Реферат реактивное движение в военном деле

Обновлено: 03.07.2024

Изучение физических законов для человека необходимо с точки зрения их практического использования. Закон сохранения импульса: для системы, состоящей из любого числа тел, суммарный импульс остается постоянным при отсутствии внешних сил. Этот закон является одним из фундаментальных и не имеет исключений. Реактивное движение – пример проявления этого закона в действии. Очень часто мы можем наблюдать это движение в нашей повседневной жизни.

Примеры. Если надеть на водопроводный кран резиновую трубку, то при вытекании воды трубка уйдет в сторону, противоположную струе. Реактивная сила водяного потока заставит развернуться свернутый для полива шланг. Эта же сила вращает ствол дождевального аппарата. Чтобы это произошло, конструкция ствола предусматривает специальный изгиб в горизонтальном направлении.

Реакция струи имеет место всегда, когда струя жидкости или газа встречает препятствие и тогда она меняет направление. Турбины как раз и используют такую идею для получения вращательного движения. Главной деталью любой турбины является колесо с лопатками, которые насажены на обод под углом. Пар, ударяясь о лопатки, отражается от них и изменяет направление движения. Реакция струи, в свою очередь, будет вращать колесо турбины.

Еще примеры. Ветряная мельница. Ветродвигатель. Гребной винт. Гребное колесо. Эти механизмы, приводящие в движение суда, имеют один и тот же принцип действия – реакция отбрасываемой струи. Воздушный винт – пропеллер – работает точно так же. Реакция струи – это и есть тяга винта. Водяной или воздушный винт при вращении отгоняет воду или воздух в одну сторону, а морское или воздушное судно перемещается в другую сторону под действием реакции струи, направленной на винт. Сюда же можно отнести комнатные вентиляторы. Отбрасываемый поток воздуха и создает тот приятный ветер, которого мы ожидаем в сильную жару.
Плавание человека, катание на лодке – тоже примеры реактивного движения. Вы катались на лодке? Вспомните, куда вы направляете весло, а куда движется лодка.

Движение ракеты есть суть реакция струи, но при этом весь запас отбрасываемых газов ракета несет с собой. В древнем Китае изобрели пороховую ракету. В ней оболочка заполняется медленно горящим порохом, выделяющим раскаленный газ. Он вылетает вниз с большой скоростью из дырки в оболочке, а ракета взмывает вверх.

Что такое реактивный двигатель? Это ракета, двигающая какое-либо транспортное средство. Баллистическая ракета состоит из двигателей большой мощности, которые работают при разгоне, и запаса топлива. Такая ракета будет иметь также полезную нагрузку. Если для военных целей – это боеголовка, для мирных – космический корабль. Тяга реактивного двигателя – это сила реакции вытекающего после сгорания топлива газа.

При полете ракеты на околоземное пространство ее ускорение будет тем больше, тем меньше масса оставшегося агрегата. А масса уменьшается по мере расходования запаса топлива. И по второму закону Ньютона приращение скорости будет тем больше, чем меньше масса содержимого корпуса ракеты.

Еще один фактор влияет на скорость движения ракеты – изменение скорости течения частиц газа до огромных значений. А это зависит от вида топлива, формы отверстия, называемого соплом, для отвода сгоревшего вещества топлива.

Таким образом, реактивное движение тела – это то, которое возникает при отделении с какой-либо скоростью некоторой его части.

Вариант №2

Реактивное движение – это способ применения закона сохранения импульса на практике. Реактивным называется вид движения тела с отделением от него части, летящей с определенной скоростью. Такой вид движения наблюдается не только в обыденной жизни, технике, но и в природе.

В быту реактивное движение можно наблюдать, если надуть воздушный шарик, а затем отпустить его. При этом воздух из шарика будет выходить в одну сторону, а шарик полетит в другую. Движение шарика прекратится, когда большая часть воздуха выйдет из него.

В технике самыми яркими примерами реактивного движения являются: ракета, сегнерово колесо. Впервые описание ракеты, как транспортного средства для космических полетов, было сделано Константином Эдуардовичем Циолковским – русским ученым в начале XX века. Но его идеи смог воплотить в жизнь советский конструктор Сергей Павлович Королев только в середине XX века. Во время полета ракеты отделяющейся частью является струя газов, образующаяся при сгорании топлива. Струя газов так же, как и в случае с шариком, устремляется в сторону, противоположную движению ракеты. Ракеты, применяемые для организации красочных фейерверков, сигнальные ракеты тоже работают по принципу реактивного движения.

Рассмотрим еще один вид реактивного движения – сегнерово колесо. Сегнеровым колесо названо по фамилии венгерского ученого-физика Иоганна Сегнера, который и изобрел его в 1750 году. В качестве отделяющейся части здесь выступает вода, которая выливается из изогнутой на конце трубки с большой скоростью и заставляет вращаться колесо. Данный метод до сих пор применяется в центробежном фильтре для очистки масла в автомобилях.

В природе реактивное движение используют такие животные, как: кальмар, сальпа, каракатица. Через отверстия у себя в теле они вбирают воду, а затем выбрасывают ее наружу и двигаются в сторону, противоположную вылету струи воды.

Растения также используют реактивное движение для распространения своих семян. Примером такого распространения являются плоды бешеного огурца. Даже небольшое прикосновение к созревшим плодам заставляет их отлетать от плодоножки и раскрываться. При этом семечко, расположенное в специальной клейкой жидкости, отлетает в сторону, противоположную коробочке.

10 класс, 9 класс кратко

Реактивное движение

Реактивное движение

Как и других животных человек решил одомашнить кролика. Домашних кроликов чаще всего держат не ради их меха или мяса, они становятся верными друзьями по жизни. Сам по себе кролик - это небольшого размера пушистый зверек, происходящий от зайца.

Атлантический океан – значимый мировой водный объект, уступающий своей площадью и глубиной только Тихому океану. Его воды буквально отделяют Западное полушарие от Восточного, а именно материки: Америки от Евразии и Африки.

Становление человеческой жизни на Земле прошло долгий путь. Люди приобрели многие знания и навыки. Теперь они привыкли жить хорошо и ни в чем не нуждаться. Чтобы улучшить свою жизнь, людям необходимо привлекать затраты и разнообразные

Реактивное движение - движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. Реактивное движение описывается, исходя из закона сохранения импульса.Реактивное движение, используемое ныне в самолетах, ракетах и космических снарядах, свойственно осьминогам, кальмарам, каракатицам, медузам – все они, без исключения, используют для плавания реакцию (отдачу) выбрасываемой струи воды. Примеры реактивного движения можно обнаружить и в мире растений.

Содержание работы
Содержимое работы - 1 файл

Реферат по физике.docx

Министерство Образования и Науки РФ

тема : Реактивное движение

Реактивное движение - движение тела, обусловленное отделением от него с некоторой скоростью какой-то его части. Реактивное движение описывается, исходя из закона сохранения импульса.

Реактивное движение, используемое ныне в самолетах, ракетах и космических снарядах, свойственно осьминогам, кальмарам, каракатицам, медузам – все они, без исключения, используют для плавания реакцию (отдачу) выбрасываемой струи воды.
Примеры реактивного движения можно обнаружить и в мире растений.

В южных странах произрастает растение под названием "бешеный огурец". Стоит только слегка прикоснуться к созревшему плоду, похожему на огурец, как он отскакивает от плодоножки, а через образовавшееся отверстие из плода фонтаном со скоростью до 10 м/с вылетает жидкость с семенами.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьего законов Ньютона. Рассмотрим два взаимодействующих тела, входящих в состав замкнутой системы.

Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенч атых ракет , когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед. Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету. Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону.

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Человечество всегда мечтало о путешествии в космос. Самые разные средства для достижения этой цели предлагали писатели - фантасты, учёные, мечтатели. Но единственного находящегося в распоряжении человека средства, с помощью которого можно преодолеть силу земного притяжения и улететь в космос за многие века не смог изобрести ни один учёный, ни один писатель-фантаст. К. Э. Циолковский – основоположник теории космических полётов.
Впервые мечту и стремления многих людей впервые смог приблизить к реальности русский учёный Константин Эдуардович Циолковский(1857-1935), который показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, он впервые представил научное доказательство возможности использования ракеты для полётов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы. Ракетой Цоилковский назвал аппарат с реактивным двигателем, использующим находящиеся на нём горючее и окислитель.
Как известно из курса физики, выстрел из ружья сопровождается отдачей. По законам Ньютона, пуля и ружьё разлетелись бы в разные стороны с одинаковой скоростью, если бы имели одинаковую массу. Отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение, как в воздухе, так и в безвоздушном пространстве, так возникает отдача. Тем большую силу отдачи ощущает наше плечо, чем больше масса и скорость истекающих газов, и, следовательно, чем сильнее реакция ружья, тем больше реактивная сила. Эти явления объясняются законом сохранения импульса:
векторная (геометрическая) сумма импульсов тел, составляющих замкнутую систему, остаётся постоянной при любых движениях и взаимодействиях тел системы.
Представленная формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Числом Циолковского называют отношение массы топлива к массе ракеты в конце работы двигателя - к весу пустой ракеты.
Таким образом, получили, что максимально достижимая скорость ракеты зависит в первую очередь от скорости истечения газов из сопла. А скорость истечения газов сопла в свою очередь зависит от вида топлива и температуры газовой струи. Значит, чем выше температура, тем больше скорость. Тогда для настоящей ракеты нужно подобрать самое калорийное топливо, дающее наибольшее количество теплоты. По формуле видно, что кроме всего прочего скорость ракеты зависит от начальной и конечной массы ракеты, от того, какая часть её веса приходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
Основной вывод из этой формулы Циолковского для определения скорости космической ракеты состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше скорость истечения газов и чем больше число Циолковского.

В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", обычно - раскалённых газов. Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т.д. После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что-то "двигать", приводить в действие, все равно, будь то динамо-машина на просьба дополнить рисунками электростанции, тепловоз, автомобиль или самолёт. Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.

Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся (сопло Лавля). Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через "звуковой барьер".

Однако этот могучий ствол, принцип прямой реакции, дал жизнь огромной кроне "генеалогического дерева" семьи реактивных двигателей. Чтобы познакомиться с основными ветвями его кроны, венчающей "ствол" прямой реакции. Вскоре, как можно видеть по рисунку (см. ниже), этот ствол делится на две части, как бы расщепленный ударом молнии. Оба новых ствола одинаково украшены могучими кронами. Это деление произошло по тому, что все "химические" реактивные двигатели делятся на два класса в зависимости от того, используют они для своей работы окружающий воздух или нет.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Законы Ньютона

Законы Ньютона объясняют очень важное механическое явление — движение струи. Это имя дается движению тела, которое происходит, когда часть тела отделяется от него с определенной скоростью. Например, возьмите резиновый мяч ребенка, надуйте его и отпустите. Увидим, что сам мяч летит в противоположном направлении, когда воздух выходит из него в одном направлении. Это и есть движение струи.

Согласно принципу реактивного движения, некоторые представители животного мира движутся, например, кальмары и осьминоги. Периодически выбрасывая воду, они достигают скорости 60-70 км/ч. Медузы, кальмары и некоторые другие животные двигаются подобным образом.

Реактивное движение, происходящее при выбросе воды, можно увидеть на следующих примерах. Налейте воду в стеклянную воронку, подключенную к резиновому шлангу, который D — образный наконечник (см. рисунок). Мы увидим, что когда вода начинает выходить из трубы, сама труба движется и отклоняется в противоположном направлении.

Когда рабочий орган заканчивается, пустые резервуары, дополнительные части корпуса и т.д. начинают загружать ракету лишним весом, что затрудняет ее рассеивание. Поэтому для достижения космической скорости используются составные (или многоступенчатые) ракеты (см. рисунок). Первоначально в таких ракетах работает только первая ступень 1. Когда у них заканчивается топливо, они отделяются и активируется вторая ступень 2; когда топливо в них расходуется, они также отделяются и активируется третья ступень 3. Спутник или другой космический аппарат в головной части ракеты прикрывается головным обтекателем 4, обтекаемая форма которого уменьшает сопротивление во время полета ракеты в земной атмосфере.

Когда струя газа выбрасывается из ракеты на большой скорости, сама ракета гонит в обратном направлении. Почему это происходит?

Согласно третьему закону Ньютона, сила F’, с которой ракета действует на рабочий орган, равна и противоположна силе F’, с которой рабочий орган действует на корпус ракеты.

Сила F’ (которая называется лучистая сила) и рассеивает ракету.

Из этого равенства следует, что сообщаемый организму импульс соответствует произведению силы в течение всего времени ее действия. Поэтому одни и те же силы, действующие в один и тот же период времени, дают одни и те же импульсы. В этом случае регистрируемый ракетой импульс mrvr должен быть равен импульсу отработавших газов.

Его имя относится к уравнению движения тела с переменной массой. Реактивный двигатель — это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель получает скорость в обратном направлении. На каких принципах и физических законах основаны ваши действия? Все знают, что дробовик сопровождается отдачей. Если бы вес пули был равен весу дробовика, он бы летал с той же скоростью. Отдача происходит потому, что выделяющаяся масса газа создает реактивную силу, которая может вызвать движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость выхлопных газов, тем больше сила отдачи, которую чувствует плечо, тем сильнее реакция оружия, тем больше сила реакции. Это можно легко объяснить сохранением теоремы об импульсе, которая гласит, что геометрическая (т.е. векторная) сумма импульса тела, образующая замкнутую систему, остается постоянной для всех движений и взаимодействий тел системы.

К. Е. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, с которой может развиваться ракета.

Здесь vmax — максимальная скорость ракеты, v0 — скорость старта, vr — скорость потока газа в сопле, m — пусковая масса топлива и M — масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит, прежде всего, от скорости потока газов из сопла, которая, в свою очередь, зависит, прежде всего, от вида топлива и температуры газовой струи. Чем выше температура, тем выше скорость. Это означает, что для ракеты должно быть выбрано топливо с самыми высокими калориями, выделяющее наибольшее количество тепла. Из формулы также следует, что эта скорость зависит от начальной и конечной массы ракеты, т.е. от того, какая доля ее массы — топливо, а какая — бесполезные (с точки зрения скорости полета) конструкции: фюзеляж, механизмы и др.

Эта формула Циолковского является основой, на которой строится весь расчет современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя (т.е. по существу к массе пустой ракеты) называется номером Циолковского.

Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета развивает более высокую скорость, чем больше поток газа, тем больше число Циолковского.

Вторая баллистическая ракета

Как вообще выглядит современная ракета сверхвысокой дальности? Во-первых, это многоступенчатая ракета. У него есть боеголовка, управление, танк и, наконец, двигатель за ним. В зависимости от топлива взлетная масса ракеты в 100-200 раз превышает полезную нагрузку! Поэтому он весит много десятков тонн и достигает высоты десятиэтажного здания.

Каждая ступень ракеты работает в совершенно разных условиях, которые определяют ее устройство. Мощность каждого следующего этапа и время его развертывания короче, что облегчает его проектирование.

В настоящее время двигатели баллистических ракет работают в основном на жидком топливе. В качестве топлива обычно используется керосин, спирт, гидразин, анилин, а в качестве окислителей — азотная и хлорная кислоты, жидкий кислород и перекись водорода. Фтор и жидкий озон являются очень активными оксидантами, но из-за своей исключительной взрывоопасности они все еще имеют ограниченное применение.

Наиболее ответственной частью ракеты является двигатель, а в ней — камера сгорания и сопло. Здесь должны использоваться особо термостойкие материалы и сложные методы охлаждения, так как температура сгорания топлива достигает 2500-3500ОС. Обычные материалы не выдерживают таких температур. Другие подразделения также довольно сложны. Например, насосы, подающие топливо и окислитель в сопла камеры сгорания, уже могли перекачивать 125 кг топлива в секунду в ракете ФАУ-2. В некоторых случаях вместо баллонов со сжатым воздухом или другим газом используются баллоны, которые вытесняют топливо из баллонов и подают его в камеру сгорания.

С специального пускового устройства запускается баллистическая ракета. Часто это пробитая металлическая мачта или даже башня, рядом с которой ракета собирается по частям кранами. Площадки на башне установлены напротив смотровых люков, через которые осуществляется проверка и регулировка оборудования. Затем ракета заполняется топливом и башня отходит.

Ракета стартует вертикально, затем наклоняется и описывает почти строго эллиптическую траекторию. Большая часть траектории таких ракет проходит на высоте более 1000 км над Землей, где практически нет воздушного сопротивления, но по мере приближения атмосферы к цели движение ракеты начинает резко замедляться стремительно нагреваемым оболочкой, и если ее не устранить, то ракета может обрушиться, а ее заряд может преждевременно взорваться.

Заключение

От себя добавлю, что мое описание работы межконтинентальной ракеты устарело и соответствует состоянию развития науки и техники в 1960-х годах, но из-за ограниченного доступа к современным научным материалам я не могу дать точного описания работы современной межконтинентальной ракеты со сверхдальним радиусом действия. Однако я охватил общие характеристики, присущие всем ракетам, поэтому считаю свою задачу выполненной.

Список литературы

  1. Дерхабин В. М. законы сохранения в физике. — M. Просвещение, 1985.
  2. Гелфер Я. М. Законы сохранения. — M. : Наука, 1964.
  3. Тело К. Мир без форм. — М: Мир, 1974.
  4. Детская энциклопедия. — М.: Издательство АН СССР, 1955 год.
  5. С. В. Громов, Родина НА. Физика — М.: Просвещение, 2004.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное бюджетное общеобразовательное учреждение

Научно-исследовательская работа

hello_html_5a257b6f.jpg

Актуальность работы обусловлена общественной потребностью в возрождении интереса к техническому образованию.

Цель работы: рассмотреть принцип реактивного движения

Задачи работы:

Познакомиться с историей развития реактивного движения;

Выяснить физические основы работы реактивного двигателя;

Выяснить классификацию реактивных двигателей и особенности их использования;

Рассмотреть экспериментальное доказательство формулы Циолковского;

Рассмотреть примеры реактивного движения в природе.

Методы исследования:

Анализ литературы и интернет ресурсов;

Проведение опытов .

Результаты работы:

В ходе работы были изучены физические основы реактивного движения;

Изучен принцип действия реактивного движения;

Изучены особенности реактивного движения и отдачи.

Идея полета возникла тысячи лет назад. Построив машины, способные передвигаться по суше, обгоняясамых быстрых животных, и корабли, спорящие с жителями водной стихии, человек длительное время продолжал с завистью смотреть на птиц, парящих в небесной вышине. Их способность летать долгое время была для человека недостижима. Оставалось лишь мечтать о полетах и слагать об этом легенды. Покинуть поверхность земли и подняться в небо мечтали еще древние греки. До наших дней сохранился миф об Икаре, который полетел к Солнцу на крыльях, склеенных воском, но воск растаял, и храбрец упал в море. От мифов до научных проектов прошли века.

Во все времена человек мечтал летать как птицы. И вот его мечта путем проб и ошибок, постоянного и тщательного изучения окружающего мира осуществилась – он построил самолет. Но человеку свойственно мечтать. И теперь его мечты связаны с тем, как полететь к звездам, к планетам, которые кажутся такими близкими, но оказываются далекими, к другим галактикам.Но все предложенные способы не позволяли человеку преодолеть силу земного притяжения, двигаться в безвоздушном пространстве. И как всегда для решения этой сложнейшей задачи человек обращается к природе, которая подсказывает решение – реактивное движение.

I . Реактивное движение в истории

Знакомство человечества с реактивным движением состоялось достаточно давно, в первом тысячелетии до нашей эры. Согласно письменным источникам, в 360 году до нашей эры грек АрхитТарентийский, основатель механики и сторонник математики Пифагора, впервые продемонстрировал возможности реактивного движения. Глиняная птица, заполненная водой, подвешивалась на специальной планке над огнём. Вода закипала, а вырывающийся через отверстие пар вращал птицу вокруг оси.

Мы решили проделать опыты с вращением, основанные на реактивном движении. Взяли детский воздушный шарик и надули его как можно сильнее. Прежде чем его крепко завязать ниткой, вставили в отверстие загнутую тонкую трубку — пустой стерженек от шариковой ручки. Наружный кончик стерженька оплавили на спичке, чтобы не проходил воздух.
Сбоку шарика приклеили скотчем нитку и подвесили на ней шарик. Когда шарик успокоился, перестал качаться, отрезали ножницами кончик заглушённой трубки.
Воздух из шарика начал выходить, и шарик стал вращаться.
Этот же опыт мы проделали и не подвешивая шарика. Налили в маленький тазик воду, положили на воду шарик, и он начал быстро вертеться на одном месте на воде под действием реактивной силы.

Греческие механики ещё около 200 лет ставили подобные опыты, пытаясь использовать энергию воды, огня, масляных и других смесей, но технологии того времени не позволяли создать достаточно прочных материалов для изготовления корпуса для таких механизмов. Поэтому дальнейшие исследования в этом направлении практически прекратились.

Принцип реактивного движения нашел широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты. Космические исследования – одно из важнейших направлений научно-технической революции.

Космонавтика ярко демонстрирует всему миру плодотворность мирного созидательного труда, выгоды объединения усилий разных стран в решении научных и народнохозяйственных задач.

Мы на опытах пронаблюдали реактивное движение. Реактивное движение - движение тела, возникающее, когда от него с некоторой скоростью отделяется его часть. В пробирку налили немного воды, плотно закрыли пробкой и на двух нитях подвесили к штативу. Пробирку нагрели на спиртовке. Пробирка приходит в движение за счёт того, что из неё под давлением водяного пара вылетает пробка.

Второй опыт провели с воздушным шариком. Надутый резиновый шарик с помощью скотча закрепили на соломинку, в соломинку надели леску, концы лески привязали на спинки стульев и шарик развязали. Шарик пришел в движение, пока не долетел до стула.

hello_html_2ff5c1dd.jpg

Когда мы отпустили шарик, его стенки с силой выталкивают воздух наружу, а сам шарик устремляется в противоположную сторону.

II . Физические основы работы реактивного двигателя

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если мы находимся в лодке и у нас есть несколько тяжёлых камней, то бросая камни в определённую сторону мы будем двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", обычно - раскалённых газов. Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы.

Рассмотрим этот процесс применительно к реактивным двигателям. Начнем скамеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке – источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на "фазах" работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение - и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения,
более плотно "упакованные". Избыток энергии связи, представляющей собой
химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания. Подобных переход осуществлялся и во всех других тепловых двигателях, но
реактивные двигатели принципиально отличаются от них в отношении дальнейшей судьбы раскалённых продуктов сгорания. После того, как в тепловом двигателе образовались горячие газы, заключающие
в себя большую тепловую энергию, эта энергия должна быть преобразована в
механическую. Ведь двигатели для того и служат, чтобы совершать
механическую работу, что-то "двигать", приводить в действие, все равно,
будь то динамо-машина, тепловоз, автомобиль или самолёт. Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.

В результате взаимодействия газа в камере сгорания и всех остальных частей ракеты вырывающиёся через сопло газ получает некоторый импульс. Тогда ракета представляет собой замкнутую систему, и её общий импульс должен и после запуска равен нулю. Поэтому и оболочка ракеты со всем, что в ней находится, получает импульс, равный по модулю импульсу газа, но противоположный по направлению. Кроме того, используют несколько последовательно работающих, а затем отбрасываемых ступеней, входящих в состав многоступенчатой ракеты, что позволяет наращивать скорость ракеты в полете. Идея многоступенчатой ракеты была высказана Циолковским.

Для того, чтобы определить от чего зависит сила тяги ракеты, мы провели серию опытов с пластиковой бутылкой, подвешенной на нитях, в которой сделаны отверстия. Мы попробовал повторить опыт венгерского физика Я.А.Сегнера, который в 1750 году продемонстрировал свой прибор - "сегнерово колесо". В литровой бутылке мы меняли количество отверстий и температуру налитой воды (холодная вода имела температуру 21 0 С, горячая вода 95 0 С). В результате проделанных опытов были получены следующие результаты.

Мы убедились, что сила тяги увеличивается с ростом внутренней энергии топлива (воды), с увеличением скорости истечения топлива.

Классификация реактивных двигателей

hello_html_7193bff5.jpg

III .Доказательство формулы Циолковского

При реактивном движении горячие газы, образующиеся при сгорании топлива в двигателе ракеты, с большой скоростью выбрасываются через сопло в хвосте ракеты. Сила реакции вытекающей струи газов сообщает ракете ускорение. Поскольку масса ракеты постепенно уменьшается (выгорает топливо), модуль ускорения ракеты со временем изменяется.

10 мая 1897 года Циолковский вывел формулу, установившую зависимость между скоростью ракеты в любой момент, скоростью истечения газов из сопла, массой ракеты и массой взрывных веществ.

Закон сохранения импульса позволяет оценить скорость ракеты. Предположим сначала, что весь газ, образующийся при сгорании топлива, выбрасывается из ракеты сразу, а не постепенно, как это происходит в действительности. Обозначим массу газа через m г , а скорость газа через v г . Массу и скорость оболочки обозначим соответственно М р и v р .

Направим координатную ось вдоль направления движения оболочки, тогда проекции скоростей газа и оболочки по модулю будут равны модулям векторов, но знаки их противоположны. Так как сумма импульсов оболочки и газа должна быть равна нулю, то нулю должна быть равна и сумма их проекций: m г v г – М р v р = 0, или m г v г = М р v р . Отсюда находим скорость оболочки:

Из формулы видно, что скорость оболочки тем больше, чем больше скорость выбрасываемого газа и чем больше отношение массы газа к массе оболочки.

Мы считали, что весь газ выбрасывается из ракеты мгновенно. На самом деле он вытекает постепенно, хотя довольно быстро. Это значит, что после выброса какой-то части газа оболочке приходится “возить” с собой еще не вылетевшую часть топлива. Кроме того, мы не учли, что на ракету действуют сила тяжести и сила сопротивления воздуха. Все это приводит к тому, что отношение массы топлива к массе оболочки много больше, чем мы получили.

Более точный расчет показывает, что при скорости газа 2000 м/с, для достижения скорости, равной первой космической, масса топлива должна быть в 55 раз больше массы оболочки. Для межпланетных полетов (с возвращением на Землю) масса топлива должна быть в тысячи раз больше массы оболочки. В практике космических полетов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

Уменьшение общей массы ракеты путем отбрасывания уже ненужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты. Затем таким же образом отбрасывается вторая ступень.

Если возвращение космического корабля на Землю или его посадка на какую-либо другую планету не планируется, то третья ступень, как и две первых, используется для увеличения скорости ракеты.

Если же корабль должен совершить посадку, то она используется для торможения корабля перед посадкой. При этом ракету разворачивают на 180 градусов, чтобы сопло оказалось впереди. Тогда вырывающийся из ракеты газ сообщает ей импульс, направленный против скорости ее движения, что приводит к уменьшению скорости и дает возможность осуществить посадку.

IV .Примеры реактивного движения в природе

Реактивное движение технических устройств – копирование движения, встречающегося в природе. Морской моллюск-гребешок, резко сжимая створки раковины, рывками может двигаться вперед за счет реактивной струи воды, выброшенной из раковины. Приблизительно также передвигаются и некоторые другие моллюски. Личинки стрекоз набирают воду в заднюю кишку, а затем выбрасывают ее и прыгают вперед за счет силы отдачи. Зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Осьминог, так же как и кальмар, движется реактивным образом. Всасывая и с силой выталкивая воду, он скользит в волнах, точно живая ракета

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Примеры реактивного движения можно обнаружить и в мире растений. Созревшие плоды “бешеного” огурца при лёгком прикосновении отскакивают от плодоножки, и из образовавшегося отверстия с силой выбрасывается горькая жидкость с семенами; сами огурцы при этом отлетают в противоположном направлении. Стреляет бешеный огурец более чем на 12 метров: так он распространяет свои семена.

Когда смотришь по телевизору очередной запуск ракетной установки, гордишься тем, насколько человек умен и изобретателен, робеешь перед мощью созданной человеком и удивляешься красоте ее старта. Красота и практичность уживаются вместе в человеке, в природе, и в том, что создано им.

В настоящее время благодаря многим учёным со всего света, изучение реактивного движения продвинуто, но насколько оно продвинуто и сколько осталось до конца пути никто не знает. Человек уже был в космосе, но он понимает, что не увидел и одной миллиардной доли того, что бы хотел увидеть. Значит, и сегодня человеческая мысль направлена на решение задач, связанных с космическими полетами.

Работа над проектом нам дала многое. Хотя бы начать с того, что нам пришлось изучить много теоретического материала, а значит, научились извлекать информацию посредством сети интернет. Мы научились проектировать и ставить небольшие эксперименты, в зависимости от выдвинутых гипотез и предположений, работая над определенной задачей.

При выполнении собственного эксперимента поняли, как тяжел путь первооткрывателей, исследователей, людей, занимающихся наукой. Оказывается не всегда можно получить положительный результат эксперимента или объяснить полученный.

Умение анализировать имеющие факты, умение сопоставлять и прогнозировать, умение находить пути решения возникающих ситуаций – все это приходит с опытом, с практикой. Чтобы приобрести все эти навыки и снова получить удовлетворение от своих маленьких открытий, даже если они уже известны, мы и в следующем году продолжим работать над следующим исследовательским проектом.

Елисеева Лариса Ивановна

Исследование реактивной тяги на примере прототипа твердотопливного ракетного двигателя.

Проанализировать работу ТТРД, ЖРД, ИРД выявить основные принципы.

Рассмотреть способы применения.

Елисеева Лариса Ивановна

Учебная тема (к которой ваш проект имеет отношение)

Тип проекта по предметно-содержательной характеристике:

Краткая аннотация проекта.

Проект посвящён теме реактивного движения, при описании использованы законы классической физики.

Сроки реализации проекта

Ожидаемые результаты (продукт)

Публичное выступление и проведение экспериментов.

ВложениеРазмер
Проект по физике 352 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

Проектная работа по физике

Выполнил: Ревуков Вадим

Ученик 9Б класса

Руководитель проекта: Елисеева Лариса Ивановна, учитель

Ревуков Вадим Андреевич

Исследование реактивной тяги на примере прототипа твердотопливного ракетного двигателя.

Проанализировать работу ТТРД, ЖРД, ИРД выявить основные принципы.

Рассмотреть способы применения.

Елисеева Лариса Ивановна

Учебная тема (к которой ваш проект имеет отношение)

Тип проекта по предметно-содержательной характеристике:

Краткая аннотация проекта.

Проект посвящён теме реактивного движения, при описании использованы законы классической физики.

Сроки реализации проекта

Ожидаемые результаты (продукт)

Публичное выступление и проведение экспериментов.

Двигатели: жидкостный ракетный двигатель (далее - ЖРД), твердотопливный ракетный двигатель (далее - ТТРД), ионный ракетный двигатель (далее - ИРД); эффективно проявляют себя уже второе столетие. Они применяются в космонавтике, выполняя важнейшие для человечества задачи. Рациональных альтернатив они в данный момент не имеют.

Первые ракетные двигатели появились в Китае в III веке до н.э – IIвеке н.э. Они были твердотопливными, использующими силу, возникающую при взрыве пороха, и использовались для изготовления и применения фейерверков. В 16 веке Конрадом Хаасом была заложена теоретическая база о военных ракетах. Мысль о использовании нескольких ступеней тоже принадлежит ему. Далее огромный вклад внёс Константин Эдуардович Циолковский, который считается основоположником теоретической космонавтики.

Реактивное движение — движение, возникающее при отделении от системы тел некоторой её части с определённой скоростью. Обусловлено оно законом сохранения импульса , который звучит так. Векторная сумма импульсов тел, составляющих замкнутую систему не меняется с течением времени при любых движениях и взаимодействиях этих тел .

Чтобы перейти непосредственно к закону сохранения импульса, давайте сначала определимся с тем, что такое импульс .

Импульс тела — векторная величина, равная произведению массы тела на скорость тела. :

Первым человеком, который использовал понятие импульс, был Рене Декарт . Импульс он попытался использовать как величину, заменяющую силу. Причина такого подхода очевидна: измерять силу достаточно сложно, а измерение массы и скорости – вещь достаточно простая. Именно поэтому часто говорят, что импульс – это количество движения. А раз измерение импульса является альтернативой измерения силы, значит, нужно связать эти две величины.

Эти величины – импульс и силу – связывает между собой понятие импульс силы . Импульс силы записывается как произведение силы на время, в течение которого эта сила действует: импульс силы [H . c]. Специального обозначения для импульса силы нет.

Давайте рассмотрим взаимосвязь импульса и импульса силы. Рассмотрим такую величину, как изменение импульса тела, . Именно изменение импульса тела равно импульсу силы. Таким образом, мы можем записать: .

Закон сохранения импульса

Теперь перейдем к следующему важному вопросу – закону сохранения импульса . Этот закон справедлив для замкнутой изолированной системы.

Определение: замкнутой изолированной системой называют такую, в которой тела взаимодействуют только друг с другом и не взаимодействуют с внешними телами.

Для замкнутой системы справедлив закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной.

Обратимся к тому, как записывается закон сохранения импульса для системы из двух тел:

Эту же формулу мы можем записать следующим образом:

Суммарный импульс системы из двух шариков

сохраняется после их столкновения

Обратите внимание: данный закон дает возможность, избегая рассмотрения действия сил, определять скорость и направление движения тел. Этот закон дает возможность говорить о таком важном явлении, как реактивное движение.

Еще в античные времена ученые с интересом изучали и анализировали явления, связанные с реактивным движением в природе. Одним из первых, кто теоретически обосновал и описал его суть, был Герон, механик и теоретик Древней Греции, который изобрел первый паровой двигатель, названый в честь него.

Считается, что ракеты изобретены в древнем Китае.

Китайцы смогли найти реактивному методу практическое применение. Они первыми, взяв за основу способ передвижения каракатиц и осьминогов, еще в XIII веке изобрели ракеты. Более двух тысяч лет назад они изобрели и применили для военных целей ракеты простейшего устройства. Эта ракета была сходна с теми ракетами, которые применяются сейчас для фейерверка и сигнализации.

Китайцы использовали свою ракету как зажигательное средство главным образом при осаде вражеских городов. Ракетная трубка с небольшим запасом пороха привязывалась к стреле. Выбрасывая такую стрелу из лука, китайские воины сообщали ракете большую начальную скорость и увеличивали дальность ее полета.

На протяжении нескольких веков ракеты имели широкую популярность и распространение как реактивное оружие, были приняты на вооружение в армиях многих стран. Ракеты обладали довольно высокими техническими и тактическими свойствами. Скорость их полета равнялась примерно 350 метрам в секунду, дальность – нескольким километрам.

Со временем эта технология пришла и в Европу.

Первооткрывателем нового времени стал Н. Кибальчич, придумав схему прототипа летательного аппарата с реактивным двигателем. Он был выдающимся изобретателем и убежденным революционером, за что сидел в тюрьме. Именно находясь в заключении, он вошел в историю, создав свой проект. После его казни за активную революционную деятельность и выступления против монархии, его изобретение было забыто на архивных полках.

Основоположником современной космонавтики является калужский учитель Константин Эдуардович Циолковский. Годы жизни - 5 (17) сентября 1857 - 19 сентября 1935.

Он обосновал вывод уравнения движения, доказал необходимость двухступенчатых ракет. Циолковский предлагал заселить космическое пространство с использованием орбитальных станций.

В своей квартире Циолковский создал первую в России аэродинамическую лабораторию.

Сергей Павлович Королёв— советский учёный, конструктор и организатор производства ракетно-космической техники и ракетного оружия СССР.

Его конструкторские разработки в области ракетной техники имели исключительную ценность для развития советского ракетного вооружения, а вклад в организацию и развитие практической космонавтики имеет мировое значение.

В 1956 году под руководством С. П. Королёва была создана первая отечественная стратегическая ракета, ставшая основой ракетного ядерного щита страны.

12 апреля 1961года. Сергей Павлович Королёв снова поражает мировую общественность.

С. П. Королёв был генератором многих неординарных идей и прародителем выдающихся конструкторских коллективов, работающих в области ракетно-космической техники, его вклад в развитие отечественной и мировой пилотируемой космонавтики является решающим. Можно только удивляться многогранности таланта Сергея Павловича, его неиссякаемой творческой энергии. Он является первопроходцем многих основных направлений развития отечественных ракетного вооружения и ракетно-космической техники. Трудно себе даже представить, какого уровня достигла бы она, если бы преждевременная смерть Сергея Павловича не прервала творческий полёт его мыслей

Юрий Алексеевич Гагарин— русский советский лётчик-космонавт, первый человек, совершивший полёт в космическое пространство.

В 1954 году впервые пришёл в Саратовский аэроклуб. В 1955 году Юрий Гагарин добился значительных успехов, закончил с отличием учёбу и совершил первый самостоятельный полет на самолёте Як-18.

27 октября 1955 года Гагарин был призван в армию и отправлен в Оренбург, в 1-е военно-авиационное училище лётчиков имени К. Е. Ворошилова. 25 октября 1957 Гагарин училище закончил

Работы по усовершенствованию космической техники продолжались. Были созданы орбитальные станции, постоянно действующие на околоземной орбите.

Десять лет назад с запуска российского модуля "Заря" началась реализация самого амбициозного космического проекта 20 и 21 веков - строительство Международной космической станции (МКС).

Построенный в России модуль "Заря" стал первым элементом самого большого на сегодняшний день сооружения в космосе. На орбиту российскую "Зарю" вывела ракета-носитель "Протон", стартовавшая с Байконура.

Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу. В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении .

Импульс системы (ракета-продукты сгорания) остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения. Движение ракеты - это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.

Закон сохранения импульса позволяет оценить скорость ракеты. Предположим, что весь газ, образующийся при сгорании топлива, выбрасывается из ракеты сразу, а не постепенно, как это происходит в действительности. Обозначим массу газа через m г , а скорость газа через v г . Массу и скорость оболочки обозначим соответственно m об и v об . Направим координатную ось вдоль направления движения оболочки, тогда проекции скоростей газа и оболочки по модулю будут равны модулям векторов, но знаки их противоположны.

Так как сумма импульсов оболочки и газа должна быть равна нулю, то нулю должна быть равна и сумма их проекций:

m г v г - m об v об = 0 ,

m г v г = m об v об .

Отсюда находим скорость оболочки: v об = m г v г /m об.

Вывод: чем больше скорость выбрасываемого газа и чем больше отношение массы газа к массе оболочки, тем больше скорость оболочки.

Следовательно, чтобы увеличить скорость движения ракеты, нужно взять массу топлива во много раз больше массы полезного груза.

Мы считали, что весь газ выбрасывается из ракеты мгновенно. На самом деле он вытекает постепенно, хотя довольно быстро. Это значит, что после выброса какой-то части газа оболочке приходится “возить” с собой еще не вылетевшую часть топлива. Кроме того, мы не учли, что на ракету действуют сила тяжести и сила сопротивления воздуха. Все это приводит к тому, что отношение массы топлива к массе оболочки много больше, чем мы получили. Более точный расчет показывает, что при скорости газа 2000 м/с, для достижения скорости, равной первой космической, масса топлива должна быть в 55 раз больше массы оболочки. Для межпланетных полетов (с возвращением на Землю) масса топлива должна быть в тысячи раз больше массы оболочки.

Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели. Ракетные двигатели бывают на твердом или на жидком топливе. В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя. В жидкостно-реактивных двигателях, предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, - жидкий кислород, азотную кислоту, и др.

Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.

Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы. К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором. Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины .

При очень больших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.

Так устроены прямоточные воздушно-реактивные двигатели. Поэтому при полетах в плотных слоях атосферы для более полного использования мощности реактивного двигателя на валу турбины устанавливают воздушный винт.

В практике космических полетов обычно используют многоступенчатые ракеты, развивающие большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

После того как топливо и окислитель первой ступени будут полностью израсходованы, эта ступень автоматически отбрасывается и в действие вступает двигатель второй ступени.

Уменьшение общей массы ракеты путем отбрасывания уже ненужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты. Затем таким же образом отбрасывается вторая ступень.

Если возвращение космического корабля на Землю или его посадка на какую-либо другую планету не планируется, то третья ступень, как и две первых, используется для увеличения скорости ракеты. Если же корабль должен совершить посадку, то она используется для торможения корабля перед посадкой. При этом ракету разворачивают на 180 о , чтобы сопло оказалось впереди. Тогда вырывающийся из ракеты газ сообщает ей импульс, направленный против скорости ее движения, что приводит к уменьшению скорости и дает возможность осуществить посадку.

Итак, видим, что скорость ракеты зависит от скоростивытекающих газов из сопла ракеты и от массы сгораемого топлива

  1. Применение закона сохранения импульса на практике.
  2. Заключение

Работа над проектом мне дала многое. Хотя бы начать с того, что мне пришлось изучить много теоретического материала, Я научился проектировать и ставить небольшие эксперименты, в зависимости от выдвинутых гипотез и предположений, работая над определенной задачей.

При выполнении собственного эксперимента понял, как тяжел путь первооткрывателей, исследователей, людей, занимающихся наукой. Оказывается, не всегда можно получить положительный результат эксперимента или объяснить полученный.

Умение анализировать имеющие факты, умение сопоставлять и прогнозировать, умение находить пути решения возникающих ситуаций – все это приходит с опытом, с практикой.

Используя источники информации, я сумел найти информацию о реактивном движении, его причинах, а также о том, какую пользу оно несет людям. Кроме того, я построил действующую модель ракеты на реактивном топливе.

Когда я сейчас смотрю очередной запуск ракетной установки, то перед глазами встает - моя пусковая установка с маленькой пластмассовой ракетой, и я горжусь тем, насколько человек умен и изобретателен. И я, могу уверенно сказать, что гипотеза, что вынесенная в начале моей работы полностью подтвердилась. У меня получится создать модель и запустить ее в воздух, для этого мне пришлось действительно разобраться в принципах реактивного движения, а также в принципах устройства современных ракет. Тем самым мне удалось достичь цели проекта.

В настоящее время благодаря многим учёным со всего света, изучение реактивного движения продвинуто, но насколько оно продвинуто и сколько осталось до конца пути никто не знает. Человек уже был в космосе, но он понимает, что не увидел и одной миллиардной доли того, что бы хотел увидеть. Значит, и сегодня человеческая мысль направлена на решение задач, связанных с космическими полетами.

Читайте также: