Реферат синтетические противомикробные лекарственные средства

Обновлено: 05.07.2024

Мотивация: Современные синтетические противомикробные средства по своей силе и спектру действия не уступают самым мощным антибиотикам и занимают свою важную нишу в терапии инфекционных заболеваний.

Сульфаниламидные препараты.

Они стали первыми химиотерапевтическими антибактериальными средствами широкого спектра действия, внедренными в практику еще в 30-х годах прошлого века.

Ключевой особенностью сульфаниламидов является их химическое сродство с пара-аминобензойной кислотой (ПАБК), которая необходима прокариотам для синтеза пуриновых и пиримидиновых оснований – структурных компонентов нуклеиновых кислот. В основе механизма действия сульфаниламидов лежит принцип конкурентного антагонизма: вследствие структурного сходства сульфаниламиды захватываются микробной клеткой вместо ПАБК, в результате чего угнетается синтез нуклеиновых кислот, подавляется рост и размножение микроорганизмов (бактериостатический эффект). Сульфаниламиды обладают высокой избирательностью противомикробного действия.

Спектр антимикробного действия сульфаниламидов довольно широк и включает следующих возбудителей инфекционных заболеваний:

1) бактерии (патогенные кокки (грам+ и грам-), кишечная палочка, возбудители дизентерии (шигеллы), холерный вибрион, возбудители газовой гангрены (клостридии), возбудитель сибирской язвы, дифтерии, возбудитель катаральной пневмонии)

Рекомендуемые материалы

2) хламидии (возбудители трахомы, возбудители орнитоза, возбудители пахового лимфогранулематоза)

3) актиномицеты (грибы)

4) простейшие (токсоплазмы, плазмодии малярии).

Большой практический интерес представляют сульаниламиды резорбтивного действия. По продолжительности действия эти препараты делятся на:

1) сульфаниламиды короткого действия (назначаются 4-6 раз в сутки) - сульфадимидин, сульфатиазол, сульфаэтидол, сульфакарбамид, сульфазоксазол

2) сульфаниамиды средней продолжительности действия (назначаются 3-4 раза в сутки) - сульфадиазин, сульфаметоксазол, сульфамоксал

3) сульфаниламиды длительного действия (назначаются 1-2 раза в сутки) - сульфапиридазин, сульфамонометоксин, сульфадиметоксин

4) сульфаниламиды сверхдлительного действия (назначаются 1 раз в сутки) - сульфаметоксипиразин, сульфадоксин.

С увеличением продолжительности действия препаратов уменьшается ударная доза, назначаемая при их первом приеме.

Длительность действия сульфаниламидов определяется их способностью связываться с белками плазмы, скоростью метаболизма и выведения. Так сульфаниламиды длительного и сверхдлительного действия, в отличие от "коротких" конъюгируют с глюкуроновой кислотой. В результате образуются антибактериально активные глюкурониды, которые хорошо растворимы и не выпадают в осадок в моче, а значит эффективны при лечении инфекционных заболеваний мочевыводящих путей.

Назначение высоких доз сульфаниламидных препаратов - залог успеха противомикробной терапии, так как только в этих условиях создаются максимально высокие концентрации лекарственного средства вокруг бактериальной клетки, что лишает ее возможности захватывать ПАБК. При использовании препаратов длительного действия в организме создаются стабильные концентрации вещества. Однако если возникают побочные явления, продолжительный эффект играет отрицательную роль, так как при вынужденной отмене препарата должно пройти несколько дней, прежде чем закончится его действие. Эти препараты целесообразно использовать при хронических инфекциях и для профилактики инфекций (например, в послеоперационном периоде). Следует также учитывать, что концентрация препаратов продолжительного действия в спинномозговой жидкости невелика (5-10% от концентрации в крови). Этим они отличаются от сульфаниламидов непродолжительного действия, которые накапливаются в ликворе в высоких концентрациях (50-80% от концентрации в плазме). Сульфаниламиды резорбтивного действия назначают при менингите, заболеваниях органов дыхания, инфекциях мочевыводящих и желчевыводящих путей.

К сульфаниламидам, действующим в просвете кишечника, относятся фталилсульфатиазол, сульфагуанидин, фтазин. Отличительной особенностью этих препаратов является их плохая всасываемость из ЖКТ, поэтому в просвете кишечника создаются высокие концентрации веществ. Прямыми показаниями к назначению сульфаниламидов, действующих в просвете кишечника, являются дизентерия, энтероколит, дуоденит, колит, а также профилактика кишечной инфекции в послеоперационном периоде. Учитывая, что микроорганизмы при этих заболеваниях локализуются не только в просвете, но в стенке кишечника, их целесообразно сочетать с хорошвсасывающимися сульфаниламидами или антибиотиками. Применение этой группы сульфаниламидов нужно сочетать с витаминами группы В, так как подавляется рост и размножение кишечной палочки, участвующей в процессе синтеза этих витаминов.

Сульфаниламиды местного действия включают сульфацетамид (альбуцид), сульфадиазин серебра, сульфатиазол серебра. Эти вещества назначают в виде растворов и мазей для лечения и профилактики конъюнктивита, блефарита, гонорейного поражения глаз, язв роговицы, ожоговой и раневой инфекции глаз. Для достижения терапевтического эффекта местно сульфаниламиды используют в очень высоких концентрациях. Необходимо учитывать, что активность сульфаниламидов резко падает в присутствии гноя, некротических масс, так как там содержится большое количество ПАБК. Поэтому сульфаниламиды следует применять только после первичной обработки раны. Следует также отметить, что совместное применение сульфаниламидов с другими лекарственными средствами, производными ПАБК, также резко снижает их противомикробную активность (пример фармакологической несовместимости). Увеличить антимикробную активность сульфаниламидов для местного применения можно, включив в молекулу лекарственного средства атом серебра. Ионы серебра взаимодействуют с белками микрорганизмов, что приводит к нарушению структуры и функции белков и гибели бактерий. В результате непрямого потенцированного снергизма между сульфаниламидом и атомом серебра эффект таких препаратов как сульфадиазин серебра и сульфатиазол серебра становится бактерицидным.

Сульфаниламиды, комбинированные с салициловой кислотой: салазосульфапиридин, салазопиридазин, салазодиметоксин. В толстом кишечнике под влиянием микрофлоры происходит гидролиз этих соединений с высвобождением месалазина и сульфаниламидного компонента. Такие сульфаниламидные препараты обладают анибактериальным и противовоспалительным эффектами (основан на ингибировании синтеза простагландинов). Их применяют при неспецифическом язвенном колите, болезни Крона (гранулематозном колите).

Известными сульфаниламидами, комбинированными с триметопримом, являются: ко-тримоксазол, лидаприм, сульфатон, гросептол, потесепил. В микробной клетке триметоприм блокирует фермент, участвующий в синтезе пуриновых оснований. Наблюдаемый в данном случае вид взаимодействия лекарственных средств представляет собой непрямой потенцированный синергизм. Эффект становится бактерицидным, так как развивающиеся изменения в микроорганизмах несовместимы с жизнью и приводят к их гибели.

По своей активности сульфаниламидные препараты значительно уступают другим антимикробным средствам и обладают сравнительно высокой токсичностью. Их назначают главным образом при непереносимости антибиотиков или развитии толерантности к ним. Нередко сульфаниламиды комбинируют с антибиотиками.

Нитроксолин выделяется в неизмененном виде с мочой, где накапливается в бактериостатических концентрациях. В связи с этим препарат применяют как уроантисептик при инфекциях мочевыводящих путей, для профилактики инфекций после операций на почках и мочевыводящих путях, после диагностических манипуляций. Препарат обладает широким спектром антибактериального действия, кроме того оказывает угнетающее влияние на некоторые дрожжеподобные грибы рода Candida. Он хорошо переносится и практически не вызывает побочных эффектов, но к нему быстро развивается устойчивость микроорганизмов.

Интестопан обладает антибактериальной и антипротозойной активностью и показан при острых и хонических энтероколитах, амебной и бациллярной дизентерии, гнилостной диспепсии. Так как препарат содержит ионы брома, во избежание развития отравления необходимо строго придерживаться режима дозирования.

Энтеросептол практически не всасывается из ЖКТ и не оказывает системного действия. Применяется при ферментативной и гнилостной диспепсиях, бациллярной дизентерии, протозойных колитах, для лечения амебоносителей. Часто комбинируют с другими противомикробными средствами. При длительном применении (свыше 4-х недель) может вызывать периферические невриты, миелопатию, поражения зрительного нерва, отравление йодом.

Производные хинолона.

Представители: кислота налидиксовая, кислота оксолиниевая, кислота пипемидиевая. Механизм действия включает: угнетение синтеза ДНК, взаимодействие с металлосодержащими ферментами возбудителя, участие в реакциях перекисного окисления липидов. Спектр действия включает только грам- бактерии. Эффективны в отношении кишечной палочки, протея, клебсиелл, шигелл, сальмонелл. Синегнойная палочка к данным препаратам устойчива. Ценным качеством препаратов является активность в отношении штаммов, устойчивых к антибиотикам и сульфаниламидным препаратам. Резистентность к препаратам развивается достаточно быстро. Выводятся лекарственные средства и их метаболиты главным образом почками, вследствие чего в моче создаются высокие концентрации. Поэтому основное применение - инфекции мочевыводящих путей и профилактика инфекций при операциях на почках и мочевом пузыре.

Фторхинолоны.

Были созданы в ходе изучения описанных выше производных хинолона. Оказалось, что добавление в хинолоновую структуру атома фтора существенно усиливает антибактериальный эффект препарата. На сегодняшний день фторхинолоны являются одними из самых активных химиотерапевтических средств, по силе действия не уступая самым мощным антибиотикам. Фторхинолоны делят на три поколения.

Первое поколение содержит 1 атом фтора: ципрофлоксацин, пефлоксацин, офлоксацин, норфлоксацин, ломефлоксацин.

Второе поколение содержит 2 атома фтора: левофлоксацин, спарфлоксацин.

Третье поколение содержит 3 атома фтора: моксифлоксацин, гатифлоксацин, гемифлоксацин, надифлоксацин.

Среди известных синтетических противомикробных средств фторхинолоны обладают самым широким спектром действия и значительной антибактериальной активностью. Они активны в отношении грам- и грам+ кокков, кишечной палочки, сальмонелл, шигелл, протея, клебсиелл, хеликобактерий, синегнойной палочки. Отдельные препараты (ципрофлоксацин, офлоксацин, ломефлоксацин) действуют на микобактерии туберкулеза и могут применяться в комбинированной терапии при лекарственно устойчивом туберкулезе. К фторхинолонам не чувствительны спирохеты, листерии и большинство анаэробов. Фторхинолоны действуют на вне- и внутриклеточно локализованные микроорганизмы. Резистентность микрофлоры развивается относительно медленно. В основе механизма действия фторхинолонов лежит блокада жизненно важных ферментов бактерий, участвующих в синтезе, сохранении и восстановлении структуры ДНК. Нарушение функционирования этих ферментных систем приводит к раскручиванию молекулы ДНК и гибели клетки. Из-за структурного и функционального родства ферментных систем клеток прокариотов и эукариотов, фторхинолоны зачастую утрачивают свою избирательность действия и повреждают клетки макроорганизма, вызывая многочисленные побочные эффекты. Наиболее значимые из них: фототоксичность (УФ излучение разрушает фторхинолоны с образованием свободных радикалов, повреждающих структуру кожи), артротоксичность (нарушение развития хрящевой ткани), ингибирование метаболизма теофиллина и повышение его концентрации в крови. Эти препараты могут вызвать изменение картины крови, диспепсические и аллергические реакции, неврологические расстройства. Противопоказаны беременным и детям.

Наиболее целесообразно назначать препараты этой группы при таких тяжелых инфекциях как сепсис, перитонит, менингит, остеомиелит, туберкулез и др. Фторхинолоны показаны при инфекциях мочевыводящих путей, ЖКТ, кожи, мягких тканей, костей и суставов. В пульмонологической практике наиболее популярны фторхинолоны 2 и 3 поколений.

Высокая эффективность фторхинолонов при инфекциях практически любой локализации обусловлена следующими особенностями их фармакокинетики:

1) для препаратов этой группы характерен выраженный постантибиотический эффект

2) препараты хорошо проникают в различные органы и ткани (легкие, почки, кости, предстательную железу)

3) создают высокие концентрации в крови и тканях при приеме внутрь, причем биодоступность не зависит от приема пищи

4) обладают иммуномодулирующим эффектом, повышая фагоцитарную активность нейтрофилов

Выраженная бактерицидная активность фторхинолонов позволила разработать для ряда препаратов лекарственные формы для наружного применения.

Производные нитрофурана.

Механизм действия нитрофуранов включает:

1) образование комплексов с нуклеиновыми кислотами, в результате чего происходит нарушение структуры ДНК возбудителя, угнетение синтеза белков, нарушение роста и размножения бактерий (бактериостатический эффект)

2) угнетение цепи дыхания и цикла Кребса, что приводит к гибели клетки (бактерицидный эффект)

Особенности механизма действия позволяют сочетать нитрофураны с другими антибактериальными средствами.

Нитрофураны имеют широкий спектр антимикробного действия, который включает бактерии (грам+ кокки и гам- палочки), простейшие (лямблии, трихомонады), даже вирусы. Производные нитрофурана способны действовать на штаммы микроорганизмов, устойчивые к некоторым антибиотикам и сульфаниламидам. На анаэробы и синегнойную палочку нитрофураны не действуют. Они подавляют продукцию микроорганизмами токсинов, поэтому могут быстро устранить явления интоксикации при сохранении возбудителя в организме. Под влиянием нитрофуранов микробы снижают способность вырабатывать антифаги и теряют способность к фагоцитозу; нитрофураны подавляют развитие резистентности возбудителей к антибиотикам. Для нитрофуранов характерна низкая токсичность. Кроме того они повышают сопротивляемость организма к инфекциям. Одни препараты данной группы используются преимущественно в качестве антисептиков для наружного применения, другие – в основном для лечения инфекций кишечника и мочевыводящих путей.

Нитрофуразон (фурацилин) применяют наружно в качестве антисептика для обработки ран, кожи слизистых оболочек, промывания серозных полостей и суставных полостей.

Фуразолидон, нифуроксазид и нифурантел применяют при кишечных инфекциях бактериальной и протозойной этиологии (бациллярной дизентерии, паратифе, токсикоинфекциях, энтероколите), так как плохо всасываются в ЖКТ и создают высокие концентрации в просвете кишечника. Кроме того, фуразолидон и нифурантел эффективны при трихомонадном кольпите и лямблиозе.

Нитрофурантоин, нифуртоинол и фуразидин применяют при инфекциях мочевыводящих путей, а также для профилактики инфекционных осложнений при урологических операциях, цистоскопии, катетеризации мочевого пузыря. Препараты в значительных количествах выделяются почками с мочой, где создаются их бактериостатические и бактерицидные концентрации.

Фуразидин эффективен при местном применении для промывания и спринцевания в хирургической практике. Калиевую соль фуразидина можно вводить внутривенно при тяжелых формах инфекционных заболеваний (сепсис, раневая и гнойная инфекции, пневмонии).

Производные хиноксалина.

Если Вам понравилась эта лекция, то понравится и эта - Начало присоединения Казахстана к России.

Эта группа антибактериальных средств представлена хиноксидином и диоксидином. Производные хиноксалина обладают широким спектром противомикробного действия, который включает вульгарного протея, синегнойную, кишечную палочку, палочку дизентерии и клебсиеллы, сальмонеллы, стафилококки, стрептококки, патогенные анаэробы, в том числе возбудитель газовой гангрены. Данные препараты активны в отношении бактерий, устойчивых к другим химиотерапевтическим средствам, включая антибиотики.

Бактерицидный эффект производных хиноксалина обусловлен активацией свободно-радикального окисления в микробной клетке, в результате чего нарушается синтез ДНК и происходят глубокие изменения в цитоплазме клетки, что приводит к гибели возбудителя. Активность лекарственных средств данной группы усиливается в анаэробной среде в связи с их способностью вызывать образование активных форм кислорода. В связи с высокой токсичностью производные хиноксалина используют только по жизненным показаниям для лечения тяжелых форм анаэробной или смешанной аэробно-анаэробной инфекции, вызванной полирезистентными штаммами при неэффективности других антимикробных средств. Назначают только взрослым (после пробы на переносимость) при стационарном лечении под контролем врача.

Показаниями к применению производных хиноксалина служат тяжелые гнойно-воспалительные процессы различной локализации, такие как гнойные плевриты, эпиема плевры, абсцессы легкого, перитониты, циститы, пиелиты, пиелоциститы, холециститы, холангиты, раны с наличием глубоких полостей, абсцессы мягких тканей, флегмоны, тяжелые дисбактериозы, сепсис, послеоперационные раны мочевыводящих и желчевыводящих путей, профилактика инфекционных осложнений после катетеризации.

Оксазолидиноны.

Это новый класс активных противомикробных препаратов. Первый препарат этой группы линезолид оказывает бактериостатическое действие преимущественно на грам+ бактерии и в меньшей степени на грам-. Бактерицидная активность отмечена лишь в отношении некоторых микроорганизмов.

Механизм действия основан на необратимом связывании с субъединицами рибосом, что приводит к угнетению синтеза белка в микробной клетке. Этот уникальный механизм препятствует развитию перекрестной резистентности с макролидами, аминогликозидами, линкозамидами, тетрациклинами, хлорамфениколом. Устойчивость возбудителей к линезолиду развивается очень медленно. Линезолид активен при госпитальной и внебольничной пневмонии (в комбинациях с антибиотиками, активными в отношении грам- микроорганизмов), инфекциях кожи и мягких тканей, мочевыводящих путей, эндокардите. Линезолид хорошо распределяется в тканях, накапливается в бронхолегочном эпителии, проникает в кожу, мягкие ткани, сердце, кишечник, печень, почки, ЦНС, синовиальную жидкость, кости, желчный пузырь. Быстро и полно всасывается из ЖКТ (100% биодоступность), выводится в основном с мочой. Применение линезолида может вызвать кандидоз, извращение вкуса, диспепсию, изменение общего билирубина, АЛТ, АСТ, ЩФ, анемию, тромбоцитопению. В целом препарат переносится хорошо.

Применение синтетических противомикробных средств при лечении инфекционных заболеваний. Действие сульфаниламидов на микроорганизмы при инфекциях дыхательных путей, желудочно-кишечного и мочеполового тракта, при раневых инфекциях и других заболеваниях.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 21.10.2018
Размер файла 148,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

КЛАССИФИКАЦИЯ СИНТЕТИЧЕСКИХ ПРОТИВОМИКРОБНЫХ СРЕДСТВ

ХИНОЛОНЫ И ФТОРХИНОЛОНЫ (ИНГИБИТОРЫ ДНК - ГИРАЗЫ)

В реферате рассматриваются синтетические противомикробные средства.

Данная тема представляет особую актуальность, так как при лечении инфекционных заболеваний синтетические противомикробные средства занимают важное место.

Основоположником химиотерапии является немецкий химик П.Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действуют на спирохеты и трипаносомы, получил в 1910 г. первый химиотерапевтический препарат - Сальварсан (соединение мышьяка, убивающее возбудителя, но безвредное для макроорганизма).

В 1935 г. другой немецкий химик Г.Домагк обнаружил среди анилиновых красителей вещество - пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрептококковой инфекции, но не действующий на эти бактерии вне организма. Затем был предложен для химиотерапии белый стрептоцид. В 1939 г. он получил за это Нобелевскую премию.

Механизм действия сульфаниламидов на микроорганизмы был открыт Р.Вудсом, установившим, что многие бактерии синтезируют собственную фолиевую кислоту из парааминобензойной кислоты (ПАБК). Сульфаниламиды по своей структуре настолько сходны с ПАБК, что поглощаются бактериями. В то же время настолько отличаются от нее, что не дают возможности произвести синтез фолиевой кислоты. В результате такого "обмана" бактерии остаются без фолиевой кислоты и перестают размножаться. Человек, в отличие от бактерий, не синтезирует фолиевую кислоту, а использует готовую, поступающую с пищей. Поэтому его клетки сульфаниламидами не повреждаются.

Повальное увлечение сульфаниламидами привело к тому, что даже среди поначалу чувствительных к ним бактерий начали появляться устойчивые особи. Эти недостатки стали причиной снижения популярности сульфаниламидов. Вместе с тем, сульфаниламидные препараты до сих пор находят применение при инфекциях дыхательных путей, инфекциях желудочно-кишечного и мочеполового тракта, при раневых инфекциях и других заболеваниях.

КЛАССИФИКАЦИЯ СИНТЕТИЧЕСКИХ ПРОТИВОМИКРОБНЫХ СРЕДСТВ

Ряд синтетических препаратов обладают антибактериальной активностью.

Важное место в лечении инфекционных заболеваний сегодня занимают синтетические противомикробные средства, к которым относятся следующие группы лекарственных средств:

Сульфаниламидные препараты - это синтетические средства, производные сульфаниловой кислоты (рис. 1). На сегодняшний день сульфаниламиды используются при непереносимости антибиотиков; при инфекциях, возбудители которых устойчивы к антибиотикам или совместно с антибиотиками для расширения спектра действия и повышения эффективности терапии.

Рис. 1. Химическая структура сульфаниламида (стрептоцида - а) и парааминобензойной кислоты (ПАБК - б)

синтетический противомикробный инфекция

Сульфаниламиды для системного применения

Сульфаниламиды для местного применения

Сульфаниламиды, плохо всасывающие из кишечника

Сульфадимидин; Сульфакарбамид; Сульфаниламид; Сульфаэтидол; Сульфаметаксазол; Сульфадиазин; Сульфаметрол; Сульфадиметоксин; Сульфадоксин; Сульфален.

Мафенид; Сульфатиазол серебра; Сульфацетамид натрия; Сульфадиазин серебра; Сульфапиридазин натрия.

Сульфасалазин; Салазодиметоксин; Салазопиридазин.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Бактериальные и протозойные инфекции.

Гнойные бактериальные инфек-ции кожи и слизистых оболочек.

Острые бактериальные кишечные инфекции.

Неспецифический язвенный колит, бо-лезнь Крона, ревматоидный артрит.

КЛАССИФИКАЦИЯ ПО ПРОДОЛЖИТЕЛЬНОСТИ ДЕЙСТВИЯ

Препараты короткого действия

Стрептоцид, Сульфацил (Альбуцид), Этазол, Норсульфазол, Уросульфан, Сульфадимезин, Сульфазоксазол, Сульфамеразин.

Препараты средней продолжительности действия

Сульфазин, Сульфаметоксазол, Сульфамоксал.

Препараты длительного действия

Сульфапиридазин, Сульфамонометоксин, Сульфадиметоксин.

1. Избирательно подавляют синтез дигидрофолиевой и тетрагидрофолиевой кислот (последняя необходима для синтеза ДНК и РНК).

2. Для образования дигидрофолиевой кислоты микроорганизмы утилизируют парааминобензойную кислоту (ПАБК).

3. Сульфаниламиды избирательно конкурируют с ПАБК.

4. Клетка начинает утилизировать сульфаниламиды вместо ПАБК.

5. Нарушается синтез дигидрофоливой кислоты и подавляется синтез тетрагидрафолиевой кислоты.

ОБЩАЯ ФАРМАКОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ГРУППЫ

- Проходят через гистогематические барьеры;

- Выводится в основном путем почечной экскреции, частично с желчью и фекалиями;

- Биотрансформация в печени, с образованием неактивных метаболитов.

- Заболевания системы кроветворения;

- Нарушение функции печени и почек (возможно развитие интерстициального нефрита и некроза почечных канальцев);

- Заболевания щитовидной железы (возможно усиление нарушения функций);

1. Аллергические реакции.

3. Нефротоксичность (кристаллурия, закупорка почечных канальцев).

4. Нейротоксичность (головная боль, дезориентация, эйфория, невриты).

5. Гематотоксичность (гемолитическая анемия, тромбоцитопения, метгемоглобинемия, лейкопения).

6. Гепатотоксичность (гипербилирубинемия, токсическая дистрофия).

8. Тератогенность (комбинированные препараты).

9. Местнораздражающее действие (местные препараты).

10. Нарушение функции щитовидной железы.

Новокаин, Анестезин, Фолиевая кислота.

Повышение кислотности мочи, риск развития кристаллурии.

НПВС, Метотрексат, Непрямые антикоагу-лянты, Синтетические антидиабетические средства.

Конкуренция за связывание с белками плазмы.

Гемато-, гепато- и нефротоксические препараты.

Расширение спектра действия сульфаниламидов

Полиметилсилоксана полигидрат (Энтеросгель)

Повышение эффективности и снижение побочных действий сульфаниламидов (аллергических реакций, гепатита).

Первые синтетические, избирательно действующие антибактериальные средства появились раньше, чем антибиотики. Их создание - заслуга великого немецкого ученого, химика по профессии, Пауля Эрлиха. Изучая окрашивание различных животных тканей, он обнаружил, что определенные красители окрашивают только какую-то одну ткань. Это привело его к выводу, что должны быть и такие красители, которые будут избирательно окрашивать только микроорганизмы, убивая их, и не затрагивая при этом другие ткани. Если их найти, откроется новый путь борьбы с инфекциями - больному введут лекарство, отыскивающее среди человеческих микробные клетки и поражающее их.

В результате многолетней работы П. Эрлих получил-таки вещество, убивающее микроорганизмы при сравнительно малой токсичности, то есть при слабом влиянии на клетки организма. Им оказалось 606-е (из числа испытанных) соединение - производное мышьяка. Назвали его сальварсан, от латинского сальваре - спасать и арсеникум - мышьяк. Оно обладало выраженной активностью против трипаносомы, возбудителя сонной болезни. Это было не только рождение нового препарата, это было рождение химиотерапии.

В 1906 году немецкие ученые Шаудин и Гофман открыли возбудителя сифилиса - бледную спирохету (трепонему), названную "бледным чудовищем". Испытание сальварсана на кроликах зараженных сифилисом, снова приносит успех, препарат убивал спирохет и излечивал кроликов. За эти выдающиеся достижения в 1908 году П. Эрлиху была вручена Нобелевская премия.

Интересна история создания сульфаниламидных средств (сульфаниламидов).

В 1932 году акционерное общество по производству красителей И.Г. Фарбен Индустри запатентовало новый краситель пронтозил (в СССР он известен под названием красный стрептоцид). Одновременно немецкому ученому Г. Домагку, возглавлявшему одну из лабораторий фармацевтического концерна Байер, было поручено проверить это вещество на наличие антибактериальной активности. Результат оказался ошеломляющим. Мыши, зараженные стрептококками - возбудителями тяжелых ангин, воспаления легких, горячки рожениц, не погибали, даже если им вводили 10-кратную, смертельную дозу микробов. Так случилось, что первое испытание своего препарата на людях Домагк провел на собственной дочери. Девочка уколола палец и с заражением крови попала в больницу. Все старания врачей были безуспешными, девочка умирала, и Домагк встал перед страшным выбором. Он выбрал пронтозил и спас своего ребенка. В феврале 1935 года Домагк опубликовал статью "Вклад в химиотерапию бактериальных инфекций", чуть позже сделал доклад на Королевском медицинском обществе в Англии. Открытие было по достоинству оценено, и в 1939 году ученый получил Нобелевскую премию.

Дальнейшее развитие история пронтозила получила в институте Пастера во Франции. Было установлено, что пронтозил не действует на микроорганизмы в пробирке, а активность приобретает в организме, где из него образуется сульфаниламид (в нашей стране известен как белый стрептоцид). Именно сульфаниламид способен избирательно поражать микроорганизмы, именно он спас дочь Домагка и мог бы спасти десятки тысяч больных, если бы врачи знали о нем, о его чудодейственных свойствах. Но. знали о нем только химики, причем уже почти 20 лет. В 1908 году венский студент П. Гельмо в поисках исходных соединений для создания устойчивых красителей синтезировал сульфаниламид. И никто не догадывался, что началась новая эпоха в лечении бактериальных инфекций.

Белый стрептоцид стал родоначальником многочисленной группы химиопрепаратов, названных сульфаниламидами. В настоящее время имеется мощный и разнообразный арсенал антибактериальных сульфаниламидных средств, однако интерес к ним постепенно падает, о чем мы скажем немного позже.

Сульфаниламидные препараты действуют бактериостатически, то есть останавливают рост и развитие болезнетворных бактерий. В чем же заключается механизм их действия? Для роста клеток, в том числе бактериальных, необходима фолиевая кислота, которая участвует в образовании нуклеиновых кислот (РНК и ДНК). Многие бактерии синтезируют собственную фолиевую кислоту из парааминобензойной кислоты (ПАБК). Сульфаниламиды по своей структуре настолько сходны с ПАБК, что поглощаются бактериями. В то же время настолько отличаются от нее, что не дают возможности произвести синтез фолиевой кислоты (рисунок 2.12.2). В результате такого "обмана" бактерии остаются без фолиевой кислоты и перестают размножаться. Человек, в отличие от бактерий, не синтезирует фолиевую кислоту, а использует готовую, поступающую с пищей. Поэтому его клетки сульфаниламидами не повреждаются.

Внедрение недорогих и достаточно эффективных сульфаниламидов, казалось, навсегда решило проблему лечения инфекционных заболеваний. Однако этого не случилось. В чем же причина? У сульфаниламидов есть два существенных недостатка. Во-первых, ограниченный спектр действия, который к тому же постоянно сужается из-за развития устойчивых форм микроорганизмов. Повальное увлечение сульфаниламидами привело к тому, что даже среди поначалу чувствительных к ним бактерий появляются устойчивые особи, последующие поколения которых не поддаются лечению этими лекарствами. Вторая причина - побочные действия, число которых увеличивалось по мере расширения применения сульфаниламидов. Наиболее серьезными побочными реакциями являются аллергические, которые проявляются сыпью, лихорадочным состоянием и рядом других осложнений. Кроме того, применение сульфаниламидов может привести к изменению качества и количества мочи. Возможны также нарушения клеточного состава крови, кроветворения, угнетение функции центральной нервной системы, тошнота, рвота, диарея.

Эти недостатки стали причиной снижения популярности сульфаниламидов. Постепенно их стали вытеснять более эффективные и менее токсичные антибиотики. Вместе с тем, сульфаниламидные препараты до сих пор находят применение при инфекциях дыхательных путей, инфекциях желудочно-кишечного и мочеполового тракта, при раневых инфекциях и других заболеваниях. Препараты на основе серебряных солей сульфаниламидов хорошо помогают при пролежнях, ожогах, глубоких ранах и трофических язвах.

Для повышения активности и уменьшения побочных действий сульфаниламиды применяют в комбинации с другими антибактериальными средствами. Самой известной такой комбинацией является ко-тримоксазол - сочетание сульфаметоксазола и триметоприма в соотношении 5:1. Сочетание этих двух антибактериальных лекарств позволяет, во-первых, уменьшить дозу каждого из них и, во-вторых, расширить спектр действия препарата за счет второго компонента.

Сравнительно новой группой синтетических противомикробных средств являются фторхинолоны. Оксихинолины и хинолоны первого поколения (налидиксовая кислота, оксолиновая кислота, нитроксолин, циноксацин) очень быстро выводятся из организма почками, поэтому практически лишены системного антибактериального действия. Их основным показанием к применению являются инфекции мочевыводящих путей. Первый препарат этой группы - налидиксовая кислота - применяется с 1963 года.

Впоследствии на основе налидиксовой кислоты были получены новые синтетические производные, содержащие фтор. Эти соединения назвали фторхинолоны. Они обладают бактерицидной активностью в отношении большого количества грамположительных и грамотрицательных бактерий, механизм которой заключается в блокировании синтеза бактериальной ДНК, необходимой для размножения бактерий. Эти средства применяют при инфекциях мочевыводящих путей, инфекциях костей, суставов и мягких тканей, инфекциях дыхательных путей, при поносе инфекционной природы, а также при болезнях, передающихся половым путем (гонорея, хламидиоз и другие). Фторхинолоны имеют низкую токсичность, но могут вызывать тошноту, рвоту, понос, головную боль, бессонницу, повышать чувствительность к ультрафиолетовым лучам, нарушать образование и функционирование хрящевой ткани.

Помимо сульфаниламидов, хинолонов и фторхинолонов имеется ряд других синтетических противомикробных средств, механизм действия которых до конца не выяснен. Многие из них относятся к группе так называемых имидазолов. Они содержат в молекуле общую для всех этих соединений группировку (имидазольное кольцо) и в их принятых названиях присутствует корень "азол" - метронидазол, тинидазол, клотримазол, орнидазол, секнидазол. Характерной особенностью этих соединений является сочетание антибактериального и противогрибкового действия с активностью в отношении простейших. Поэтому по преобладанию какого-либо действия некоторые лекарства этой группы можно отнести к антибактериальным, другие - к противогрибковым, а третьи - к противопротозойным.

В отдельную группу выделяют также синтетические противотуберкулезные средства - аминосалициловая кислота, изониазид, этамбутол, этионамид, пиразинамид и другие. Они избирательно останавливают рост туберкулезных палочек и мало или совсем не влияют на развитие других микроорганизмов.

Преферанская Нина Германовна
Доцент кафедры фармакологии фармфакультета Первого МГМУ им. И.М. Сеченова

Данную группу препаратов принято различать по поколениям:

1-е поколение – нефторированные хинолоны (налидиксовая кислота, пипемидовая кислота, оксолиновая кислота). Производное нафтиридинкарбоновой кислоты – Налидиксовая кислота (Неграм, Невиграмон) – получено в 1962 г. Препараты обладают узким спектром действия, в основном на грамотрицательные бактерии (кишечную палочку, энтеробактерии, клебсиеллы, протей, шигеллы, сальмонеллы). К налидиксовой кислоте устойчива синегнойная палочка, этот препарат практически неактивен против грамположительной и анаэробной микрофлоры. Проявляет активность в отношении возбудителей, устойчивых к некоторым антибиотикам и сульфаниламидам. Позже были получены другие производные: пиридопиримидинкарбоновой кислоты – Пипемидовая кислота (Палин, Пиламин, Пимидель, Пипелин) и диоксолохолинкарбоновой кислоты Оксолиновая кислота (Диоксацин). Препараты всасываются в ЖКТ хорошо и быстро. Не создают терапевтических концентраций в крови, органах и тканях. Налидиксовая и пипемидовая кислоты создают высокие концентрации в моче, при ощелачивании последней активность препаратов возрастает. По антибактериальному спектру действия и применению эти препараты существенно не отличаются друг от друга. Назначают в основном при инфекциях мочевыводящих путей (пиелонефрит, уретрит, цистит), при кишечных инфекциях (энтериты, энтероколиты) и воспалении среднего уха. Пипемидовая кислота проявляет свою активность на некоторые грамположительные микроорганизмы, поэтому может применяться при стафилококковых инфекциях. В этой группе наблюдается перекрестная устойчивость. Могут развиваться побочные эффекты: диспептические явления, аллергические реакции, фототоксичность, головная боль и головокружение, а также тремор и судороги. Налидиксовая кислота выпускается по 0,5 г (тб., капс.). Пипемидовая кислота – по 0,2 и 0,4 г (капс.) и 0,4 г (тб.). Оксолиновая кислота – по 0,25 г (тб.).

Налидиксовая и оксолиновая кислоты противопоказаны детям до 2 лет, Пипемидовая кислота – до 1 года.

Важно! При приеме данных препаратов, особенно при лечении инфекций мочевыводящих путей, необходимо поддерживать интенсивный диурез, поэтому таблетки (капсулы) следует запивать большим количеством воды – не менее двух стаканов, лучше соблюдать суточный водный режим от 1,0 до 2,0 л.

Первыми были синтезированы вещества с одним атомом фтора. Их отнесли ко 2-му поколению монофторированных – Норфлоксацин (Нолицин) – синтезирован в 1986 г; Пефлоксацин (Абактал), Ципрофлоксацин (Цифран, Ципробай) – в 1987 г; Офлоксацин (Таривид) – в 1991 г.

Впоследствие были созданы препараты: 3-го поколение монофторированных – Левофлоксацин (Таваник) – в 1997 г. и 4-го поколения монофторированных – Моксифлоксацин (Авелокс) и Гатифлоксацин (Гатиспан, Зарквин) – в 1999 г. В 2000 г. создан и внедрен в клиническую практику Гемифлоксацин (Фактив).

Параллельно были синтезированы и внедрены в клиническую практику препараты: 2-го поколения дифторированные – Ломефлоксацин (Максаквин) – в 1992 г. и 3-го поколения дифторированные – Спарфлоксацин (Спарбакт, Спарфло) – в 1997 г.

Фармакокинетика фторхинолонов отличается от нефторированных. Все они хорошо всасываются в ЖКТ и создают высокие концентрации в тканях (ЖКТ, легких, почках, мышцах, матке, глазах) и жидкостях организма (синовиальной, воспалительной сыворотке крови, слюне, мокроте). Они легко проникают в макрофаги, нейтрофилы, внутриклеточные концентрации значительно превышают внеклеточные, что учитывается при лечении инфекций с внутриклеточной локализацией микроорганизмов. Концентрация препаратов в тканях организма в 3–7 раз выше, чем в плазме крови. Время сохранения терапевтической концентрации для большинства препаратов 12 ч., а для пролонгированных форм 24 ч. Фторхинолоны долго циркулируют в организме людей, их период полувыведения колеблется от 3 до 5 ч. у ципрофлоксацина, до 20 ч. – у Спарфлоксацина. Фторхинолоны проходят через ГЭБ, плацентарный барьер, проникают в грудное молоко. В организме подвергаются биотрансформации в печени с образованием метаболитов, выводятся почками или экскретируются с фекалиями. Норфлоксацин, Офлоксацин, Ципрофлоксацин и Левофлоксацин мало вступают в реакции метаболизма с участием цитохромов Р450, тогда как Спарфлоксацин и Моксифлоксацин подвергаются биотрансформации с участием ферментов печени.

Фторхинолоны сверхширокого спектра действия охватывают как грамположительную (стрептококки, стафилококки и др.), так и грамотрицательную микрофлору (сальмонеллы, шигеллы, протей, кишечная палочка, гонококки, менингококки). К фторхинолонам чувствительны пневмококки, внутриклеточные микроорганизмы (хламидии, микоплазма), а также быстрорастущие атипичные микобактерии и микобактерии туберкулеза. Мало чувствительны к ним энтерококки и анаэробы.

Ципрофлоксацин (Цифран, Ципробай, Квинтор, Ципролет и др.) – самый эффективный фторхинолон в отношении синегнойной палочки – тб. по 0,25, 0,5 и 0,75 г и 0,2% р-р во фл. 50 и 100 мл; 1% р-р в амп. по 10 мл для разведений.

Офлоксацин (Таривид, Заноцин, Офлоксин) уступает ему, но более активный в отношении пневмококков и хламидий, – тб. 0,2 г; р-р для инфузий 200 мг, в фл. 100 мл. Среди фторхинолонов превосходят по активности в отношении пневмококков Гемифлоксацин > Моксифлоксацин > Левофлоксацин, в т.ч. пенициллинрезистентных штаммов.

Активный левовращающий изомер Офлоксацина – Левофлоксацин в 2 раза активнее офлоксацина по отношению к лекарственно-устойчивым микобактериям и атипичным бактериям (хламидии, микоплазмы). В 3 раза увеличивается активность у Левофлоксацина (Таваник, Элефлокс, тб., покр. обол., по 0,25 и 0,5 г) в отношении чувствительных микобактерий туберкулеза. Моксифлоксацин активен в отношении неспорообразующих анаэробов.

Пефлоксацин (Абактал) выпускается в тб. 0,4 г и амп. по 5 мл 0,4 г.; Ломефлоксацин (Максаквин) – в тб. по 0,4 г; 0,3% глазные капли – в фл. 5 мл.

Важно! Растворы фторхинолонов очень чувствительны к свету, поэтому их готовят перед вливанием, а систему закрывают от прямого солнечного света. Вводить внутривенные растворы необходимо только инстиляционно (капельно) со скоростью 200–250 мг в течение 30 мин.

Широкий спектр антимикробной активности, высокая биодоступность, относительно низкая токсичность и малая резистентность фторхинолонов быстро снискали популярность при лечении различных инфекционных заболеваний. Препараты фторхинолонов показаны при лечении инфекций дыхательных путей, при инфекциях, передающихся половым путем (гонорея, хламидиоз), при хирургических инфекциях, послеоперационных инфекциях, инфекциях желудочно-кишечного тракта, ЛОР–инфекциях, инфекциях кожи, мягких тканей, костей, суставов, раневых, ожоговых. Их широко используют для лечения внебольничных и тяжелых инфекций (сепсис и менингит). Они входят в состав комплексной терапии туберкулеза легких, обширных казеозно-некротических или фиброзо-кавернозных поражений тканей, при выраженном неспецифическом компоненте воспаления, при лекарственной устойчивости микобактерий к рифампицину или плохой переносимости последнего.

Степень снижения нежелательных проявлений со стороны ЖКТ распределяется следующим образом: Спарфлоксацин > Пефлоксацин > Ципрофлоксацин > Левофлоксацин > Норфлоксацин > Офлоксацин. Со стороны ЦНС (головная боль ≈ 3%, нарушение сна ≈ 0,7%, психозы, тремор, судороги ≈ 0,5%). Аллергические реакции (сыпь, зуд, крапивница) – не более 0,5%. Возникает синдром отмены ≈ 3%. Фторхинолоны могут давать редкие побочные эффекты, характерные только для них. Например, нарушение развития хрящевой ткани, разрыв сухожилий или миалгия, отечность суставов, особенно в пожилом возрасте. Фототоксические реакции наблюдаются в 0,5–3% случаев у Ломефлоксацина > Спарфлоксацин > Пефлоксацина > Ципрофлоксацина > Офлоксацин> Левофлоксацин. Фотосенсибилизация может наблюдаться через 3 недели после прекращения лечения. Довольно часто развивается кандидоз слизистой оболочки полости рта или влагалища, что зависит от способа введения препарата в организм. Все нежелательные явления при применении фторхинолонов не относятся к серьезным и легко переносятся больными.

Фторхинолоны противопоказаны беременным, в период лактации; детям до 15–16 лет (до полного формирования скелета), дифторированные и трифторированные препараты – до 18 лет. Несмотря на ограничения применения фторхинолонов в детском возрасте, их назначают по жизненным показаниям при таких заболеваниях, как гнойный менингит, инфекции с муковисцидозом или вызванные полирезистентными штаммами микроорганизмов и др. заболеваниях при отсутствии альтернативных препаратов. Накопленный опыт применения их в педиатрии свидетельствует об их высокой эффективности и хорошей переносимости.

Все препараты хинолонов/фторхинолонов применяются только при назначении врачом. В течение всего курса терапии необходимо строго соблюдать режим дозирования и схему лечения. Длительность лечения определяется чувствительностью возбудителя и клинической картиной. Лечение следует продолжать минимум 3 дня после исчезновения симптомов заболевания, до полной нормализации температуры тела, т.к. клиническое выздоровление больного всегда наступает раньше бактериологического. При длительности лечения фторхинолонами (2 недели), необходимо контролировать анализы крови, функции почек и печени. В период лечения необходимо соблюдать осторожность при вождении автотранспорта или других потенциально опасных видах деятельности, требующих повышенной концентрации внимания и быстроты психомоторных реакций.

Противомикробные препараты — виды, особенности применения

Студент медицинского факультета УЛГУ. Интересы: современные медицинские технологии, открытия в области медицины, перспективы развития медицины в России и за рубежом.

  • Запись опубликована: 17.12.2021
  • Время чтения: 1 mins read

Противомикробные препараты представляют собой группу лекарств, подавляющих рост или уничтожающих микробы. Они также в совокупности называются химиотерапевтическими агентами. К этой группе относятся антибактериальные, противогрибковые, противовирусные, противопаразитарные препараты.

Современная медицина располагает широким спектром противомикробных препаратов. Однако из-за их часто необоснованного и широкого применения образуются микробные штаммы, устойчивые к лекарствам. Решением этой проблемы могут стать современные методы лечения.

Что такое микробы

Микробы или микроорганизмы – это живые организмы, невидимые невооруженным глазом. Это важный элемент жизни на Земле. Они могут быть полезны человеку, но часто опасны тем, что вызывают инфекционные заболевания, пищевые отравления и т.д.

3 основные группы микробов

Что такое бактерии?

Бактерии представляют собой группу микроорганизмов, размножающихся путем деления клеток.

Не все бактерии опасны, например, наличие полезной бактериальной флоры в пищеварительной системе, положительно влияет на процессы пищеварения, выработку витамина К и т.д. Бактерии используются в процессе очистки сточных вод, в пищевой промышленности для производства йогуртов или сыров и в фармацевтической промышленности.

Есть также вредные бактерии, называемые патогенами. Они вызывают заболевания и инфекции. Из пяти тысяч бактерий более 100 видов — патогенные бактерии.

Бактерии находятся в воде, почве, растениях, воздухе, пище и даже на руках… они повсюду. Бактериальных клеток в организме человека в десять раз больше, чем человеческих!

В домашней обстановке бактерии выбирают теплые, влажные места. Их наибольшая концентрация — в туалете, в ванной комнате, на кухне, на выключателях, клавиатуре, телефонах и т.д.

Вопреки общепринятым стереотипам, некоторые бактерии, например, listeria, могут развиваться при очень низких температурах, например, в холодильнике.

Самые распространенные бактериальные заболевания:

  • гастроэнтерит;
  • менингит;
  • конъюнктивит;
  • сепсис;
  • пищевое отравление (сальмонелла, листерия и др.);
  • инфекции мочевыводящих путей;
  • кожные инфекции (паронихия, абсцессы и др.);
  • ЛОР-инфекции (бронхит, отит, стенокардия и др.).

Чтобы защититься от бактерий, выработайте привычки, ограничивающие контакт с бактериями. Для этого:

  • мойте руки с мылом после посещения туалета, общественных мест, перед едой;
  • дезинфицируйте поверхности, контактирующие с пищевыми продуктами;
  • готовьте пищу тщательно.
  • дезинфицируйте наиболее загрязненные места в доме.

Что такое грибы?

Грибы – это многоклеточные микроорганизмы, неспособные активно двигаться. Они растут, образуя колонии. Существует много разновидностей грибов, например, плесень или дрожжи.

Грибы широко используются в пищевой промышленности, в биотехнологической промышленности для брожения, в производстве ферментов и антибактериальных, противовирусных и противогрибковых средств, в экологических технологиях и для удаления примесей благодаря их способности детоксифицировать окружающую среду (воду, воздух или почву).

Дрожжи (одноклеточные грибы) используются для изготовления вина, пива, хлеба и антибиотиков.

Однако грибки могут стать источником некоторых заболеваний.

Грибы питаются органическим веществом или паразитируют на хозяине. Они возникают на: коже, ногтях, пище (фрукты, овощи и т.д.). Грибковые споры также находятся в воздухе и могут вызвать респираторную инфекцию. Плесень, с другой стороны, часто встречается во влажных местах с ограниченным доступом к солнцу — в ванной комнате или на кухне.

Самые распространенные грибковые заболевания:

  • аспергиллез, особенно бронхолегочный аспергиллез, вызывающий кашель и затрудненное дыхание;
  • генитальные микозы;
  • онихомикоз, например, стопа спортсмена;
  • оральная молочница, часто встречающаяся у младенцев.

В зависимости от вида грибка применяют соответствующие действия:

  • выбрасывайте испорченную еду;
  • мойте фрукты и овощи;
  • очистите и продезинфицируйте холодильник;
  • регулярно мойте руки;
  • проветривайте дом каждый день;
  • очищайте и дезинфицируйте влажные помещения и места, где собирается вода (стыки, места вокруг кранов и т.д.);
  • дезинфицируйте одежду, особенно нижнее белье, спортивную одежду и постельные принадлежности;
  • носите дышащую обувь и дезинфицируйте ее.

Что такое вирусы?

Вирусы — наиболее распространенные патогены. На земле их около 1032. В отличие от бактерий, вирус не является живым организмом и не может размножаться самостоятельно. Он должен проникнуть внутрь живой клетки, чтобы размножаться и заразить весь организм.

Вирусы живут в клетках больного человека. Их можно найти:

  • У больных: в слюне, на руках и т.д. При некоторых инфекционных заболеваниях рекомендуется, насколько это возможно, избегать контакта с больными людьми, чтобы снизить риск передачи вируса.
  • На предметах и поверхностях, на которых они могут выживать достаточно долго, чтобы перемещаться при контакте. Это происходит в случае контакта с предметами, к которым прикасался пациент, например, дверными ручками, переключателями, клавиатурами и т.д.
  • В воздухе. Если инфицированный человек кашляет или чихает, он распространяет вирусы в воздухе, которые вдыхают другие.

Самые распространенные вирусные заболевания

  • грипп;
  • корь;
  • оспа;
  • мононуклеоз;
  • вирус герпеса;
  • ВИЧ;
  • ветряная оспа;
  • гепатит.

Вирусы распространяются по-разному, в зависимости от типа. Остановить их распространение можно простыми действиями:

  • используйте одноразовые салфетки и выбрасывайте их сразу после использования;
  • мойте руки мылом после использования одноразовых салфеток;
  • закрывайте рот и нос, когда кашляете или чихаете;
  • мойте руки перед выходом из туалета;
  • регулярно чистите и дезинфицируйте ткани, поверхности и предметы, с которыми контактировал больной;
  • избегайте прикосновений к глазам, носу и рту руками — это открытые ворота для вирусов!

Таблица 1. Некоторые примеры опасных микробов

Бактерии Кишечная палочка Гастроэнтерит (диарея, рвота, кишечные боли, лихорадка)
Сальмонелла Сальмонеллез (диарея, рвота, боль в кишечнике, лихорадка)
Листерия Листериоз (диарея, рвота, боль в кишечнике, лихорадка)
Стафилококки Стрептококковое горло, кожные инфекции, раневая суперинфекция, гастроэнтерит. Воспаление мочевыводящих путей, кожи, легких, глаз, ушей
Синегнойная палочка Пищевые отравления: диарея, кишечные спазмы, боли в животе, обезвоживание, цианоз и др.
Легионелла Инфекции легких с сепсисом
Вирусы Вирус гриппа Грипп
Вирус герпеса Вирусы герпеса, ветряной оспы, опоясывающего лишая
Ротавирусы Гастроэнтерит
Риновирус Простуда, бронхит, бронхопневмония и другие легкие респираторные заболевания
Полиовирус Полиомиелит (лихорадка, усталость, головная боль, рвота, ригидность шеи и боль в конечностях)
Аденовирусы Фарингит, миндалины, конъюнктивит, бронхит и бронхопневмония, простуда
Вирус RSV (респираторный) Бронхиолит, простуда
Грибы Candida albicans и другие формы Пневмония и кожные инфекции (например, молочница), микозы
Трихофитон Стопа спортсмена, стригущий лишай
Aspergillus niger или brasilensis Плесень в доме, бронхит и пневмония

Антибактериальные препараты

Антибактериальные препараты можно разделить на антибиотики, имеющие аналоги в природе, и искусственно синтезированные химиотерапевтические средства, например, сульфаниламиды. Их можно далее разделить на бактериостатические и бактерицидные препараты.

Противогрибковые лекарства

В этой группе препаратов также могут быть указаны антибиотики, например, амфотерицин В или нистатин, а также другие группы:

  • азолы – триазолы и имидазолы;
  • аллиламин – тербинафин;
  • эхинокандины – каспофунгин;
  • антиметаболиты – флуцитозин.

Противовирусные препараты

Препараты, действующие на вирусы гриппа А, включают производные адамантана, такие, как амантадин, римантадин и тромантадин. При инфекциях вирусами А и В используются ингибиторы нейраминидазы, например занамивир, перамивир и осельтамивир.

К другим противовирусным препаратам относятся нуклеозидные аналоги — ацикловир, валацикловир, ганцикловир и многие другие, а также паливизумаб, интерфероны, препараты, применяемые при СПИДе и многие другие группы препаратов.

Противопаразитарные препараты

К противопаразитарным препаратам относятся:

  • антипротозойные препараты:
  • противомалярийные препараты — хинин, хлорохин, примахин, пириметамин;
  • препараты, применяемые при трихомониазе – производные нитроимидазола — метронидазол;
  • препараты, применяемые при протозойных инфекциях – например, производные нитроимидазола;
  • лекарства от грибковых инфекций – пентамидин, меларсопрол;
  • препараты, применяемые при лейшманиозе, токсоплазмозе, лямблиозе.
  • препараты, применяемые при ленточных червях — альбендазол, празиквантел, никлозамид;
  • препараты против нематод — пирантел, альбендазол,
  • мебендазол при лечении остриц, аскаридоза и трихинеллеза, среди прочих.

Антимикробное лечение

Перед лечением необходимо определить локализацию инфекции, убедиться, что больной не страдает сопутствующими заболеваниями, такими как сахарный диабет или заболеваниями, связанными, например, с иммунодефицитом, а затем начать микробиологическую диагностику. Важно определить тип возбудителя, что, к сожалению, не всегда проводится.

Использование неадекватного лечения инфекции у людей, госпитализированных в тяжелом состоянии, приводит к худшим результатам и длительному времени госпитализации.

Как правило, после определения вида возбудителя следует применять монотерапию, однако иногда используются комплексы, например, с антибактериальными препаратами при тяжелых инфекциях, когда необходимо быстрое уничтожение микробов.

Устойчивость к микробам

Современная медицина располагает широким спектром противомикробных препаратов. Однако из-за их широкого применения, порой необоснованного и не подкрепленного адекватными микробиологическими исследованиями, проблема резистентности постоянно нарастает. Микробы становятся мультилекарственными, поэтому обычное лечение может не принести ожидаемых результатов.

Устойчивость бактерий — самая большая угроза, но это также касается грибков, вирусов и паразитов.

Натуральные антимикробные пептиды

Антимикробные пептиды (АМП) — элементом иммунной системы растений и животных. Это врожденный механизм иммунитета, защищающий организмы от болезнетворных микроорганизмов. Механизм действия АМП-пептидов в основном касается воздействия на клеточную мембрану патогенов, приводящего к ее дестабилизации.

Некоторые АМП проявляют более широкий спектр противомикробного действия, чем традиционно используемые антибиотики, а также противовирусные, противогрибковые, противоопухолевые лекарства. Они также могут победить устойчивость бактерий к лекарствам.

Антимикробные пептиды — отличная основа для открытия новых химиотерапевтических средств в эпоху повышения устойчивости преимущественно к антибактериальным препаратам. Благодаря природному происхождению способствуют образованию менее токсичных антибиотиков.

Учитывая растущую проблему множественной лекарственной устойчивости микроорганизмов, следует искать новые терапевтические решения. Одним из них могут быть естественные механизмы, обнаруженные у большинства микроорганизмов – пептиды АМФ. Их правильное использование расширит спектр доступных лекарств новыми, эффективными методами лечения, которые станут спасением на будущее.

Читайте также: