Реферат ремонт машин постоянного тока

Обновлено: 07.07.2024

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Содержание Введение

Принцип действия и область применения

Общие сведения Реакция якоря машины постоянного тока Момент двигателя постоянного тока Регулирование частоты

Допустимые режимы работы двигателей постоянного тока

Допустимые режимы при изменении напряжения Допустимые режимы при изменении температуры входящего воздуха Допустимые температуры подшипников

Обслуживание двигателей постоянного тока, надзор и уход за ними

Надзор за нагрузкой и подшипниками двигателей Надзор и уход за охлаждением двигателя

Ремонт двигателя постоянного тока

Организация ремонта Текущий ремонт двигателя Капитальный ремонт двигателей

Межотраслевые правила по технике безопасности Правила безопасности при эксплуатации электроустановок

Введение Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне. Свойства двигателя постоянного тока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.

Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением. Электрические машины постоянного тока обратимы, то есть, возможна их работа в качестве двигателей или генераторов. Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться и машина будет работать как двигатель постоянного тока, преобразуя электрическую энергию в механическую.

Двигатели независимого возбуждения наиболее полно удовлетворяют основным требованиям к исполнительным двигателям самоторможение двигателя при снятии сигнала управления, широкий диапазон регулирования частоты вращения, линейность механических и регулировочных характеристик, устойчивость работы во всем диапазоне вращения, малая мощность управления, высокое быстродействие, малые габариты и масса. Однако двигатели постоянного тока имеют существенные недостатки, накладывающие ограничение на область их применения малый срок службы щеточного устройства из-за наличия скользящего контакта между щетками и коллектором, скользящий контакт является источником радиопомех.

Принцип действия и область применения

Общие сведения

Двигатель постоянного тока — электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).

В разных по мощности двигателях применяется различная обмотка возбуждения:

Простая волновая обмотка применяется для машин малой и средней мощности (до 500 кВт) при

В настоящее время в регулируемых по скорости или моменту электроприводах широко используются машины постоянного тока. Они изготавливаются мощностью от долей ватта до 12 МВт. Номинальное напряжение их не превышает 1500 В и только иногда в крупных машинах доходит до 3000 В. Частота вращения колеблется в широких пределах — от нескольких оборотов до нескольких тысяч оборотов в минуту.

Наиболее широко применяются машины постоянного тока с механическим коммутатором — коллектором. Хотя он усложняет условия работы, однако правильно спроектированная и качественно изготовленная машина постоянного тока является достаточно надежной. Машины постоянного тока, как и все электрические машины, обратимы, т. е. могут работать и как генераторы, и как двигатели. Конструктивно они выполнены одинаково.

Содержание

1)Двигатель постоянного тока
2)Назначение, общие сведенья
3)Принцип работы
4)Формулы
5)Режимы работы двигателя постоянного тока
6)Бес коллекторные двигатели постоянного тока
7)Достоинства и недостатки двигателей постоянного тока
8)Техническое обслуживание
9)Технические характеристики

Прикрепленные файлы: 1 файл

Техническое обслуживание двигателей постоянного тока.docx

1)Двигатель постоянного тока

2)Назначение, общие сведенья

5)Режимы работы двигателя постоянного тока

6)Бес коллекторные двигатели постоянного тока

7)Достоинства и недостатки двигателей постоянного тока

Двигатель постоянного тока

Двигатель постоянного тока (ДПТ) это один из самых привычных и понятных электродвигателей, он изучается даже в школе, на физике. Он используется практически везде, где нужен малогабаритный моторчик, а также не спешит сдавать своих позиций и там, где мощность измеряется десятками киловатт. О нем и поговорим.

Назначение, общие сведения

В настоящее время в регулируемых по скорости или моменту электроприводах широко используются машины постоянного тока. Они изготавливаются мощностью от долей ватта до 12 МВт. Номинальное напряжение их не превышает 1500 В и только иногда в крупных машинах доходит до 3000 В. Частота вращения колеблется в широких пределах — от нескольких оборотов до нескольких тысяч оборотов в минуту.

Наиболее широко применяются машины постоянного тока с механическим коммутатором — коллектором. Хотя он усложняет условия работы, однако правильно спроектированная и качественно изготовленная машина постоянного тока является достаточно надежной. Машины постоянного тока, как и все электрические машины, обратимы, т. е. могут работать и как генераторы, и как двигатели. Конструктивно они выполнены одинаково. Однако с целью получения более экономичных режимов работы генераторы и электродвигатели проектируются и изготавливаются отдельно. В частности, они изготавливаются на разные напряжения: генераторы — на 115, 230, 460 В, двигатели — на 110, 220, 440 В.

Генераторы постоянного тока применяются в качестве возбудителей синхронных машин, сварочных генераторов, для питания гальванических ванн и двигателей постоянного тока, зарядки аккумуляторов.

Электродвигатели постоянного тока используются для электрической тяги, в подъемно-крановых установках, металлургической, бумажной промышленности и других отраслях, где требуется плавное и точное регулирование скорости и вращающего момента в широких пределах.

Электродвигатели постоянного тока используются для электрической тяги, в подъемно-крановых установках, металлургической, бумажной промышленности и других отраслях, где требуется плавное и точное регулирование скорости и вращающего момента в широких пределах.

Электрическая машина постоянного тока состоит из статора, якоря, коллектора, щеткодержателя и подшипниковых щитов (рисунок 1). Статор состоит из станины (корпуса), главных и добавочных полюсов, которые имеют обмотки возбуждения. Эту неподвижную часть машины иногда называют индуктором. Главное его назначение — создание магнитного потока. Станина изготавливается из стали, к ней болтами крепятся главные и добавочные полюса, а также подшипниковые щиты. Сверху на станине имеются кольца для транспортирования, снизу — лапы для крепления машины к фундаменту. Главные полюса машины набираются из листов электротехнической стали толщиной 0,5 -1 мм с целью уменьшения потерь, которые возникают из-за пульсаций магнитного поля полюсов в воздушном зазоре под полюсами. Стальные листы сердечника полюса спрессованы и скреплены заклепками.

Рисунок 1 – Машина постоянного тока:
I — вал; 2 — передний подшипниковый щит; 3 — коллектор; 4 — щеткодержатель; 5 — сердечник якоря с обмоткой; б — сердечник главного полюса; 7 — полюсная катушка; 8 — станина; 9 — задний подшипниковый щит; 10 — вентилятор; 11 — лапы; 12 — подшипник

Рисунок 2 – Полюса машины постоянного тока:
а — главный полюс; б — дополнительный полюс; в — обмотка главного полюса; г — обмотка дополнительного полюса; 1 — полюсный наконечник; 2 — сердечник

В полюсах различают сердечник и наконечник (рисунок 2). На сердечник надевают обмотку возбуждения, по которой проходит ток, создавая магнитный поток. Обмотка возбуждения наматывается на металлический каркас, оклеенный электрокартоном (в больших машинах), или размещается на изолированном электрокартоном сердечнике (малые машины). Для лучшего охлаждения катушку делят на несколько частей, между которыми оставляют вентиляционные каналы. Добавочные полюса устанавливаются между главными. Они служат для улучшения коммутации. Их обмотки включаются последовательно в цепь якоря, поэтому проводники обмотки имеют большое сечение.

Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник якоря собирается из штампованных листов электротехнической стали толщиной 0,5 мм и спрессовывается с обеих сторон с помощью нажимных шайб. В машинах с радиальной системой вентиляции листы сердечника собираются в отдельные пакеты толщиной 6-8 см, между которыми делают вентиляционные каналы шириной 1 см. При осевой вентиляции в сердечнике выполняют отверстие для прохождения воздуха вдоль вала. На внешней поверхности якоря имеются пазы для обмотки.

Рисунок 3 – Расположение секции обмотки якоря в пазах сердечника

Обмотка якоря изготавливается из медных проводов круглого или прямоугольного сечения в виде заранее выполненных секций (рисунок 3). Они укладываются в пазы, где тщательно изолируются. Обмотку делают двухслойной: размещают в каждом пазу две стороны разных якорных катушек — одну над другой. Обмотку закрепляют в пазах клиньями (деревянными, гетинаксовыми или текстолитовыми), а лобовые части крепят специальным проволочным бандажом. В некоторых конструкциях клинья не применяют, а обмотку крепят бандажом. Бандаж изготовляют из немагнитной стальной проволоки, которая наматывается с предварительным натяжением. В современных машинах для бандажировки якорей используют стеклянную ленту.

Коллектор машины постоянного тока собирается из клиноподобных пластин холоднокатаной меди. Пластины изолируют одну от другой прокладками из коллекторного миканита толщиной 0,5 - 1 мм. Нижние (узкие) края пластин имеют вырезы в виде "ласточкина хвоста", которые служат для крепления медных пластин и миканитовой изоляции. Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность "ласточкина хвоста", при втором — на "ласточкин хвост" и конец пластины.

Коллекторы с первым способом крепления называют арочными, со вторым — клиновыми. Наиболее распространены арочные коллекторы.

В коллекторных пластинах со стороны якоря при небольшой разнице в диаметрах коллектора и якоря делают выступы, в которых фрезеруют прорези (шлицы). В них укладывают концы обмотки якоря и припаивают оловянистым припоем. При большой разнице в диаметрах припайка к коллектору делается с помощью медных полосок, которые называются "петушками".

В быстроходных машинах большой мощности для предотвращения выпучивания пластин под действием центробежных сил применяют внешние изолированные бандажные кольца.
Щеточный аппарат состоит из траверсы, щеточных пальцев (болтов), щеткодержателей и щеток. Траверса предназначена для крепления на ней щеточных пальцев щеткодержателей, образующих электрическую цепь.

Щеткодержатель состоит из обоймы, в которую помещается щетка, рычага для прижима щетки к коллектору и пружины. Давление на щетку составляет 0,02 - 0,04 МПа.

Для соединения щетки с электрической цепью имеется гибкий медный тросик.
В машинах малой мощности применяют трубчатые щеткодержатели, которые крепят в подшипниковом щите. Все щеткодержатели одной полярности соединяются между собой сборными шинами, которые подключаются к выводам машины.
Щетки (рисунок 4) в зависимости от состава порошка, способа изготовления и физических свойств разделяют на шесть основных групп: угольно-графитовые, графитовые, электрографитовые, медно-графитовые, бронзографитовые и серебряно-графитовые.

Подшипниковые щиты электрической машины служат в качестве соединительных деталей между станиной и якорем, а также опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.

Рисунок 4 – Щетки:
а — для машин малой и средней мощности; б — для машин большой мощности; 1 — щеточный канатик; 2 — наконечник

Различают обычные и фланцевые подшипниковые щиты.
Подшипниковые щиты изготовляют из стали (реже из чугуна или алюминиевых сплавов) методом литья, а также сварки или штамповки. В центре щита делается расточка под подшипник качения: шариковый или роликовый. В машинах большой мощности в ряде случаев используют подшипники скольжения.

В последние годы статор двигателей постоянного тока собирают из отдельных листов электротехнической стали. В листе одновременно штампуются ярмо, пазы, главные и добавочные полюса.

формулы
Не буду грузить никого выводами, их найдете сами если захотите. Чтобы было поменьше матана рекомендую найти учебник по электроприводу для средних учебных заведений и годом выпуска подревней. От 50х-60х годов самое то :) Там и картинки винтажные и расписано для вчерашнего выпускника сельской семилетки. Много букв и никакого грузилова, все четко и по делу.

Самая главная формула коллекторного двигателя постоянного тока:

  • U — напряжение подаваемое на якорь
  • Rя — сопротивление якорной цепи. Обычно за этот символ считают только сопротивление обмотки, хотя можно снаружи навесить резистор какой и он к ней приплюсуется. Тогда пишут как (Rя+Rд)
  • Iя — ток в якорной цепи. Тот самый который замеряется амперметром при попытке измерять потребление движка :)
  • Е — это противоэдс или ЭДС генератора, в генераторном режиме. Она зависит от конструкции двигателя, оборотов и описывается вот такой вот простой формулой
  • Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет :)
  • Ф — поток возбуждения. Т.е. сила магнитного поля статора. В мелких моторчиках, где оно задается постоянным магнитом это тоже константа. Но бывает под возбуждение выведена отдельная обмотка и тогда мы можем ее менять.
  • n — обороты якоря.

Ну и зависимость момента от тока и потока:

См — конструктивная констатнта.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента. Это может быть важно, например, чтобы не сломать привод, когда двигло может развить такое усилие, что легко поломает то, что оно там вращает. Особенно с редуктором.

Ну и из этого же следует, что момент у машины постоянного тока зависит только от способности источника снабжать его током. Так что идеальный нерушимый сверхпроводящий движок вам на раз лом в узел завяжет, пусть даже он сам с ноготок будет. Только энергию подавай.

А теперь смешаем все это в кучу и получим зависимость оборотов от момента — механическую характеристику двигателя.

Если ее построить, то будет нечто следующее:

n0 — это обороты идеального холостого хода сферического двигателя в вакууме. Т.е. когда наш движок ну ваще халявит, момент равен нулю. Ток потребления тоже, естественно, ноль. Т.к. противоэдс равна напряжению. Чисто теоретический вариант. А вторая точка строится уже с каким-либо моментом на валу. Получается прямая зависимость оборотов от момента. А наклон характеристики определяется сопротивлением якорной цепи. Если никаких добавочных резисторов там нет, то это зовут естественной характеристикой.

Обороты идеального холостого хода зависят от напряжения и потока. Больше ни от чего. А если поток константа (постоянный магнит), то только от напряжения. Снижая напряжение вся наша характеристика параллельно смещается вниз. Уменьшили напряжение в два раза — скорость упала в два раза.

Если есть возможность менять поток возбуждения, то можно поднимать скорость выше номинальной. Тут зависимость обратная. Ослабляем поток — двигатель разгоняется, но либо падает момент, либо ему надо жрать больше тока.

Иной двигатель со снятием возбуждения может и в разнос пойти. Помнится сдавал я затянувшийся курсач по электроприводу, уже хрен знает спустя сколько времени после сессии. Вломы мне его делать было, ага :) Ну и сидел в лаборатории, ждал препода. А там какие то балбесы, на курс ниже, лабу делали. Крутили движок вхолостую, а возбуждение к стенду приверчено было на соплях и слетело с клеммы. Движок в разнос пошел. У нас в лаборатории ЭПА ЮУРГУ все серьезно было, машины стояли нешуточные, по десятку киловатт и под сотню другую кг каждый. Все на суровом напряжении в 380 вольт.
В общем, когда эта дура взревела как монстр и стала рваться с креплений, я только и успел крикнуть, что все нахер от машины, вырубай к черту. Не успели, двигло сорвало с креплений, обмотка повылетала с пазов и движку пришел кирдык. Ладно никого не покалечило.
Впрочем, лабы привода это то еще развлечение было. У нас там и горело и взрывалось. Там я приобрел замечательные навыки чинить что угодно, чем угодно в сжатые сроки. В среднем, каждый успел по разу убить стенд наглухо, а лаба часто начиналась с починки паяльника, которым чинили осциллограф с помощью которого реанимировали убитый стенд.

Текущий ремонт генераторов и двигателей постоянного тока сводится к следующему:

− изношенные щетки заменяют новыми и притирают по месту;

− проверяют и регулируют, траверсу щеткодержателя, устанавливая щетки в шахматном порядке;

− шлифуют и продороживают коллектор;

− проверяют изоляцию обмоток и восстанавливают ее в местах повреждения;

− подшипники разбирают, очищают, производят шабрение (подшипников скольжения) или заменяют (подшипники качения);

− подтягивают болты крепления деталей.

Работы, выполняемые при капитальном ремонте электродвигателей:

− ремонт коллектора с заменой пластин;

− ремонт или замена щеточного механизма;

− замена подшипниковых щитов;

− перезаливка подшипников скольжения;

− ремонт контактных колец и изолирующих их от вала прокладок;

− рихтовка листов активного железа;

− ремонт вала и балансировка ротора;

− заварка трещин корпуса;

− частичная или полная смена обмоток;

− пропитка обмотки лаками и сушка;

− переделка машин на другое напряжение и частоту вращения.

При периодических осмотрах и плановых ремонтах машин постоянного тока основное внимание обращают на состояние коллектора, щеток, щеткодержателя, подшипниковых узлов и изоляции обмоток.

На поверхности коллектора может появиться шероховатость вследствие попадания твердых частиц под щетки, нагар от искрения или окись после длительного хранения машины во влажных местах. Шероховатость коллектора устраняют шлифовкой мелкой стеклянной бумагой марки 000, прижимаемой деревянной колодкой с вырезом по форме коллектора. Применение наждачной бумаги нежелательно, так как крупинки наждака проводят электрический ток и могут замкнуть пластины коллектора. Не рекомендуется опиливать коллекторные пластины напильником или прижатием стеклянной бумаги рукой, так как получается неровная поверхность.

Неровную поверхность коллектора протачивают резцом, предварительно тщательно отцентрировав его.

После, проточки или длительной работы коллектор продороживают, так как миканитовые прокладки тверже медных пластин и при работе постепенно выступают над ними. Продороживание выполняют выпиливанием миканита специальной пилкой на глубину 0,5—1,0 мм вдоль приложенной к коллектору линейки без повреждения медных пластин. Можно продороживать коллектор и на токарном станке при неподвижном шпинделе и продольном движении суппорта с отрезным резцом, повернутым на 90° относительно своего нормального положения. Ширина режущей части резца равна ширине канавки между пластинами, а угол заточки равен 40°.

После продороживания все канавки между пластинами коллектора прочищают волосяной щеткой и шабером снимают фаски с краев коллекторных пластин, а затем коллектор шлифуют и продувают сжатым воздухом.

При выходе из строя подшипников качения пли при большом износе подшипников скольжения ротор может задевать за статор, что вызывает повреждение активной стали, а иногда и обмотки. Неисправные подшипники качения заменяют новыми, а загрязненные снимают, очищают от грязи, промывают в керосине, а затем набивают смазку и устанавливают на место.

Перегрев подшипников скольжения приводит к расплавлению заливки или задирам шейки вала. Он происходит из-за недостаточного поступления масла вследствие погнутости масляных колец, недостаточного уровня, загрязнения или, уменьшения зазора между шейкой вала и вкладышем из-за перекоса вкладыша.

При недостаточном количестве масла его добавляют, а при загрязнении или чрезмерной вязкости — сливают, тщательно промывают подшипник керосином и заливают свежее масло требуемого качества. Для подшипников качения применяют смазки типа УТ и солидолы, для подшипников скольжения — веретенное, машинное или турбинное масло. При перекосе вкладыша подшипник разбирают, устанавливают вкладыш правильно и фиксируют его для предупреждения повторного перекоса.

В процессе эксплуатации не допускают загрязнения электродвигателей: это способствует перегреву обмоток и может привести к короткому их замыканию. Пыль систематически удаляют пылеотсасывающим устройством или продувкой сжатым воздухом. В процессе работы происходит стирание изоляции, что может привести к межвитковому замыканию или пробою на корпус.

Это может произойти и вследствие механических повреждений или отсырения изоляции. Эти неисправности определяют внешним осмотром или измерением сопротивления изоляции обмоток, которое должно быть не ниже 1,0 МОм на 1000 В рабочего напряжения, а магнитным или другим методом уточняют место пробоя изоляции.

Приступая к частичной или полной перемотке якоря, маркируют пазы, составляют схему обмотки, эскизируют лобовые части обмотки, бандажи и другие узлы, а затем снимают старые бандажи, распаивают коллектор и снимают старые обмотки. Перед укладкой новой обмотки якорь тщательно очищают, пазы опиливают и красят их стенки. Коллектор проверяют на отсутствие замыканий между пластинами, обмоткодержатель изолируют.

В зависимости от формы паза, напряжения тока и мощности машины обмотки выполняют в виде жестких или мягких секций, а также протяжкой вручную обмоточного провода в закрытые или полузакрытые пазы. Большинство якорей имеет открытые пазы, в которые укладывают заранее отформованные секции. При закладке следят за длиной выступающих из паза прямолинейных участков секций, добиваясь равности их. В машинах мощностью до 5 кВт применен полузакрытый паз. В этом случае секции укладывают через прорез и обращают внимание на формовку лобовых частей, так как неправильная формовка приводит к невозможности укладки последних сторон секций. При намотке жестких секций пользуются металлическим шаблоном.

Катушки полюсов и стержни компенсационной обмотки наматывают на каркасах или деревянных разъемных оправках. Для малых машин применяют каркасы из электрокартона или бакализированной резины.

При нанесении изоляции секций следует обращать внимание на отсутствие сгустков лака, так как они обычно долго не высыхают и при вращении якоря лак будет разбрызгиваться.

После укладки всех секций проверяют соответствие их выводов коллекторным пластинам, испытывают на межвитковое замыкание и при положительных результатах производят запайку проводников в коллектор.

Работа содержит 1 файл

ИВАН.doc

Ремонт электрических машин

Электрическую и механическую части электромашин ремонтируют соответственно в обмоточном и механическом отделениях ремонтного предприятия.

Ремонт электрической части заключается в устранении замыканий обмоток на корпус и между фазами, замене общей изоляции и полной замене обмоток.

Общую изоляцию заменяют только при полной исправности проводниковой и междувитковой изоляции. Для снятия изоляции обмотку нагревают до температуры 60—70°С. После удаления общей изоляции катушку испытывают на отсутствие замыканий между витками. Новую изоляцию выполняют микалентой по всему контуру катушки. Каждый последующий виток ленты следует накладывать на половину предыдущего. Если необходимо полностью заменить обмотку, то ее вынимают из пазов и освобождают от изоляции. В зависимости от состояния полностью восстанавливают поврежденную обмотку с использованием старого провода или изготовляют новую по заводской документации.

Обмотки можно разделить по способу изготовления на шаблонные (наматываются до укладки в пазы на шаблоне), обмотки впротяжку и стержневые. Катушки шаблонных обмоток изготовляют при помощи специальных шаблонов на намоточных станках. Шаблонные обмотки бывают с мягкими катушками, которые наматывают из круглого провода, и жесткими формованными катушками — наматывают проводом прямоугольного сечения. Обмотку в протяжку выполняют вручную, протягивая в паз провода из бухты или мотка. Для изготовления стержневой обмотки используют обычно провода большого сечения (шины), которые вставляют в сердечник с торца. В случае отсутствия провода требуемого диаметра можно заменить его двумя проводами меньшего диаметра, соединенными параллельно (сумма сечений проводников должна быть равна расчетному сечению провода).

При сборке обмотки должны соблюдаться заводские размеры секций. Схема соединений катушек обмотки до и после ремонта должна быть одинаковой.

Медные провода соединяют между собой пайкой (при диаметрах до 1 мм) и электросваркой (при больших диаметрах). Для пайки используют как мягкие припои (например, ПОС-40, ПОС-61), так и твердые, медно-фосфорные. Нельзя паять с кислотой, так как ее остатки могут разрушить изоляцию и создать токопроводящие участки вследствие хорошей проводимости кислоты. Для повышения электрической и механической прочности, влагостойкости вновь изготовленные обмотки пропитывают.

Ремонт валов электродвигателей является одной из самых ответственных работ и имеет ряд особенностей. Среди них следует отметить, что ремонтируемый вал нельзя в большинстве случаев отделить от сопряженных с ним основных деталей (коллектор, сердечники и др.). Это в значительной степени усложняет ремонт. Дефекты у валов устраняют шлифованием или проточкой на токарном станке (при общей площади повреждений не более 15% общей посадочной площади), переточкой вала на меньший диаметр, наплавкой с последующей его обработкой, металлизацией с последующей обработкой. Гнезда под подшипники в подшипниковых щитах восстанавливают наплавкой или запрессовкой специальных втулок, которые затем растачивают под нужный размер. Небольшие трещины заваривают методом холодной сварки чугуна или скрепляют прошивкой. Этот способ ремонта состоит в том, что вдоль трещины по обе стороны ее в шахматном порядке вворачивают стальные шпильки, проходящие насквозь стенок щита. Концы шпилек с каждой стороны соединяют стальными электродами и заваривают. Подшипниковые щиты, имеющие трещины до места посадки подшипников, заменяют новыми. У электродвигателей постоянного тока и трехфазного тока с. фазным ротором одной из причин ненормальной работы является износ соответственно коллектора и контактных колец. Чаще всего у них повреждается рабочая поверхность. Небольшие подагры, шероховатости у контактных колец 'устраняют зачисткой и последующей полировкой при рабочей частоте вращения вала без демонтажа колец. При значительных повреждениях рабочей поверхности и при нарушении цилиндрической формы кольца снимают и протачивают. Толщина проточенного кольца должна составлять не менее 80% толщины нового.

Контактные кольца следует заменить, если из-за износа расстояние между рабочей поверхностью и отверстием токопровода достигнет предельной величины. Новые кольца изготовляют с внутренним диаметром, равным заводскому, только при условии, что будет выдержана необходимая толщина изоляции. Уменьшение толщины изоляции приводит к снижению ее электрической прочности, а увеличение — ослаблению напряженности посадки кольца.

В короткозамыкающем механизме обычно оказываются изношенными боковые ребра кольца, пружинные контакты и увеличен зазор между короткозамыкающим кольцом и валом. Если износ боковых ребер по толщине составляет 50%, то их восстанавливают металлизацией с последующей проточкой. Поврежденные пружинные контакты заменяют новыми, изготовленными из кремнистой бронзы или твердотянутой латуни.

Более сложные работы приходится выполнять при ремонте коллектора. Часто из-за неравномерного износа медных пластин и миканитовой изоляции, прокладываемой между ними, последняя выступает над поверхностью коллектора, что нарушает правильную работу щеток. В этом случае изоляцию фрезеруют (продороживают) на глубину около 1 мм от поверхности пластин. Эту операцию выполняют на специальном станке или приспособлении.

В случае нарушения формы коллектора из-за неравномерного износа его поверхности, коллектор протягивают с последующим продороживанием, шлифованием стеклянной шкуркой и полированием.

Скорость резания не должна превышать номинальную окружную скорость коллектора, а глубина резания — 0,1 — 0,2 мм. После ремонта биение поверхности коллектора должно составлять не более 0,03 мм. Все его нерабочие части покрывают электроизоляционной эмалью.

Методы обнаружения неисправностей

электрических машин.

Неисправности электрических машин определяют при предварительных испытаниях. Основными признаками, указывающими на то, что электродвигатель (генератор) неисправен и требует ремонта, являются:

изменение частоты вращения и вращающего момента у двигателя и изменение напряжения у генератора;

неустойчивость характеристик, т. е. недопустимые колебания скорости вращения или напряжения; общий или местный перегрев электромашины;

вибрация и сильный шум; искрение под щётками. К числу неисправностей, приводящих к указанным изменениям режима работы электромашины, относятся: обрыв обмоток, уменьшение сопротивления изоляции ниже допустимого, пробой изоляции на корпус между фазами и между витками (около 80% всех видов неисправностей); изменение воздушного зазора между ротором и статором, повреждение стали сердечников, ослабление или разрыв бандажей; увеличение тока холостого хода;

распайка соединений проводников;

механические повреждения — износ подшипников, шеек валов, изгиб и скручивание валов, трещины в подшипниковых щитах.

Применяют следующие способы обнаружения неисправностей.

В случае подключения к концам исправных фаз прибор будет показывать приблизительно равные по величине сопротивления, а при подсоединении к неисправной обмотке — сумму сопротивлений, полученных в двух предыдущих измерениях.

При соединении обмоток звездой один зажим прибора подключают к нулевой точке, а другой — по очереди к концам фаз. Если подсоединить прибор к нулевой точке невозможно, то фазу, имеющую обрыв, определяют, касаясь концами прибора попарно всех выводов обмотки.

Уменьшение сопротивления изоляции и ее пробой происходят из-за потери изоляцией обмоток и проводов своих свойств или при ее механическом повреждении. Изоляционные свойства ма­териала теряются при чрезмерном его увлажнении, попадании на него токопроводящей пыли (металлической, угольной и т. п.) и старении. Механические повреждения изоляции возможны при уменьшении зазора между ротором и статором из-за износа подшипников, а также при значительном перегреве обмоток двигателя, что приводит к хрупкости изоляции, появлению в ней трещин.

Состояние изоляции обмоток определяют испытанием ее на электрическую прочность и измерением величины сопротивления.

На электрическую прочность изоляцию обмоток относительно корпуса машины и между обмотками испытывают при помощи испытательного трансформатора приложением переменного напряжения соответствующей величины в течение 1 мин. Изоляцию отно­сительно корпуса испытывают поочередно в каждой электрически независимой цепи, один вывод источника питания подключают к выводу обмотки, другой надежно заземляют и подключают к заземленному корпусу электромашины, с которым на время испытаний данной обмотки электрически соединяют все остальные.

Для измерения сопротивления изоляции обычно используют малогабаритный переносной мегомметр Ml 101, состоящий из встроенного генератора постоянного тока и стрелочного измерительного прибора, шкала которого проградуирована в единицах кОм и МОм.

Замыкание между фазами, а также фазу, замыкающую на корпус, можно определить тестером или мегаомметром после разъединения фаз (при наличии шести выводов у статорных обмоток) или их распайки.

В случае пробоя изоляции между витками обмотки образуется короткозамкнутый контур. Основной признак, по которому находят его местоположение,— это нагрев корпуса в месте расположения контура. Для этого необходимо отключить обмотку от питающей сети и тщательно ощупать ее. Фазу, в которой имеются коротко-замкнутые витки, можно определить по сопротивлению ее обмотки постоянному току. Измерение можно проводить методом постоянного тока или методом амперметра и вольтметра. Для проведения измерений надо разъединить две фазы, если они соединены треугольником. Поврежденная фаза будет иметь минимальное сопротивление.

Если фазы разъединить невозможно, то измеряют три междуфазных сопротивления и по их соотношению определяют место повреждения.

б) Величину зазора между статором и ротором замеряют специальным щупом, состоящим из набора калиброванных пластин, с обеих сторон машины в четырех точках, отстоящих друг от друга на 90°. При измерениях щуп должен соприкасаться со сталью статора и ротора, не попадая на бандаж или пазовый клин. В каждой точке зазор измеряют 3—4 раза и определяют его среднее арифметическое значение. Затем определяют средний зазор, вычисляя среднее арифметическое значение для всех точек.

При увеличении у электродвигателя зазора на 20—25% по сравнению с нормальным заводским его обмоточные данные перед ремонтом пересчитывают. Если зазор увеличен более чем на 25%, то электромотор выбраковывают.

Характерные дефекты стали сердечников электрических машин: повреждения зубцов, распушение крайних пакетов, замыкания между отдельными местами пакетов стали вследствие неправильной обработки или задевания ротора за статор во время работы из-за износа подшипников. Определяют эти неисправности по перегреву сердечника и гудению машины при работе, а также осмотром после ее разборки. Бандажи роторов и якорей ремонтируют при их ослаблении или разрыве и перемотке обмоток, когда бандаж приходится снимать.

в) Ток холостого хода электродвигателя не нормируется, однакоего увеличение указывает на некоторые дефекты двигателя. Это максимальное смещение ротора по отношению к статору, увеличение зазора между ними, заложение при предыдущих ремонтах меньшего числа витков в обмотке. Для определения тока холостого хода в каждую фазу питающей сети включают амперметр. Нагрузку (приводимые механизмы) от вала испытываемого двигателя отсоединяют. Неравномерность тока холостого хода по отдельным фазам не должна превышать 4,5% среднего значения.

Читайте также: