Реферат режим холостого хода трансформатора

Обновлено: 30.06.2024

Трансформатор, как любое электромагнитное устройство, имеет несколько устойчивых режимов, в которых может (и должен) работать неограниченно долго.

Режимы работы трансформатора

Существует пять характерных режимов работы трансформатора:

  1. Рабочий режим;
  2. Номинальный режим;
  3. Оптимальный режим;
  4. Режим холостого хода;
  5. Режим короткого замыкания;

Рабочий режим

Режим характеризуется следующими признаками:

  • Напряжение первичной обмотки близко к номинальному значению или равно ему \(\dot_1 ≈ \dot_\);
  • Ток первичной обмотки меньше своего номинального значения или равен ему \(\dot_1 ≤ \dot_1ном\).

В рабочем режиме эксплуатируются большинство трансформаторов. Например, силовые трансформаторы работают с напряжениями и токами обмоток отличными от номинальных. Так происходит из-за переменчивого характера их нагрузки.

Измерительные, импульсные, сварочные, разделительные, выпрямительные, вольтодобавочные и другие трансформаторы, также обычно эксплуатируются в рабочем режиме просто из-за того, что напряжение сети к которой они подключены отличается от номинального.

Номинальный режим работы

Характерные признаки режима:

  • Напряжение первичной обмотки равно номинальному \(\dot_1 = \dot_\);
  • Ток первичной обмотки равен номинальному \(\dot_1 = \dot_\).

Оптимальный режим работы

Режим характеризуется условием:

Где \(P_\) - потери холостого хода;
\(P_\) - потери короткого замыкания;
\(k_\) - коэффициент нагрузки трансформатора, определяемый по формуле:

Где \(P_2\) - ток нагрузки вторичной обмотки;
\(P_\) - номинальный ток вторичной обмотки.

В оптимальном режиме работы трансформатор работает с максимальным КПД, поэтому выражение (1) по существу представляет собой условие максимального КПД [2, с.308] (Смотри "Трансформаторы. Оптимальный режим работы").

Режим холостого хода

Характерные признаки режима:

  • Вторичная обмотка трансформатора разомкнута или к ней подключена нагрузка с сопротивлением гораздо большим сопротивления номинальной нагрузки обмотки (1) трансформатора;
  • К первичной обмотке приложено напряжение \(\dot_ = \dot_\);
  • Ток вторичной обмотки \(\dot_2 ≈ 0\) (для трехфазного трансформатора - \(\dot_ ≈ \dot_ ≈ 0\).

На рисунке 1 изображена схема опыта холостого хода однофазного, а на рисунке 2 - трехфазного двухобмоточных трансформаторов.


Рисунок 1 - Схема опыта холостого хода однофазного двухобмоточного трансформатора


Рисунок 2 - Схема опыта холостого хода трехфазного двухобмоточного трансформатора

По существу в режиме холостого хода трансформатор представляет собой катушку на магнитопроводе, к которой подключен источник напряжения. Режим холостого хода является рабочим для трансформаторов напряжения. Кроме того, этот режим служит для определения тока \(i_х\), мощности \(ΔQ_хх\) холостого хода и ряда других параметров [2, c. 291][3, с. 207] (смотри "Опыт холостого хода трансформатора").

    Примечание:
  1. Под сопротивлением номинальной нагрузки обмотки понимается величина \(R_\), равная отношению номинального напряжения обмотки \(U_\) к её номинальному току обмотки \(I_\)

Режим короткого замыкания

Режим короткого замыкания характеризуется:

  • Вторичная обмотка замкнута накоротко или к ней подключена нагрузка сопротивлением гораздо меньшим внутреннего сопротивления трансформатора;
  • К первичной обмотке приложена такая величина напряжения \(\dot_1\), что ток первичной обмотки равен её номинальному току \(\dot_1 = \dot_\)
  • Напряжение вторичной обмотки \(\dot_2 = 0\) (для трехфазного трансформатора - \(\dot_ = \dot_ = 0\).

Схема опыта короткого замыкания изображена на рисунке 3 для однофазного, а на рисунке 4 - для трехфазного двухобмоточных трансформаторов.


Рисунок 3 - Схема опыта короткого замыкания однофазного двухобмоточного трансформатора


Рисунок 4 - Схема опыта короткого замыкания трехфазного двухобмоточного трансформатора

Режим короткого замыкания является рабочим режимом для трансформаторов тока и сварочных трансформаторов, в тоже время являясь аварийным для других трансформаторов. Также он используется для определения напряжения \(u_к\), мощности \(ΔP_кз\) короткого замыкания и других параметров трансформатора [2, c. 294][3, с. 209] (смотри "Опыт короткого замыкания трансформатора").

Магнитный поток рассеяния пропорционален току первичной обмотки, так как не сцепляется с вторичной обмоткой, а величина ЭДС может рассматриваться как падение напряжения на реактивном сопротивлении индуктивности рассеяния первичной обмотки. Анализ работы трансформаторов легче всего начать с анализа трансформатора, работающего в режиме холостого хода. Под режимом холостого хода понимается такой… Читать ещё >

Режим холостого хода трансформатора ( реферат , курсовая , диплом , контрольная )

Анализ работы трансформаторов легче всего начать с анализа трансформатора, работающего в режиме холостого хода. Под режимом холостого хода понимается такой режим работы, когда ток вторичной обмотки равен нулю.

Если напряжение приложено к первичной обмотке, а вторичная обмотка разомкнута, то трансформатор работает вхолостую и представляет собой индуктивную катушку со стальным сердечником.

Режим холостого хода трансформатора.

Ток холостого хода, проходя по первичной обмотке трансформатора, за счет своей намагничивающей силы создает магнитный поток, который можно представить в виде суммы двух магнитных потоков: магнитного потока рассеяния (рис. 5.5), который не сцепляется со вторичной обмоткой, и основного магнитного потока, который сцепляется как с первичной, так и со вторичной обмоткой.

Режим холостого хода трансформатора.

Рис. 5.5.

Рис. 5.6.

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Изменяющийся по синусному закону во времени магнитный поток наводит в обмотках ЭДС. ЭДС обмотки, магнитный поток которой изменяется по синусоидальному закону во времени и которая имеет витков, пропорциональна произведению количества витков и производной магнитного потока во времени. В первичной обмотке и во вторичной обмотке. Обе ЭДС синусоидальной формы отстают от магнитного потока на четверть периода (рис. 5.6).

Магнитный поток рассеяния наводит в первичной обмотке ЭДС рассеяния.

Режим холостого хода трансформатора.

Можно предположить, что мгновенное значение тока первичной обмотки определяется из формулы.

Режим холостого хода трансформатора.

Уравнение мгновенных значений напряжений дает уравнение напряжений первичной обмотки в векторной форме.

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Магнитный поток рассеяния пропорционален току первичной обмотки, так как не сцепляется с вторичной обмоткой, а величина ЭДС может рассматриваться как падение напряжения на реактивном сопротивлении индуктивности рассеяния первичной обмотки.

Режим холостого хода трансформатора.

Уравнение напряжений первичной обмотки примет вид.

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Сопротивление называется внутренним сопротивлением первичной обмотки.

Для понимания электромагнитных процессов в трансформаторе, для понимания фазовых соотношений электрических и магнитных величин удобно использовать векторную диаграмму напряжений и токов (см. рис. 5.6).

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Ток холостого хода может рассматриваться как векторная сумма активного тока, связанного с потерями, и реактивного тока, который связан с намагничиванием сердечника. Векторная диаграмма трансформатора, работающего в режиме холостого хода, изображена на рис. 5.6.

Векторы ЭДС и отстают от вектора магнитного потока на 90. Для определения входного напряжения необходимо воспользоваться уравнением напряжения:

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Режим холостого хода трансформатора.

Вектор находится в противофазе с, вектор падения напряжения совпадает с вектором тока по фазе, а вектор падения напряжения на сопротивлении рассеяния опережает вектор тока на 90 .

Режим холостого хода трансформатора.

Исследования силовых трансформаторов показывают, что при полной нагрузке трансформатора падение напряжения на внутреннем сопротивлении первичной обмотки составляет несколько процентов от номинального напряжения. В свою очередь ток холостого хода правильно спроектированного трансформатора составляет 3 …10% от номинального входного тока. Падение напряжения на внутреннем сопротивлении первичной обмотки при прохождении тока холостого хода составляет менее процента от номинального напряжения первичной обмотки. По этой причине можно допустить, что и, т. е. напряжения на зажимах трансформатора, работающего в режиме холостого хода, практически равны электродвижущим силам соответствующих обмоток. Коэффициент трансформации при таком допущении может быть вычислен отношением напряжений на обмотках трансформатора, работающего в режиме холостого хода. Энергия, потребляемая трансформатором в режиме холостого хода, расходуется на потери в сердечнике и на потери в обмотках. У трансформатора, нагруженного на номинальную нагрузку, потери в обмотках составляют 20,25% номинальной мощности, у ненагруженного же трансформатора эти потери пренебрежительно малы по сравнению с потерями в сердечнике. Поэтому мощность потерь в сердечнике трансформатора может быть определена как мощность, потребляемая трансформатором в режиме холостого хода.

Определение режима. Холостым ходом трансформатора называется такой режим его работы, при котором к первичной обмотке подведено синусоидальное напряжение u1, а вторичная обмотка разомкнута и ток в ней равен нулю. Принципиальная схема однофазного трансформатора при холостом ходе изображена на рис.7.6. В этом режиме трансформатор подобен дросселю с замкнутым ферромагнитным магнитопроводом.

Необходимость изучения данного режима заключается в том, что одновременно с определением основных параметров трансформатора (коэффициента трансформации, тока холостого хода, потерь в стали магнитопровода) возможно в сочетании с параметрами, полученными при другом крайнем режиме - коротком замыкании, охарактеризовать работу трансформатора под нагрузкой и наиболее точно определить коэффициент полезного действия.


Рисунок 7.6 - Схема трансформатора при холостом ходе

Принцип действия в режиме холостого хода. Под действием приложенного напряжения u1 в первичной обмотке трансформатора имеет место небольшой ток холостого хода i10 = i0, обычно не превышающий (3-10%) от номинального тока в первичной обмотке, т.е. его действующее значение I0£(0,03…0,1)I. Этот ток создает МДС первичной обмотки i0×w1, которая обусловливает в замкнутом магнитопроводе переменный основной магнитный поток трансформатора Ф и небольшой переменный поток рассеяния первичной обмотки ФS1, замыкающийся вокруг первичной обмотки по воздуху.

Основной поток Ф наводит в первичной обмотке трансформатора ЭДС самоиндукции e1, а во вторичной обмотке - ЭДС взаимоиндукции e2. Поток рассеяния создает в первичной обмотке ЭДС eS1, называемую электродвижущей силой рассеяния. Так как основной поток Ф замыкается по магнитопроводу, а поток рассеяния ФS1 в основном по воздуху, то основной поток будет во много раз больше потока рассеяния (Ф>>ФS1), следовательно, и ЭДС, наводимые этими потоками в первичной обмотке, будут тоже существенно различаться по величине (E1>>ES1).

При синусоидальном напряжении u1 ЭДС e1 и e2 тоже синусоидальны, а следовательно, и поток Ф, создающий их, синусоидален. Однако вследствии магнитного насыщения магнитный поток трансформатора непропорционален намагничивающему току. Поэтому при синусоидальном потоке Ф намагничивающий ток i0 является несинусоидальным. При исследовании процессов в трансформаторе действительную кривую намагничивающего тока заменяют либо эквивалентной синусоидой с тем же, что и у действительной кривой, действующим значением, либо его первой гармоникой.

Действующие значения индуктированных ЭДС в обмотках трансформатора при холостом ходе определяются по формулам, известным из электротехники:

где w1 и w2 - числа витков первичной и вторичной обмоток;

f - частота ЭДС и тока, Гц;

Разделив E1 на E2, получим коэффициент трансформации трансформатора:

В двухобмоточных трансформаторах согласно ГОСТ 16110-80 при определении коэффициента трансформации берется отношение высшего напряжения к низшему и поэтому значение "n" всегда больше единицы.

Коэффициент трансформации n, как уже отмечено, приближенно определяется из опыта холостого хода трансформатора по отношению напряжений на зажимах обмоток

Контур намагничивания. Трансформатор фактически представляет собой две электрические цепи (первичная и вторичная обмотки), связанные магнитным полем, что усложняет расчет самого трансформатора и анализ его работы. По этой причине в теории и инженерной практике исходную схему трансформатора (рис. 7.6) заменяют схемой электрической цепи без взаимоиндукции (рис. 7.7).

В такой эквивалентной схеме электрической цепи математическое описание процессов чаще всего ведут с использованием алгебраических уравнений, записываемых для комплексных действующих напряжений и токов.


Рисунок 7.7 - Эквивалентная электрическая схема замещения трансформатора в режиме холостого хода.

Действие противо-ЭДС E 1 можно представить в виде падения напряжения от тока I10 = I0 на некотором полном сопротивлении Z m:

где - параметр, характеризующий магнитную цепь трансформатора и называемый полным сопротивлением контура намагничивания;

rm- активное сопротивление контура намагничивания, определяемое потерями в стали трансформатора;

хm - индуктивное сопротивление контура намагничивания, определяемое потокосцеплением основного потока с первичной и вторичной обмотками при токе в первичной обмотке, равном I0 (при отсутствии тока во вторичной обмотке).

Таким образом, сопротивление Zm обусловлено потерями в стали магнитопровода и намагничивающей МДС холостого хода (I0×w1) первичной обмотки трансформатора.

Поток рассеяния ФS1 замыкается в основном по воздуху и, следовательно, практически не создает никаких потерь в стали. Значит, ЭДС рассеяния ES1 можно заменить падением напряжения только на индуктивном сопротивлении первичной обмотки x1, обусловленном потокосцеплением рассеяния YS1 первичной обмотки с её витками при соответствующем токе в обмотке

Величину x1 называют индуктивным сопротивлением рассеяния первичной обмотки.

Замена ЭДС рассеяния ES1 падением напряжения US1 от тока I0 на сопротивлении x1 делает более наглядной роль потока рассеяния: он создает индуктивное падение напряжения в первичной обмотке трансформатора, не участвуя в передаче энергии из одной обмотки в другую.

Уравнения равновесия напряжений. Эти уравнения удобно записать для комплексной схемы замещения трансформатора, работающего в режиме холостого хода (рис. 7.8)



Рисунок 7.8 - Комплексная схема замещения трансформатора в режиме холостого хода

При синусоидальном напряжении U 1 и эквивалентном синусоидальном токе I 0 уравнения равновесия напряжений для первичной и вторичной цепей трансформатора при холостом ходе записываются в следующем виде:

где - полное комплексное сопротивление первичной обмотки трансформатора;

r1 – активное сопротивление первичной обмотки (обычно r На основании вышеизложенного можно сделать ряд выводов .

1. Режим холостого хода характеризуется тем, что по отношению к сети трансформатор представляет комплексную нагрузку почти индуктивного характера, при которой приложенное напряжение U 1 опережает ток холостого хода I 0 на угол, близкий к 90 0 . Работа трансформатора в этом режиме вследствие значительной потребляемой из сети реактивной мощности является нежелательной.

2. Так как величины падений напряжений I0r1 и I0хS1 составляют лишь несколько процентов от приложенного напряжения, то векторы E 1 и E 2 сдвинуты по отношению к вектору U 1 на угол, близкий к 180 0 . При этом величины векторов U 1 и E 1 отличаются незначительно. Поэтому практически коэффициент трансформации можно с достаточной степенью точности определить из отношения напряжений обмоток трансформатора при холостом ходе, т.е.

В опыте холостого хода определяются:

а) ток холостого хода I0 (по показанию амперметра, включенного в первичную цепь). При U10 = U ток I0 не должен превышать (3-10%) I;

в) коэффициент трансформации n (по показаниям вольтметров в первичной и вторичной цепях)

г) коэффициент мощности cosj (по показаниям вольтметра, амперметра и ваттметра в первичной цепи)

Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

Принцип работы трансформатора

Принцип работы трансформатора

Что такое режим холостого хода

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

режимы работы

Режим короткого замыкания

Режим короткого замыкания

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

1

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

потери-хх

Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

2

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Видео: измерение тока холостого хода

Меры по снижению тока холостого хода

Ток при нахождении трансформатора в режиме холостого хода возникает, благодаря конструктивным особенностям сердечника. Для ферромагнитного материала, попавшего в электрическое поле переменного тока, характерно наведение вихревых индуктивных токов Фуко, вызывающих нагревание данного элемента.

Чтобы снизить вихревые токи, сердечник изготавливают не в виде цельной детали, а набирают из пакета пластин небольшой толщины. Между собой пластины изолируются. Дополнительная мера – изменение свойств самого материала, позволяющее увеличить порог магнитного насыщения.

Чтобы не допустить разрыва магнитного потока с возникновением поля рассеивания, пластины тщательно подгоняют в процессе набора. Отдельные элементы шлифуют, с получением гладкой, идеально прилегающей поверхности.

Также потери снижаются за счёт более полного заполнения окна магнитопровода. Это позволяет обеспечить оптимальные показатели массы и габаритов агрегата.

Холостой ход трансформатора – режим, при котором можно рассчитать важные характеристики. Это проводится для оборудования, находящегося в эксплуатации и на стадии проектирования.

Читайте также: