даже его настроение. Продуктивность информационной обработки была крайне низкой, каждое письмо копировалось отдельно вручную, помимо счетов, суммируемых так же вручную, не было другой информации для принятия решений.

По аналогии одна из основных целей автоматизации - снабдить каждого сотрудника, относящегося к любому подразделению предприятия, информацией в то время и в той форме и объеме, которые ему необходимы (естественно, в пределах его уровня доступа к секретной части базы данных). Для этого необходима единая интегрированная база данных предприятия, локальная вычислительная сеть и соответствующим образом оборудованные автоматизированные рабочие места (АРМ) для каждого из сотрудников. Такой подход подразумевает комплексную автоматизацию предприятия, т.е. создание компьютеризированной системы управления предприятием в целом, в которой подсистемы должны взаимодействовать, предоставлять оперативный доступ к информации, поддерживать принятие решения и т.п.

Первые отечественные автоматизированные системы управления предприятием (АСУП) и системы обработки данных появились еще в 60-е годы. Они строились на базе информационных вычислительных центров предприятия (ИВЦ), оснащенных малопроизводительной, громоздкой вычислительной техникой коллективного пользования (часто одна вычислительная машина на все предприятие). Такие системы охватывали в основном задачи учета и планирования (во многих случаях все сводилось лишь к расчету заработной платы и учету кадров). Трудности работы с данными были обусловлены использованием в информационной системе наряду с вычислительной техникой ручных способов сбора, перемещения информации и подготовки ее для передачи на ИВЦ на бумажном носителе, с которого она для ввода в вычислительную машину, в свою очередь, переносилась на перфокарты. Результаты обработки информации также выдавались на бумажный носитель. Впоследствии понятие АСУП так и осталось связанным с системами первого поколения на базе вычислительных машин коллективного пользования с использованием бумажного носителя информации.

Современные системы обработки информации

ПРОБЛЕМЫ, СВЯЗАННЫЕ С КОМПЬЮТЕРНЫМИ СПОСОБАМИ ОБРАБОТКИ ИНФОРМАЦИИ

Одна из распространённых опасностей: приписывание мнимого могущества компьютеру. Персональный компьютер, каким бы дорогим и производительным он не был, это всего лишь счетная машина, которая не в состоянии решить наши сложные экономические проблемы, если мы сами не в состоянии правильно сформулировать задачу.

Большое значение имеют также социально-психологические проблемы, возникающие в коллективе при внедрении компьютерной техники, что вызывает, как правило, сокращение числа сотрудников, улучшение (а значит, и усиление) контроля за деятельностью остальных сотрудников и т.п.

Компьютеризация существенно изменяет технологию бухгалтерского учета и анализа хозяйственной деятельности. В неавтоматизированной системе ведения бухгалтерского учета обработка данных о хозяйственных операциях легко прослеживается и обычно сопровождается документами на бумажном носителе информации - распоряжениями, поручениями, счетами и учетными регистрами, например журналами учета. Аналогичные документы часто используются и в компьютерной системе, но во многих случаях они существуют только в электронной форме. Более того, основные учетные документы (бухгалтерские книги и журналы) в компьютерной системе бухгалтерского учета представляют собой файлы данных, прочитать или изменить которые без компьютера невозможно.

Компьютерная технология характеризуется рядом особенностей, которые следует учитывать при оценке условий и процедур контроля.

Отличия компьютерной обработки данных от неавтоматизированной

Единообразное выполнение операций. Компьютерная обработка предполагает использование одних и тех же команд при выполнении идентичных операций бухгалтерского учета, что практически исключает появление случайных ошибок, обыкновенно присущих

ручной обработке. Напротив, программные ошибки (или другие систематические ошибки в аппаратных либо программных средствах) приводят к неправильной обработке всех идентичных операций при одинаковых условиях.

Разделение функций. Компьютерная система может осуществить множество процедур внутреннего контроля, которые в неавтоматизированных системах выполняют разные специалисты. Такая ситуация оставляет специалистам, имеющим доступ к компьютеру, возможность вмешательства в другие функции. В итоге компьютерные системы могут потребовать введения дополнительных мер для поддержания контроля на необходимом уровне, который в неавтоматизированных системах достигается простым разделением функций. К подобным мерам может относиться система паролей, которая предотвращает действия, недопустимые со стороны специалистов, имеющих доступ к информации об активах и учетных документах через терминал в диалоговом режиме.

Потенциальные возможности появления ошибок и неточностей. По сравнению с неавтоматизированными системами бухгалтерского учета компьютерные системы более открыты для несанкционированного доступа, включая лиц, осуществляющих контроль. Они также открыты для скрытого изменения данных и прямого или косвенного получения информации об активах. Чем меньше человек вмешивается в машинную обработку операций учета, тем ниже возможность выявления ошибок и неточностей. Ошибки, допущенные при разработке или корректировке прикладных программ, могут оставаться незамеченными на протяжении длительного периода.

Потенциальные возможности усиления контроля со стороны администрации. Компьютерные системы дают в руки администрации широкий набор аналитических средств, позволяющих оценивать и контролировать деятельность фирмы. Наличие дополнительного инструментария обеспечивает укрепление системы внутреннего контроля в целом и, таким образом, снижение риска его неэффективности. Так, результаты обычного сопоставления фактических значений коэффициента издержек с плановыми, а также сверки счетов поступают к администрации более регулярно при компьютерной обработке информации. Кроме того, некоторые прикладные программы накапливают статистическую информацию о работе компьютера, которую можно использовать в целях контроля фактического хода обработки операций бухгалтерского учета.

Инициирование выполнения операций в компьютере. Компьютерная система может выполнять некоторые операции автоматически, причем их санкционирование не обязательно документируется, как это делается в неавтоматизированных системах бухгалтерского учета, поскольку сам факт принятия такой системы в эксплуатацию администрацией предполагает в неявном виде наличие соответствующих санкций.

Таким образом, способ обработки хозяйственных операций при ведении бухгалтерского учета оказывает существенное влияние на организационную структуру фирмы, а также на процедуры и методы внутреннего контроля. Качественно изменяется труд бухгалтера и его взаимодействие с администрацией. Однако автоматизации труда бухгалтера мешают специфические условия работы в российских условиях, например большое количество документов, противоречащих друг другу. Дополнительные трудности ожидаются в ближайшие 3 года в связи с переходом России на международные стандарты учета.

2. “Введение в информационный бизнес” : Учебное пособие Голосов О.В., Охрименко С.А., Хорошилов А.В., под ред-й Тихомирова В.П.,Хорошилова А.В. — М.: Финансы и статистика, 1996.

2. Интеграторы

ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ ВЭЖХ

Наряду с основными узлами, описанными выше, в хроматографическую систему входит ряд вспомогательных элементов и принадлежностей, описание которых приведено ниже.

1 Сосуды для подвижной фазы

Вместимость сосуда должна обеспечить дневную потребность растворителя без его замены. При односменной аналитической работе удобны стеклянные бутылки вместимостью 0,7— 1 л. Для повышения безопасности при круглосуточной или препаративной работе лучше использовать резервуары из нержавеющей стали вместимостью 5—20 л. В отдельных случаях (применение легко окисляющихся или особо взрывоопасных растворителей) пространство над жидкостью продувают с небольшой скоростью инертным газом. Большое значение имеет тщательная дегазация подвижной фазы. Предпочтительнее выполнять эту операцию непосредственно в рассматриваемом сосуде, чтобы исключить переливание растворителя. При использовании смешанных подвижных фаз, особенно, если их компоненты заметно различаются по температуре кипения, весьма желательно непрерывно перемешивать содержимое сосуда магнитной мешалкой для поддержания однородности системы. Некоторые приборы комплектуются специальными сосудами для подвижной фазы, которые в наибольшей степени удовлетворяют перечисленным требованиям, однако хорошие результаты можно получить и на значительно более простых системах. Так, при осуществлении дегазации продувкой гелием в качестве сосуда используют стандартную стеклянную бутыль с завинчивающейся полиэтиленовой крышкой, в которую помещают элемент магнитной мешалки. В крышке проделывают два отверстия, через которые вводят трубки подачи гелия и отбора растворителя. Трубки не должны доходить до дна бутыли на такое расстояние, чтобы за них не задевал магнитный элемент. Избыток газа выходит в атмосферу через зазоры между трубками и крышкой.

2. Проточные фильтры

Основная часть механических загрязнений попадает в подвижную фазу с атмосферной пылью. Присутствие механических примесей в растворителе недопустимо, так как они нарушают нормальную работу насосов, дозаторов и колонок. Мягкие волокнистые частицы наиболее интенсивно засоряют клапаны насоса, а твердые абразивные частицы, кроме того, могут поцарапать поршень и повредить его уплотнение. В хроматографической системе может быть установлено от одного до трех фильтров, различающихся по назначению и техническим характеристикам. Для удаления механических примесей из растворителя применяют фильтр низкого давления с большой поверхностью, расположенный до входа в насос. Наиболее распространенный фильтр этого типа представляет собой полый цилиндр из металлокерамики или пористой нержавеющей стали со штуцером для отвода очищенного растворителя из внутреннего пространства цилиндра. При помощи штуцера фильтр укрепляют на конце фторопластовой трубки и опускают в сосуд с подвижной фазой. Другой конец трубки соединяют с входом насоса. Обычно используют фильтры с размером пор 2—5 мкм. Растворитель протекает через фильтр за счет вакуума, создаваемого насосом в такте всасывания. Чтобы обеспечить нормальное перезаполнение насоса, сопротивление фильтра должно быть минимальным. Поэтому при высоких скоростях потока, в частности в препаративной хроматографии, используют фильтры большого размера. Установка фильтра низкого давления является обязательной! В процессе работы насоса постепенно изнашиваются уплотнения поршней. Продукты эрозии уплотнений медленно, но верно забивают каналы инжектора и входной фильтр колонки. Для удаления этих частиц рекомендуется устанавливать между насосом и инжектором второй фильтр, рассчитанный на высокое давление. Размер его пор не должен быть больше, чем у входного фильтра колонки. Этот фильтр при достаточном размере поверхности должен иметь возможно меньший объем, что является существенным для работы в режиме градиентного элюирования, если градиент формируется в зоне низкого давления. Третий фильтр с размером пор 0,5—2 мкм иногда устанавливают непосредственно перед колонкой. Предколоночный фильтр защищает колонку от продуктов эрозии уплотнения инжектора и от примесей, содержащихся в пробе. Этот фильтр должен иметь очень маленький мертвый объем, так как он расположен в критической зоне, где любое увеличение объема приводит к размыванию полосы, т. е. снижает эффективность разделения. Лучшие конструкции данного фильтра имеют мертвый объем 4—7 мкл. Наиболее целесообразно использовать предколоночный фильтр в эксклюзионной хроматографии полимеров, так как в этом случае вероятность присутствия нерастворимых частиц в анализируемых образцах гораздо выше, чем при анализе смесей индивидуальных соединений. При установке такого фильтра в систему с общей эффективностью 20000 т.т., включающую две эксклюзионные колонки длиной по 30 см, потеря эффективности составляет 1000—1500 т.т. В других вариантах жидкостной хроматографии широко применяют предколонки. Они защищают основную колонку как от химических, так и от механических загрязнений, т. е. являются высокоэффективными фильтрующими элементами.

3. Устройства для измерения давления

Рабочее давление в жидкостной хроматографии является очень важным параметром, который обязательно должен контролироваться. Измерители давления устанавливают на выходе насоса. В комплектных приборах и многих насосных системах в качестве измерителей давления используют тензодатчики с цифровой индикацией показаний. Они имеют высокую точность и малый внутренний объем, что позволяет быстро заменять растворитель в системе. Кроме того, информация о давлении, передаваемая в виде электрического сигнала, дает возможность реализовать простую схему установки предельно допустимого диапазона давлений, при отклонении от которого насос автоматически отключается. К недостаткам этих устройств можно отнести усложнение аппаратуры и высокую цену. Если насосная система не снабжена тензодатчиком, обычно применяют манометры с трубкой Бурдона. Они достаточно надежны, просты, дешевы и обладают демпфирующими свойствами. Главными недостатками манометров в условиях ВЭЖХ являются большой не промываемый объем, ограниченная коррозионная стойкость и меньшая, чем у тензодатчиков, точность измерения. Проявление указанных недостатков можно существенно уменьшить путем выбора манометра с оптимальным диапазоном измерения и его присоединения к системе через длинный капилляр с внутренним диаметром ≤0,5 мм. Некоторыми фирмами выпускаются также проточные манометры, не имеющие не промываемого объема.

Рис.1 Варианты включения демпфера в хроматографическую систему 1 — манометр; 2 — демпфер; 3 — поперечное сечение демпфера; 4 — запорный кран


В мембранных демпферах колебания потока сглаживаются |йа счет перемещения упругой металлической диафрагмы (мембраны); с другой стороны к мембране приложено постоянное давление, создаваемое газом, пружиной или жидкостью с высоким коэффициентом сжимаемости. Лучшие конструкции мембранных демпферов имеют очень маленький внутренний объем и являются наиболее пригодными для работы с градиентным элюированием.

5. Шприцы для ввода проб

В ВЭЖХ пробу вводят в дозатор при помощи микрошприцов. Шприцы, применяемые для ввода в петлевые краны-дозаторы, в принципе аналогичны используемым в газовой хроматографии, но снабжены иглой, кончик которой обрезан перпендикулярно оси. Шприцы различаются по способу крепления иглы (вклеенная или сменная) и по уплотнению рабочей пары (притертый металлический плунжер или шток с фторопластовым уплотнением). Самые простые и дешевые шприцы имеют вклеенную иглу и металлический плунжер. Шприцы с фторопластовым уплотнением (GasTight) характеризуются повышенной коррозионной стойкостью и герметичностью: через уплотнение не происходит утечки газа при его давлении до 0,8—1,5 МПа. Кроме того, они гораздо легче отмываются, а изношенный уплотняющий элемент достаточно просто заменить. Эти шприцы особенно рекомендуются для работы с высокополярными и коррозионно-активными веществами и с подвижной фазами, представляющими собой солевые и буферные растворы. Практически все шприцы со сменной иглой можно применять как в газовой, так и в жидкостной хроматографии: нужно только установить в них соответствующую иглу. При работе с кранами-дозаторами, рассчитанными на частичное заполнение дозы, с целью повышения точности вводимого объема пробы следует использовать шприцы минимально возможного объема (обычно от 10 до 50 мкл). При полном заполнении петли вместимость шприца должна быть как минимум вдвое больше объема дозы. В эксклюзионной хроматографии, как правило, вводят полную дозу, объем которой значительно больше, чем в других видах ВЭЖХ, и составляет 50—300 мкл. В соответствующих кранах-дозаторах канал ввода пробы обычно оснащен герметично закрепленной иглой, в которую вставляют шприц, предназначенный для работы с обычными съемными (не путать со сменными) иглами. Для таких дозаторов лучше всего использовать шприцы вместимостью 100—1000 мкл с фторопластовыми уплотнением и посадочным конусом (например, шприцы Гамильтон, типа TLL), так как в случае стеклянного или металлического посадочного конуса герметичность этого соединения нарушается значительно быстрее. Такие же шприцы применяют и в препаративной ВЭЖХ. Для введения пробы непосредственно в поток элюента через прокалываемую мембрану (шприцевые дозаторы) используют специальные шприцы с углом заточки иглы 22°. Эти шприцы имеют особые уплотнения, рассчитанные на давления до 35 МП а, и оснащены защитными приспособлениями, предотвращающими выбрасывание поршня в момент прокола мембраны. Если давление в колонке не превышает 7—10 МПа, можно применять шприцы вместимостью до 50 мкл с фторопластовым уплотнением поршня.

6. Измерители скорости потока

Скорость потока и ее стабильность во времени существенно влияют на правильность и воспроизводимость характеристик удержания в ВЭЖХ. Эти параметры особенно важны в эксклюзионной хроматографии, где даже незначительное изменение скорости потока приводит к большим ошибкам определения молекулярных масс полимеров. Кроме того, изменение скорости потока указывает на неполадки в аппаратуре (например, негерметичность жидкостного тракта или засорение клапанов насоса), поэтому желательно измерять ее не менее двух-трех раз в день.

Скорость потока можно определять, взвешивая растворитель, вытекающий из колонки за определенный промежуток времени; метод достаточно точен (ошибка менее 0,5%), но неудобен и длителен. Скорость потока часто находят по времени заполнения определенного объема бюретки или стеклянной трубки, ограниченного двумя рисками. В варианте, показанном на рис. 8.18, а, растворитель поступает в расходомер сверху, а в варианте 8.18,6—снизу.

Рис. 2. Расходомеры: а—типа бюретки; б—с подачей растворителя снизу; а — пузырьковый


На рис. 8.18,б показан пузырьковый расходомер, в котором вводят шприцом в элюат пузырек воздуха и измеряют время прохождения пузырька между рисками. Эти расходомеры удобны в работе и дают погрешность около 1%, измерение занимает не более 2—3 мин.

7. Термостаты колонок

Повышение температуры разделения улучшает эффективность колонок в обращенно-фазной, ионообменной и эксклюэиюнной хроматографии. Стабилизация температуры также повышает точность количественных определений, поэтому использование термостатов—весьма желательно, а иногда обязательно. В ВЭЖХ чаще всего применяют воздушные термостаты с интенсивным перемешиванием воздуха, в которых расположены теплообменник для подогрева растворителя, дозатор и колонки. Для обеспечения безопасности работы термостат продувают азотом и часто устанавливают в нем датчики, реагирующие на появление паров органических растворителей и включающие световую или звуковую сигнализацию. Защиту от перегрева, который может произойти при неисправности электронной схемы, осуществляют включением в электрическую цепь специальных вставок, изготовленных из сплавов с температурой плавления 100-150°С. Иногда для термостатирования используют нагреваемые металлические блоки с профрезерованными пазами, в которые вставляются колонки, а также водяные рубашки, соединенные с жидкостными термостатами. Главная трудность использования этих конструкций заключается в том, что размер пазов и рубашек должен строго coответствовать размеру и числу колонок и предколонок. В то же время в практике часто приходится собирать разделительные системы из колонок различных размеров. Это обстоятельство затрудняет использование указанных термостатирующих устройств, несмотря на их простоту. Кроме того, эти устройства обычно не предусматривают термостатирования инжектора и предварительного подогрева растворителя. Для проведения большинства работ в ВЭЖХ вполне достаточным является диапазон термостатирования до 100°С с точностью поддержания температуры ±0,5-1 °С. В отдельных случаях, в частности в эксклюзионной хроматографии некоторых синтетических полимеров, необходимо термостатирование 1 до 150 °С.

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ ДЛЯ ВЭЖХ, ТРЕБОВАНИЯ К ИХ ХИМИЧЕСКОЙ СТОЙКОСТИ И ПРОЧНОСТИ

Прогресс в этих областях предоставляет новые возможности в том, что касается управления данными и эффективности обработки данных. После определения того, что представляет из себя мультипроцессорная и мультимашинная архитектура, мы вводим основные понятия, на которых строятся возможности применения ресурсов нескольких машин:
- распределение или разделение;
- возможность взаимодействия;
- прозрачность;
- модель "клиент-сервер".

Содержание

Введение 3
Мультипроцессоры 4
Мультимашинная организация 5
Что называют распределенной обработкой данных 6
Цели распределенной обработки данных 8
Распределение и параллелизм 9
Прозрачность 10
МОДЕЛЬ "КЛИЕНТ-СЕРВЕР" 11
Заключение 12
Список литературы 13

Вложенные файлы: 1 файл

распределение системы обработки данных.docx

Реферат на тему:

Мультимашинная организация 5

Что называют распределенной обработкой данных 6

Цели распределенной обработки данных 8

Распределение и параллелизм 9

МОДЕЛЬ "КЛИЕНТ-СЕРВЕР" 11

Список литературы 13

Введение

Среди всех изменений, происшедших в области связанной с научными исследованиями вычислительной техники, некоторые в особенности повлияли на изменение функций рабочих станций, а именно:
- рост мощи станций, оснащаемых все более дружественными человеко-машинными интерфейсами ;
- появление процессоров, предназначенных для специальных видов обработки данных (изображения, текста и т.п.);
- расширение возможностей в области хранения информации;
- появление средств, облегчающих доступ к ресурсам, распределенным по сети.

Прогресс в этих областях предоставляет новые возможности в том, что касается управления данными и эффективности обработки данных. После определения того, что представляет из себя мультипроцессорная и мультимашинная архитектура, мы вводим основные понятия, на которых строятся возможности применения ресурсов нескольких машин:
- распределение или разделение;
- возможность взаимодействия;
- прозрачность;
- модель "клиент-сервер".

Мультипроцессоры

В целях увеличения вычислительных возможностей и для достижения большего параллелизма по сравнению с мультипрограммированием, предлагаемым операционными системами, на классические монопроцессорные машины с фоннеймановской архитектурой были установлены дополнительные процессоры. Подобная мультипроцессорная архитектура появилась в начале 1960 г.г. (Burroughs 6000 в 1963 г., IBM/360-67 в 1966 г., . ), гораздо раньше, чем были разработаны вычислительные сети. Системы, разработанные для мультипроцессорных машин, называются параллельными операционными системами (Parallel Operating Systems). Мультипроцессорные машины подразделяются на два семейства:
- жестко связанные или жестко соединенные мультипроцессоры (tightly coupled), в которых процессоры связаны через общую память (рис.2.1.);
- слабо связанные или слабо соединенные мультипроцессоры (loosely coupled), в которых процессоры связаны через средство связи (как правило, шину), отличное от общей памяти (рис.2.2.).

Необходимо отметить, что эти виды архитектуры могут сочетаться между собой: каждый процессор может обладать локальной памятью и делить с остальными общую память. Кроме того, в настоящее время процессоры обладают одним или двумя уровнями кэширования.


Рис2.1. Жестко связанные мультипроцессоры


Рис 2.2.Слабо связанные процессы

Мультимашинная организация

Появление сетей, предназначенных для взаимной связи различных компьютеров, привело к разработке средств, а затем и операционных систем, позволяющих осуществлять управление, так называемой, мультимашинной архитектурой (рис.2.3.), то есть совокупности полносоставных компьютеров (процессоры, память, вводы-выводы. ), связанных в сеть. В этом случае речь идет о распределенных вычислительных системах.


Рис 2.3.Мультимашинная организация

Следует отметить большое сходство между мультимашинной организацией и архитектурой слабо связанных мультипроцессоров; в обоих структурах процессоры связаны через канал связи, а не через общую память. Различия заключаются в следующем:
- в случае распределенных систем (мультимашинная архитектура) связь между процессорами осуществляется относительно медленно (сеть), а системы независимы;
- в случае параллельных систем (мультипроцессорная архитектура) связь осуществляется быстро (шина), а системы относительно сильно связаны между собой.

Не существует точного определения этих типов архитектуры и этих систем, кроме того, между этими двумя понятиями наблюдается сходство. Распределенные операционные системы, такие как Mach и Chorus могут применяться как при мультимашинной, так и при мультипроцессорной организации. Впрочем, существует несколько вариантов UNIX для мультипроцессоров (на Cray, на Sun. ), в которых сосуществуют совершенно различные средства управления распределением по сети и управления связью между процессорами через шину. В данной книге мы рассматриваем использование средств, преназначенных для применения ресурсов, распределенных между различными машинами, доступ к которым возможен через сеть. Мы не рассматриваем ни средства, направленные исключительно на использование мультипроцессорной архитектуры, ни средства, предназначенные для работы в режиме реального времени, так как целью нашего исследования является совместная работа нескольких машин.

Что называют распределенной обработкой данных

Рассмотрим пример, иллюстрирующий эту эволюцию. Речь пойдет о проектировании в области механики; традиционный подход заключается в следующем:
- построение "проволочной модели" (maillage) (графического представления геометрии физической модели) на рабочей станции;
- перенос на ЭВМ Cray файла модели, вводящего код вычислений;
- результаты расчетов, выполненных на ЭВМ Cray переносятся на рабочую станцию и обрабатываются графическим постпроцессором.

Этот способ обладает следующими недостатками:
- обмен данными производится посредством переноса файлов с одной машины на другую;
- обработка файлов осуществляется последовательно, в то время как расчеты на ЭВМ Cray только выиграли бы, если было бы возможно обеспечить взаимодействие с пользователем, используя графические и эргономические возможности рабочей станции, а некоторые расчеты, осуществляемые на последней, лучше было бы выполнить на машине Cray.

Для того, чтобы избавиться от этих неудобств, необходимо перейти от вышеназванных вариантов решения задач к применению методики совместной работы, на основе понятия "прозрачности". Пользователь будет видеть только одну машину (свою станцию) и только одну прикладную программу. Распределенная обработка данных, таким образом, представляет собой программу, выполнение которой осуществляется несколькими системами, объединенными в сеть. Как правило, расчетная часть программы выполняется на мощном процессоре, а визуальное отображение выводится на рабочей станции с улучшенной эргономичностью. Разделение опирается на модель "клиент-сервер", к которой мы еще вернемся. Этот вид обработки данных организуется по принципу треугольника (рис.2.4.):
- пользователь обладает рабочей станцией;
- решение задач требует обращения к устройству обработки данных (спецпроцессору, например) и к серверу данных, и все это прозрачно для пользователя.

2. Интеграторы

ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ ВЭЖХ

Наряду с основными узлами, описанными выше, в хроматографическую систему входит ряд вспомогательных элементов и принадлежностей, описание которых приведено ниже.

1 Сосуды для подвижной фазы

Вместимость сосуда должна обеспечить дневную потребность растворителя без его замены. При односменной аналитической работе удобны стеклянные бутылки вместимостью 0,7-- 1 л. Для повышения безопасности при круглосуточной или препаративной работе лучше использовать резервуары из нержавеющей стали вместимостью 5--20 л. В отдельных случаях (применение легко окисляющихся или особо взрывоопасных растворителей) пространство над жидкостью продувают с небольшой скоростью инертным газом. Большое значение имеет тщательная дегазация подвижной фазы. Предпочтительнее выполнять эту операцию непосредственно в рассматриваемом сосуде, чтобы исключить переливание растворителя. При использовании смешанных подвижных фаз, особенно, если их компоненты заметно различаются по температуре кипения, весьма желательно непрерывно перемешивать содержимое сосуда магнитной мешалкой для поддержания однородности системы. Некоторые приборы комплектуются специальными сосудами для подвижной фазы, которые в наибольшей степени удовлетворяют перечисленным требованиям, однако хорошие результаты можно получить и на значительно более простых системах. Так, при осуществлении дегазации продувкой гелием в качестве сосуда используют стандартную стеклянную бутыль с завинчивающейся полиэтиленовой крышкой, в которую помещают элемент магнитной мешалки. В крышке проделывают два отверстия, через которые вводят трубки подачи гелия и отбора растворителя. Трубки не должны доходить до дна бутыли на такое расстояние, чтобы за них не задевал магнитный элемент. Избыток газа выходит в атмосферу через зазоры между трубками и крышкой.

2. Проточные фильтры

Основная часть механических загрязнений попадает в подвижную фазу с атмосферной пылью. Присутствие механических примесей в растворителе недопустимо, так как они нарушают нормальную работу насосов, дозаторов и колонок. Мягкие волокнистые частицы наиболее интенсивно засоряют клапаны насоса, а твердые абразивные частицы, кроме того, могут поцарапать поршень и повредить его уплотнение. В хроматографической системе может быть установлено от одного до трех фильтров, различающихся по назначению и техническим характеристикам. Для удаления механических примесей из растворителя применяют фильтр низкого давления с большой поверхностью, расположенный до входа в насос. Наиболее распространенный фильтр этого типа представляет собой полый цилиндр из металлокерамики или пористой нержавеющей стали со штуцером для отвода очищенного растворителя из внутреннего пространства цилиндра. При помощи штуцера фильтр укрепляют на конце фторопластовой трубки и опускают в сосуд с подвижной фазой. Другой конец трубки соединяют с входом насоса. Обычно используют фильтры с размером пор 2--5 мкм. Растворитель протекает через фильтр за счет вакуума, создаваемого насосом в такте всасывания. Чтобы обеспечить нормальное перезаполнение насоса, сопротивление фильтра должно быть минимальным. Поэтому при высоких скоростях потока, в частности в препаративной хроматографии, используют фильтры большого размера. Установка фильтра низкого давления является обязательной! В процессе работы насоса постепенно изнашиваются уплотнения поршней. Продукты эрозии уплотнений медленно, но верно забивают каналы инжектора и входной фильтр колонки. Для удаления этих частиц рекомендуется устанавливать между насосом и инжектором второй фильтр, рассчитанный на высокое давление. Размер его пор не должен быть больше, чем у входного фильтра колонки. Этот фильтр при достаточном размере поверхности должен иметь возможно меньший объем, что является существенным для работы в режиме градиентного элюирования, если градиент формируется в зоне низкого давления. Третий фильтр с размером пор 0,5--2 мкм иногда устанавливают непосредственно перед колонкой. Предколоночный фильтр защищает колонку от продуктов эрозии уплотнения инжектора и от примесей, содержащихся в пробе. Этот фильтр должен иметь очень маленький мертвый объем, так как он расположен в критической зоне, где любое увеличение объема приводит к размыванию полосы, т. е. снижает эффективность разделения. Лучшие конструкции данного фильтра имеют мертвый объем 4--7 мкл. Наиболее целесообразно использовать предколоночный фильтр в эксклюзионной хроматографии полимеров, так как в этом случае вероятность присутствия нерастворимых частиц в анализируемых образцах гораздо выше, чем при анализе смесей индивидуальных соединений. При установке такого фильтра в систему с общей эффективностью 20000 т.т., включающую две эксклюзионные колонки длиной по 30 см, потеря эффективности составляет 1000--1500 т.т. В других вариантах жидкостной хроматографии широко применяют предколонки. Они защищают основную колонку как от химических, так и от механических загрязнений, т. е. являются высокоэффективными фильтрующими элементами.

3. Устройства для измерения давления

Рабочее давление в жидкостной хроматографии является очень важным параметром, который обязательно должен контролироваться. Измерители давления устанавливают на выходе насоса. В комплектных приборах и многих насосных системах в качестве измерителей давления используют тензодатчики с цифровой индикацией показаний. Они имеют высокую точность и малый внутренний объем, что позволяет быстро заменять растворитель в системе. Кроме того, информация о давлении, передаваемая в виде электрического сигнала, дает возможность реализовать простую схему установки предельно допустимого диапазона давлений, при отклонении от которого насос автоматически отключается. К недостаткам этих устройств можно отнести усложнение аппаратуры и высокую цену. Если насосная система не снабжена тензодатчиком, обычно применяют манометры с трубкой Бурдона. Они достаточно надежны, просты, дешевы и обладают демпфирующими свойствами. Главными недостатками манометров в условиях ВЭЖХ являются большой не промываемый объем, ограниченная коррозионная стойкость и меньшая, чем у тензодатчиков, точность измерения. Проявление указанных недостатков можно существенно уменьшить путем выбора манометра с оптимальным диапазоном измерения и его присоединения к системе через длинный капилляр с внутренним диаметром ?0,5 мм. Некоторыми фирмами выпускаются также проточные манометры, не имеющие не промываемого объема.

4. Демпферы

Рис.1 Варианты включения демпфера в хроматографическую систему 1 -- манометр; 2 -- демпфер; 3 -- поперечное сечение демпфера; 4 -- запорный кран

В мембранных демпферах колебания потока сглаживаются |йа счет перемещения упругой металлической диафрагмы (мембраны); с другой стороны к мембране приложено постоянное давление, создаваемое газом, пружиной или жидкостью с высоким коэффициентом сжимаемости. Лучшие конструкции мембранных демпферов имеют очень маленький внутренний объем и являются наиболее пригодными для работы с градиентным элюированием.

5. Шприцы для ввода проб

6. Измерители скорости потока

Скорость потока и ее стабильность во времени существенно влияют на правильность и воспроизводимость характеристик удержания в ВЭЖХ. Эти параметры особенно важны в эксклюзионной хроматографии, где даже незначительное изменение скорости потока приводит к большим ошибкам определения молекулярных масс полимеров. Кроме того, изменение скорости потока указывает на неполадки в аппаратуре (например, негерметичность жидкостного тракта или засорение клапанов насоса), поэтому желательно измерять ее не менее двух-трех раз в день.

Скорость потока можно определять, взвешивая растворитель, вытекающий из колонки за определенный промежуток времени; метод достаточно точен (ошибка менее 0,5%), но неудобен и длителен. Скорость потока часто находят по времени заполнения определенного объема бюретки или стеклянной трубки, ограниченного двумя рисками. В варианте, показанном на рис. 8.18, а, растворитель поступает в расходомер сверху, а в варианте 8.18,6--снизу.

Рис. 2. Расходомеры: а--типа бюретки; б--с подачей растворителя снизу; а -- пузырьковый

На рис. 8.18,б показан пузырьковый расходомер, в котором вводят шприцом в элюат пузырек воздуха и измеряют время прохождения пузырька между рисками. Эти расходомеры удобны в работе и дают погрешность около 1%, измерение занимает не более 2--3 мин.

7. Термостаты колонок

Повышение температуры разделения улучшает эффективность колонок в обращенно-фазной, ионообменной и эксклюэиюнной хроматографии. Стабилизация температуры также повышает точность количественных определений, поэтому использование термостатов--весьма желательно, а иногда обязательно. В ВЭЖХ чаще всего применяют воздушные термостаты с интенсивным перемешиванием воздуха, в которых расположены теплообменник для подогрева растворителя, дозатор и колонки. Для обеспечения безопасности работы термостат продувают азотом и часто устанавливают в нем датчики, реагирующие на появление паров органических растворителей и включающие световую или звуковую сигнализацию. Защиту от перегрева, который может произойти при неисправности электронной схемы, осуществляют включением в электрическую цепь специальных вставок, изготовленных из сплавов с температурой плавления 100-150°С. Иногда для термостатирования используют нагреваемые металлические блоки с профрезерованными пазами, в которые вставляются колонки, а также водяные рубашки, соединенные с жидкостными термостатами. Главная трудность использования этих конструкций заключается в том, что размер пазов и рубашек должен строго coответствовать размеру и числу колонок и предколонок. В то же время в практике часто приходится собирать разделительные системы из колонок различных размеров. Это обстоятельство затрудняет использование указанных термостатирующих устройств, несмотря на их простоту. Кроме того, эти устройства обычно не предусматривают термостатирования инжектора и предварительного подогрева растворителя. Для проведения большинства работ в ВЭЖХ вполне достаточным является диапазон термостатирования до 100°С с точностью поддержания температуры ±0,5-1 °С. В отдельных случаях, в частности в эксклюзионной хроматографии некоторых синтетических полимеров, необходимо термостатирование 1 до 150 °С.

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ ДЛЯ ВЭЖХ, ТРЕБОВАНИЯ К ИХ ХИМИЧЕСКОЙ СТОЙКОСТИ И ПРОЧНОСТИ

Современный хроматограф для ВЭЖХ является прибором, материалы которого в процессе работы подвергаются сильным химическим и механическим воздействиям. Жидкостный тракт хроматографа подвергается воздействию воды, водных растворов кислот, щелочей и солей, при этом нередко при повышенной температуре, а также воздействию разнообразных органических растворителей, окислителей и восстановителей, при этом такое воздействие проводится при самых неблагоприятных условиях-- при высоком давлении и на детали, подвергающиеся сильным механическим нагрузкам. Это предъявляет к конструкционным материалам приборов и оборудования чрезвычайно высокие требования, которым не все приборы отвечают, особенно для наиболее сложных условий работы. Часто, сталкиваясь с необходимостью вводить в конструкцию хроматографа новые узлы и детали, нередко изготовляемые самим исследователем или не предназначенные для ВЭЖХ, допускаются грубые ошибки в выборе конструкционных материалов, приводящие к катастрофическим последствиям (коррозионное или механическое разрушение узлов хроматографа, забивка каналов капилляров и фильтров, порча колонок и сорбентов и т.п.). Основными конструкционными материалами для ВЭЖХ являются коррозионно-устойчивая нержавеющая сталь, спецсплавы (значительно реже), стекло, керамические материалы (рубин, сапфир), полимерные материалы (в основном с наполнителями). Отечественные приборы, как правило, изготавливают из нержавеющей стали Х18Н9Т. Основным конструкционным материалом для импортного оборудования является нержавеющая сталь марки 316, отличающаяся высокой коррозионной стойкостью и механической прочностью. Как правило, нержавеющие стали достаточно коррозионно-устойчивы к обычно используемым в ВЭЖХ растворителям [126]. Исключение составляют некоторые сильные органические кислоты (муравьиная, щавелевая, трихлоруксусная, трифторуксусная и др.) в определенном диапазоне концентраций, хлорсодержащие растворители (метиленхлорид, хлороформ, тетрахлорид углерода и др.), особенно в сочетании с полярными модификаторами типа спиртов. Когда возникает необходимость в использовании таких растворителей или модификаторов, всегда следует проверить коррозионную устойчивость нержавеющей стали, использованной в данном приборе, к этим средам. Сильную коррозию могут вызвать некоторые сильные и разбавленные неорганические кислоты, а также некоторые соли. Особенно опасным является действие хлорводородной кислоты и ее солей в кислых средах при рН

Читайте также: