Реферат понятие релятивистского интервала диаграммы минковского столкновения релятивистских частиц

Обновлено: 05.07.2024

Немецкий ученый Г. Минковский (1864-1909) предложил геометрический метод описания пространственно-временных соотношений, в котором по правилам, определяемым преобразованиями Лоренца, каждому событию ставятся в соответствие три пространственных и одна временная координаты. Совокупность ( ) представляет собой мировую точку, характеризующую некоторое событие; всё многообразие мировых точек образует четырехмерное пространство, называемое пространством Минковского, или миром. Линия в пространстве Минковского - мировая линия. Каждой частице, даже неподвижной, в пространстве Минковского соответствует мировая линия.

- радиус-вектор пространства-времени.

Совокупность координат события можно рассматривать как компоненты четырехмерного радиус-вектора в четырехмерном пространстве-времени. Поэтому -радиус-вектором пространства-времени называют совокупность четырех величин :

преобразующихся по определенному правилу:

Примечание. Величины, снабженные верхним индексом, носят название контравариантных; нижним –

ковариантных.

Формулы полного преобразования Лоренца могут быть записаны в виде:

Если ввести матрицу преобразования , то:

где подразумевается суммирование по повторяющимся значкам, а сама матрица имеет вид:

Поэтому преобразования Лоренца представляются в виде:

Квадрат “длины” -радиус-вектора есть квадрат интервала, отсчитанный от начала системы отсчета:

Совокупность четырех осей , имеющих общее начало, можно в широком смысле назвать системой координат.

Тогда формально преобразования Лоренца сводятся к повороту координатных осеймерного пространства.

Длина”радиус-вектора при любых поворотах четырехмерной системы координат, в частности при преобразованиях Лоренца, всегда сохраняется.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Министерство Образования Российской Федерации

Тульский Государственный Университет

Кафедра физики
реферат

Релятивистская причинность
Выполнил: студент группы 520331 Никитин Иван.

Проверил: Жарков Р.В.
Тула 2003
Содержание


Введение

2

Концепции причинности

3

Характеристика релятивистской концепции причинности

4

Проблемы релятивистской концепции причинности

6

Вывод

10

Список использованной литературы

11

    • Модели, опирающиеся на временной подход (эволюционные модели). Здесь главное внимание акцентируется на временной стороне причинно-следственных отношений. Одно событие – "причина" – порождает другое событие – "следствие", которое во времени отстает от причины (запаздывает). Запаздывание – отличительный признак эволюционного подхода. Причина и следствие взаимообусловлены. Однако ссылка на порождение следствия причиной (генезис), хотя и законна, но привносится в определение причинно-следственной связи как бы со стороны, извне. Она фиксирует внешнюю сторону этой связи, не захватывая глубоко сущности. Эволюционный подход развивался Ф. Бэконом, Дж. Миллем и др. Крайней полярной точкой эволюционного подхода явилась позиция Юма. Юм игнорировал генезис, отрицая объективный характер причинности, и сводил причинную связь к простой регулярности событий.


· Модели, опирающиеся на понятие "взаимодействие" (структурные или диалектические модели). Главное внимание здесь уделяется взаимодействию как источнику причинно-следственных отношений. В роли причины выступает само взаимодействие. Большое внимание этому подходу уделял Кант, но наиболее четкую форму диалектический подход к причинности приобрел в работах Гегеля. Из современных советских философов этот подход развивал Г. А. Свечников, который стремился дать материалистическую трактовку одной из структурных моделей причинно-следственной связи.

Существующие и использующиеся модели различным образом вскрывают механизм причинно-следственных отношений, что приводит к разногласиям и создает основу для философских дискуссий. Острота обсуждения и полярный характер точек зрения свидетельствуют об их актуальности.

Основной из дискутируемых является проблема одновременности причины и следствия. Одновременны причина и следствие или разделены интервалом времени? Если причина и следствие одновременны, то почему причина порождает следствие, а не наоборот? Если же причина и следствие – неодновременны, может ли существовать "чистая" причина, то есть причина без следствия, которое еще не наступило, и "чистое" следствие, когда действие причины кончилось, а следствие еще продолжается? Что происходит в интервале между причиной и следствием, если они разделены во времени, и так далее?

На основе пространственно-временных представлений теории относительности воз­ никла концепция причинности, которая ря­ дом существенных пунктов отличается от причинности, принятой классической физи­ кой. Новая концепция углубила понимание сущности причинности. В частности, она раз­ решила старый спор о том, одновременны или разновременны причина и следствие, показав, что причина всегда предшествует следствию во времени. Но вместе с тем новая концепция сама столкнулась с рядом трудно­ стей, которые и определяют содержание проблемы причинности в теории относитель­ ности.

Проблема причинности чаще всего подни­ мается в связи с квантовой физикой. Ее ост­ рота в данной науке обусловлена статистиче­ ским характером квантово-механическях за­ кономерностей. С точки зрения квантовой физики, наблюдатель на основе знания на­ чальных условий квантового объекта, в прин­ ципе, не может однозначно определить его будущее состояние. Он может определить лишь вероятность такого состояния. Поэтому неизбежно встает задача — выяснить приро­ ду причины вероятностей, а также механизм их сочетания с объективной детерминированно­ стью квантовых процессов.

Теория относительности является не ста­тистической, а динамической теорией. Проб­лема причинности, с которой она сталкивает­ ся, совершенно иного рода. Она затрагивает не вопрос о неоднозначности связи между причиной и следствием, а пространственно – временной аспект причинности.

В теории относительности существуют различные формы проблемы причинности. Одна из них возникает в специальной теории относительности, другая — в общей.
2.
Концепции причинности.

Понятие причинности многозначно. В раз личных отраслях знания и даже в рам­ ках одной науки в термин “причинность” нередко вкладывается разное содержание. Иногда под причинностью понимают процесс порождения причиной следствия, иногда — влияние, которое оказывает одно явление на другое. Существует и такая трактовка, кото­рая рассматривает причинность как возмож­ ность предсказуемости на основе знаний од­них явлений — новых явлений и т. д. Неред­ко ведутся споры о том, какое понимание причинности является истинным. Однако поиски истинного значения причинности, если под последним подразу­ мевается некое универсальное и единственно возможное значение, бесплодны. Основными являются трак­ товки причинности, основанных на двух физических теориях.

· Принцип дальнодействия. На этом принципе базируется физика Ньютона. Высказывает мнение, что причинное действие может передаваться с какой угодно большой скоростью. Отсюда следовала принципиальная возможность ус­ тановить причинную связь между любыми событиями Вселенной. С принципом дально­ действия связан следующий парадокс. По “ логике вещей ” причина должна предшест­ вовать следствию. Но, ввиду того, что ско­ рость причинного действия бесконечна, при­чина и следствие должны быть одновремен­ ными.


· Принцип близкодействия. Этой трактовки придерживается теория относительности. С огласно этому под причинно­ стью обычно понимают влияние, которое оказывает событие, происшедшее раньше, на событие, происшедшее позже. Скорость передачи причинного дейст­ вия конечна и не может превышать скорости света в вакууме. Этот принцип устраняет упомянутый парадокс, а вместе с тем накла­дывает ограничение на возможность уста­ новления причинной связи между события­ ми. В соответствии с ним не все, а лишь не­ которые события могут находиться между собой в отношении причины и следствия. То есть дан­ ное событие может оказать влияние только на те события, которые происходят позже его, и не может оказывать влияния на собы­ тия, совершившиеся раньше. Вклад теории относительности в развитие представлений о причинности связан именно с таким пони­ манием ее сущности.

Стоит отметить, что ограничение, накладываемое теорией от­ носительности на причинность, не является чисто негативным. Оно не только сужает об­ ласть причинно связанных событий, но и приводит к переосмыслению содержания са­ мого понятия причинности.
3.
Характеристика релятивистской концепции причинности.
Для концепции причинности, разработан­ ной на основе теории относительности, ха­рактерны следующие черты.

· Во-первых, она утверждает, что причинность есть отношение не между вещами, а между событиями. Во­ обще говоря, такое понимание причинности совместимо и с классической физикой. Одна­ко здесь связь между событиями может быть заменена связью между вещами. С точки зре­ ния теории относительности, понятие собы­тия является необходимым для формулиров­ ки принципа причинности. Именно понятие события, которое характеризуется не только местом, где оно произошло, но и временем, когда оно произошло, дает возможность поста­вить пространственно-временные условия причинно-следственной связи.

· В-третьих. Существенным моментом реля­ тивистского учения о причинности, является утверждение об ее инвариантности. Это озна­чает следующее. Допустим, что имеются два события А и В . Эти события располагают­ ся на некоторой временно-подобной линии в пространстве Минковского. Если А есть причина B в некоторой инерциальной системе отсчёта, то A является причиной B и в некоторой другой инерциальной системе отсчёта, движущейся относительно первой со скоростью меньшей скорости света. Инвариантность причинности означает что линия, являющаяся временно-подобной в одной системе отсчёта, временно-подобна и в другой.

Рассмотрение вопроса об инвариантности причинной связи позволяет выявить некоторые важные аспекты релятивистской причинности.

Может показаться, что первоначальность причины по отношению к следствию носит характер логической необходимости, вытекающей из самого определения причинности. Мы зрительно определяем причинность таким образом, что причина фигурирует как нечто, происходящее раньше следствия и оказывающее на него влияние. Но вопрос о месте причины по отношению к следствию в разных системах отсчёта носит не логический, а физический характер. Инвариантность причинной связи основана не на законах логики, а на законах физики. Она связана с физическим принципом близкодействия.

Допустим, вопреки принципу близкодействия, что в некоторой системе отсчёта событие А причинно воздействует на В, причём скорость причинного взаимодействия превышает скорость света. Это означает, что события располагаются на некоторой, соединяющей их, пространственно-подобной линии. В таком случае найдётся система отсчёта, в которой событие В будет предшествовать А.


Представим себе следующий гипотетиче­ский случай. Из пушки, расположенной на Земле, произведен выстрел; скорость полета снаряда является сверхсветовой. В этом слу­чае интервал между выстрелом и взрывом снаряда является пространственно-подобным. В системе Земли выстрел предшествует взры­ву и является причиной последнего. Но мы могли бы найти такую систему отсчета, дви­жущуюся относительно Земли с определенно выбранной скоростью (досветовой), наблюда­тель которой зафиксировал бы, что вначале произошел взрыв, а затем выстрел. В данной системе отсчета следствие предшествовало бы причине во времени. Проиллюстрируем это на чертеже.

Имеется и другая возможность наруше­ния инвариантности временного порядка при­чинно связанных событий. Пусть события А и В являются соответственно причиной и следствием, причем скорость причинного дей­ствия V C . Это значит, что они расположе­ны на временно-подобной линии. Если мы бу­дем рассматривать этот временной порядок в другой системе отсчета, движущейся отно­сительно первой с досветовой скоростью, то он останется неизменным. Но если скорость второй системы отсчета будет сверхсветовой, то временной порядок причинно связанных событий перестанет быть инвариантным. В такой системе отсчета при соответствую­щем выборе V>
C
событие В может предше­ствовать А. Например, снаряд пушки, распо­ложенный на Земле, мог бы лететь с досве­товой скоростью. Но наблюдатель, пролетав­ший на космическом корабле мимо Земли со сверхсветовой скоростью, все равно зафик­сировал бы вначале взрыв снаряда, а потом выстрел.

Можно возразить, что сверхсветовые скорости — вещь невозможная. Поэтому не­возможной является и неинвариантность вре­менного порядка. На это можно ответить так.

Во-первых, если это и невозможно, то данная невозможность имеет не логический, а физи­ческий характер и связана с некоторыми особенностями физической структуры наше­го мира. Допущение сверхсветовых скоро­стей не приводит ни к каким логическим про­тиворечиям. Оно противоречит физическому принципу — принципу близкодействия.

Во-вторых, степень этой невозможности не следует преувеличивать. Доказательством тому служит современное развитие квантовой теории поля. Обычная квантовая теории поля принимает принцип локальности, согласно которому во взаимодействие вступают лишь поля, взятые в одной и той же точке пространства-времени. Однако таким теории сталкивается с целым рядом трудностей, для преодоления которых приходится жертвовать принципом локальности. В нелокальных теориях допускается взаимодействие нолей в разных точках пространства и времени, которые разделены пространственно-подобным интервалом. Такое взаимодействие может осуществляться лишь со сверхсветовыми ско­ростями. Допущение же сверхсветовых ско­ростей приводит к нарушению принципа причинности, точнее, требования инвариантно­сти причинности.
4.
Проблемы релятивистской концепции причинности.

В большинстве пространственно-времен­ных структур, описываемых решениями гра­витационных уравнений, временно-подобные представляют собой незамкнутые линии. На­пример, в первой космологической модели, полученной Эйнштейном в 1917 году, про­странственное сечение имело положительную кривизну, а потому все пространственно-по­добные геодезические были замкнутыми. Но временно-подобные геодезические линии здесь были незамкнутыми.

Однако незамкнутость временно-подобных пространственно-временных структур, ис­пользуемых общей теорией относительности, не означает, что это свойство временно-подобных линий является непреложным. Гёдель обра­тил внимание на исключения из этого правила. В 1949 году им была получена космологиче­ская модель, удовлетворяющая уравнениям общей теории относительности, у которой только часть временно-подобных линий были замкнуты. В этой модели, которая является однородной, но анизотропной (модели присуще враще­ние), наблюдается следующее. Если на миро­вой линии некоторой частицы выделить точ­ки А и В, причем таким образом, что А пред­шествует Б, то найдется другая временно-подобная, соединяющая А и Б, на которой Б предшествует А. Таким образом, модель Гё­деля всё же содержит конструкцию временно-подобных с замкнутым временным порядком.

С точки зрения теории относительности, существует корреляция между временем и причинностью. Поскольку причинное дейст­вие может распространяться только вдоль временно-подобных линий, то замкнутость последних (например, в смысле Гёделя) означает и зам­кнутость причинной цепи.

Насколько правомерна конструкция зам­кнутого причинного порядка? Сам Гёдель считал эту конструкцию логически неопро­вержимой. Единственно, в чем он сомневал­ся, так это в ее практической осуществимо­сти. Для того чтобы некоторый наблюдатель через определенное время смог вернуться к своему прошлому, он должен совершить путешествие на корабле, скорость которого не меньше . Гёдель подсчитал, что для до стижения такой скорости космический ко­ рабль должен израсходовать топливо (при полной аннигиляции вещества), масса кото рого в (при t ) больше массы са­ мого корабля.

Возникает вопрос: действительно ли кон­струкции с замкнутым причинным порядком, удовлетворяющие уравнениям общей теории относительности, противоречат принципу причинности, и если да, то каковы пути пре­одоления этого противоречия? Этот вопрос можно рассматривать как одну из формулировок проблемы причинности в общей теории относительности. Ответ на вопрос, противоречива или нет конструкция замкнутой причинной цепи, зависит от того, что понимается под компонентами причинной связи. Если считать, что ими являются вещи, характеризующиеся только пространственной конфигурацией и набором физических свойств, то в этой конструкции, по-видимому, нет ничего противоречивого. Мы, например, могли бы интерпретировать ее как систему, состоящую из шариков, расположенных вдоль замкнутой линии, каждый из которых ударят в соседний.

Эта механическая система осуществима и может функционировать, причем как угодно долго, если мы абстрагируемся от трения, со­противления среды, в которой шарики взаи­модействуют друг с другом.

Конечно, в этой конструкции имеется много необычного с точки зрения принципа причинности в его традиционной формулировке. Так, оказывается, что следствие воздействует на свою собственную причину. Од­нако в этом нет какого-либо противоречия. Дело просто в том, что замкнутая причинная цепь является скрытой формой взаимодейст­вия вещей, а именно взаимодействия через серию промежуточных действий. Так, а2 воз­ действует а5 на через а3 и а4 , а а5 воздейст­ вует на а1 через а6, а7 и а8.

Интерпретация причинной связи как связи между вещами характерна для классиче­ской физики. Поэтому мы можем утверждать, что в рамках классической физики конструкция замкнутого причинного порядка непротиворечива. Иная картина наблюдается с точки зрения теории относительности. Здесь в качестве компонент причинной связи фигу­рируют не вещи, а события, которые харак­теризуются не только пространственными, но и временными параметрами. Если в замкнутой цепи причинно связанных вещей нет ничего противоречивого, то этого нельзя сказать о замкнутой конструкции причинно связанных событий.

Если конструкция замкнутой причинной цепи и временного порядка внутренне непротиворечива, то, как она могла возникнуть в теории относительности, и как от нее можно было бы избавиться? На взгляд Э. Чудинова, основная причина появления этой конструкции связана с геометрическим описанием времени, принятым теорией относительности.

Появление в общей теории относительности конструкций с замкнутым временем можно объяснить тем, что геометрическое описание времени, которым оперирует эта теория, не учитывает явным образом топологию как порядкового отношения.

В классической динамике мы начали с законов Ньютона, потом перешли к импульсу, а после него — к энергии. Здесь мы ради простоты изложения поступим ровно наоборот: начнём с энергии, затем перейдём к импульсу и закончим релятивистским уравнением движения — модификацией второго закона Ньютона для теории относительности.

Релятивистская энергия


Предположим, что изолированное тело массы покоится в данной системе отсчёта. Одно из самых впечатляющих достижений теории относительности — это знаменитая формула Эйнштейна:

Здесь — энергия тела, — скорость света в вакууме. Поскольку тело покоится, энергия , вычиляемая по формуле (1) , называется энергией покоя.

Интересно, какое количество топлива нужно сжечь, чтобы выделилось столько энергии? Возьмём, например, дерево. Его удельная теплота сгорания равна Дж/кг, поэтому находим: кг . Это девять миллионов тонн!

Ещё для сравнения: такую энергию единая энергосистема России вырабатывает примерно за десять дней.

Почему столь грандиозная энергия, содержащаяся в теле, до сих пор оставалась нами незамеченной? Почему в нерелятивистских задачах, связанных с сохранением и превращением энергии, мы не учитывали энергию покоя? Скоро мы ответим на этот вопрос.

Поскольку энергия покоя тела прямо пропорциональна его массе, изменение энергии покоя на величину приводит к изменению массы тела на

Так, при нагревании тела возрастает его внутренняя энергия, и, стало быть, масса тела увеличивается! В повседневной жизни мы не замечаем этого эффекта ввиду его чрезвычайной малости. Например, для нагревания воды массой кг на (удельная теплоёмкость воды равна ) ей нужно передать количество теплоты:

Увеличение массы воды будет равно:

Столь ничтожное изменение массы невозможно заметить на фоне погрешностей измерительных приборов.

Формула ( 1 ) даёт энергию покоящегося тела. Что изменится, если тело движется?

Снова рассмотрим неподвижную систему отсчёта и систему , движущуюся относительно со скоростью . Пусть тело массы покоится в системе ; тогда энергия тела в системе есть энергия покоя, вычисляемая по формуле ( 1 ). Оказывается, при переходе в систему энергия преобразуется так же, как и время — а именно, энергия тела в системе , в которой тело движется со скоростью , равна:

Выражение для полной энергии ( 2 ) позволяет сделать важные выводы о возможных скоростях движения объектов в природе.

1. Каждое массивное тело обладает определённой энергией, поэтому необходимо выполнение неравенства

Оно означает, что : скорость массивного тела всегда меньше скорости света.

2. В природе существуют безмассовые частицы (например, фотоны), несущие энергию. При подстановке в формулу ( 2 ) её числитель обращается в нуль. Но энергия-то фотона ненулевая!

Единственный способ избежать здесь противоречия — это принять, что безмассовая частица обязана двигаться со скоростью света. Тогда и знаменатель нашей формулы обратится в нуль, так что формула ( 2 ) попросту откажет. Нахождение формул для энергии безмассовых частиц не входит в компетенцию теории относительности. Так, выражение для энергии фотона устанавливается в квантовой физике.

С помощью этих формул последовательно получаем из ( 2 ):

Таким образом, при малых скоростях движения полная энергия сводится просто к сумме энергия покоя и кинетической энергии. Это служит мотивировкой для определения понятия кинетической энергии в теории относительности:

При формула ( 6 ) переходит в нерелятивистское выражение .

Теперь мы можем ответить на заданный выше вопрос о том, почему до сих пор не учитывалась энергия покоя в нерелятивистских энергетических соотношениях. Как видно из ( 5 ), при малых скоростях движения энергия покоя входит в полную энергию в качестве слагаемого. В задачах, например, механики и термодинамики изменения энергии тел составляют максимум несколько миллионов джоулей; эти изменения столь незначительны по сравнению с энергиями покоя рассматриваемых тел, что приводят к микроскопическим изменениям их масс. Поэтому с высокой точностью можно считать, что суммарная масса тел не меняется в ходе механических или тепловых процессов. В результате суммы энергий покоя тел в начале и в конце процесса попросту сокращаются в обеих частях закона сохранения энергии!

Но такое бывает не всегда. В других физических ситуациях изменения энергии тел могут приводить к более заметным изменениям суммарной массы. Мы увидим, например, что в ядерных реакциях отличия масс исходных и конечных продуктов обычно составляют доли процента.Скажем, при распаде ядра урана суммарная масса продуктов распада примерно на меньше массы исходного ядра. Эта одна тысячная доля массы ядра высвобождается в виде энергии, которая при взрыве атомной бомбы способна уничтожить город.

При неупругом столкновении часть кинетической энергии тел переходит в их внутренюю энергию. Релятивистский закон сохранения полной энергии учитывает этот факт: суммарная масса тел после столкновения увеличивается!

Рассмотрим в качестве примера два тела массы , летящих навстречу друг другу с одинаковой скоростью . В результате неупругого столкновения образуется тело массы , скорость которого равна нулю по закону сохранения импульса (об этом законе речь впереди). Согласно закону сохранения энергии получаем:

Мы видим, что, 2m' alt='M> 2m' /> — масса образовавшегося тела превышает сумму масс тел до столкновения. Избыток массы, равный , возник за счёт перехода кинетической энергии сталкивающихся тел во внутреннюю энергию.

Релятивистский импульс.

Классическое выражение для импульса не годится в теории относительности — оно, в частности, не согласуется с релятивистским законом сложения скоростей. Давайте убедимся в этом на следующем простом примере.

Пусть система движется относительно системы со скоростью (рис. 1 ). Два тела массы в системе летят навстречу друг другу с одинаковой скоростью . Происходит неупругое столкновение.


Рис. 1. К закону сохранения импульса

В системе тела после столкновения останавливаются. Давайте, как и выше, найдём массу образовавшегося тела:

Теперь посмотрим на процесс столкновения с точки зрения системы . До столкновения левое тело имеет скорость:

Правое тело имеет скорость:

Нерелятивистский импульс нашей системы до столкновения равен:

После столкновения получившееся тело массы двигается со скоростью .
Его нерелятивистский импульс равен:

Как видим, , то есть нерелятивистский импульс не сохраняется.

Давайте вернёмся к только что рассмотренному примеру и убедимся, что теперь с законом сохранения импульса всё будет в порядке.

Импульс системы до столкновения:

Импульс после столкновения:

Вот теперь всё правильно: !

Связь энергии и импульса.

Из формул ( 2 ) и ( 7 ) можно получить замечательное соотношение между энергией и импульсом в теории относительности. Возводим обе части этих формул в квадрат:

Это и есть искомое соотношение:

Данная формула позволяет выявить простую связь между энергией и импульсом фотона. Фотон имеет нулевую массу и движется со скоростью света. Как уже было замечено выше, сами по себе энергия и импульс фотона в СТО найдены быть не могут: при подстановке в формулы ( 2 ) и ( 7 ) значений и мы получим нули в числителе и знаменателе. Но зато с помощью ( 8 ) легко находим: , или

В квантовой физике устанавливается выражение для энергии фотона, после чего с помощью формулы ( 9 ) находится его импульс.

Релятивистское уравнение движения.

Рассмотрим тело массы , движущееся вдоль оси под действием силы . Уравнение движения тела в классической механике — это второй закон Ньютона: . Если за бесконечно малое время приращение скорости тела равно , то , и уравнение движения запишется в виде:

Все эти вещи вам знакомы, но повторить никогда не помешает ;-)

Классическое уравнение движения — второй закон Ньютона — является инвариантным относительно преобразований Галилея, которые в классической механике описывают переход из одной инерциальной системы отсчёта в другую (это означает, напомним, что при указанном переходе второй закон Ньютона сохраняет свой вид). Однако в СТО переход между инерциальными системами отсчёта описывается преобразованиями Лоренца, а относительно них второй закон Ньютона уже не является инвариантным. Следовательно, классическое уравнение движения должно быть заменено релятивистским, которое сохраняет свой вид под действием преобразований Лоренца.

То, что второй закон Ньютона ( 10 ) не может быть верным в СТО, хорошо видно на следующем простом примере. Допустим, что к телу приложена постоянная сила. Тогда согласно классической механике тело будет двигаться с постоянным ускорением; скорость тела будет линейно возрастать и с течением времени превысит скорость света. Но мы знаем, что на самом
деле это невозможно.

Правильное уравнение движения в теории относительности оказывается совсем не сложным.
Релятивистское уравнение движения имеет вид ( 11 ), где p — релятивистский импульс:

Производная релятивистского импульса по времени равна силе, приложенной к телу.

В теории относительности уравнение ( 12 ) приходит на смену второму закону Ньютона.

Давайте выясним, как же в действительности будет двигаться тело массы m под действием постоянной силы . При условии из формулы ( 12 ) получаем:

Остаётся выразить отсюда скорость:

Посмотрим, что даёт эта формула при малых и при больших временах движения.
Пользуемся приближёнными соотношениями при :

Формулы ( 14 ) и ( 15 ) отличаются от формул ( 3 ) и ( 4 ) только лишь знаком в левых частях. Очень рекомендую вам запомнить все эти четыре приближённых равенства — они часто используются в физике.

Итак, начинаем с малых времён движения. Преобразуем выражение ( 13 ) следующим образом:

При малых имеем:

Последовательно пользуясь нашими приближёнными формулами, получим:

Выражение в скобках почти не отличается от единицы, поэтому при малых имеем:

Здесь — ускорение тела. Мы получили результат, хорошо известный нам из классической механики: скорость тела линейно растёт со временем. Это и не удивительно — при малых временах движения скорость тела также невелика, поэтому мы можем пренебречь релятивистскими эффектами и пользоваться обычной механикой Ньютона.

Теперь переходим к большим временам. Преобразуем формулу ( 13 ) по-другому:

При больших значениях имеем:

Хорошо видно, что при скорость тела неуклонно приближается к скорости света , но всегда остаётся меньше — как того и требует теория относительности.

Зависимость скорости тела от времени, даваемая формулой ( 13 ), графически представлена на рис. 2 .


Рис. 2. Разгон тела под действием постоянной силы

Начальный участок графика — почти линейный; здесь пока работает классическая механика. Впоследствии сказываются релятивистские поправки, график искривляется, и при больших временах наша кривая асимптотически приближается к прямой .

Долгое время казалось, что механика Ньютона может дать теоретическое объяснение любых явлений. Однако постепенно выявлялись границы применимости классической механики. Решающую роль сыграло здесь изучение электромагнитных процессов и создание классической теории электромагнетизма. Центральное место в этой теории занимает представление об электромагнитном поле. Электромагнитное поле - особый вид материи, который подчиняется не законам классической механики (механики Ньютона), а иным законам, математическим выражением которых являются уравнения Максвелла.

Теории электромагнитного поля Максвелла были присущи два недостатка:

1. Она не совмещалась с принципом относительности движения классической физики, поскольку ее уравнения оказались неинвариантными относительно преобразований Галилея.

2. Полевая картина физической реальности оказалась теоретически неполной и логически противоречивой. Эйнштейн отмечал: теория Максвелла хотя и правильно описывает поведение электрически заряженных частиц ,но не дает теории этих частиц. Следовательно, они должны рассматриваться на основе классической механики как материальные точки, расположенные в пространстве дискретно, что противоречит понятию поля. Последовательная полевая теория требует непрерывности всех элементов теории.

Остановимся теперь на первом недостатке. Анализ показал, что уравнения Максвелла неинвариантны относительно галилеевых преобразований. Это значит, что при переходе от одной ИСО к другой форма уравнений оказалась разной. Это равносильно тому, что в разных системах отсчета один и тот же физический процесс осуществлялся по разным законам, что противоречит науке.

Проблему пытались решить путем переработки уравнений Максвелла, это ни к чему не привело.

В 1904 г. Лоренц решил видоизменить правила галилеевых преобразований так, чтобы относительно этих правил уравнения Максвелла оказались инвариантными.

Лоренцевы преобразования – это новые правила перехода от одной ИСО к другой. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:


Лоренц искусственно получил новые правила перехода. При этом уравнения Максвелла оказываются инвариантными в любых ИСО. Однако неясно было имеют ли преобразования физический смысл.

Эйнштейн предпринял попытку дедуктивного построения теории, которая бы наполнила преобразования Лоренца физическим смыслом – теорию относительности.

Теория относительности Эйнштейна объединяет классическую механику и электромагнитную теорию Максвелла и выступает как релятивистская механика.

Релятивистская (эйнштейновская) механика изучает движение материальных объектов при скоростях, сравнимых со скоростью света в вакууме.

В ее основе лежат два постулата:

1. Принцип относительности движения. Равноправие всех инерциальных систем отсчета. Инерциальная система отсчета – это система отсчета, в которой справедлив первый закон Ньютона (закон инерции). Любая система отсчета, движущаяся относительно инерциальной системы отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Напомним, что движение тела, при котором все его точки в данный момент времени движутся одинаково, называется поступательным движением. Движение с постоянной по модулю и направлению скоростью называется равномерным прямолинейным движением. При равномерном прямолинейном движении тело движется по прямой и за любые равные промежутки времени проходит одинаковый путь.

Равноправие всех инерциальных систем отсчета означает, что во всех таких системах законы физики одинаковы. Это утверждение называется релятивистской инвариантностью.

2. Принцип постоянства скорости света в вакууме. Скорость света в вакууме принято обозначать буквой с (с= 300000 км/с). Этот постулат означает, что скорость света в вакууме не зависит от движения источника света.

Скорость света является максимальной возможной скоростью распространения материальных взаимодействий.

Первый постулат означает, что, находясь в закрытой кабине и производя наблюдения над механическим движением, электрическими и магнитными процессами и любыми другими явлениями, невозможно установить, покоится кабина или движется равномерно и прямолинейно. Тем самым устанавливается относительность понятий “покой” и “равномерное прямолинейное движение”.

Из этих двух физических принципов Эйнштейн заново вывел математические преобразования Лоренца, но теперь наполнив их физическим смыслом.

1. с ростом механической скорости объекта, его пространственные размеры укорачиваются:

где l -длина объекта, движущегося со скоростью v;

l0 - длина объекта при v = 0;

c - скорость света в вакууме.

2. с ростом механической скорости объекта время протекания процессов замедляется по формуле:

3. с ростом механической скорости объекта масса объекта увеличивается по формуле:

При выполнении любых физических измерений исключительную роль играют пространственно-временные соотношения между событиями. В СТО событие определяется как физическое явление, происходящее в какой-либо точке пространства в некоторый момент времени в избранной системе отсчета. Таким образом, чтобы полностью охарактеризовать событие, требуется не только выяснить его физическое содержание, но и определить его место и время. Для этого необходимо использовать процедуры измерения расстояний и промежутков времени. Эйнштейн показал, что эти процедуры нуждаются в строгом определении.

Для того чтобы в выбранной системе отсчета выполнять измерения промежутка времени между двумя событиями (например, началом и концом какого-либо процесса), происходящими в одной и той же точке пространства, достаточно иметь эталонные часы. Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы). Измерение промежутка времени опирается на понятие одновременности: длительность какого-либо процесса определяется путем сравнения с промежутком времени, отделяющим показание часов, одновременное с концом процесса, от показания тех же часов, одновременного с началом процесса. Если же оба события происходят в разных точках системы отсчета, то для измерения промежутков времени между ними в этих точках необходимо иметь синхронизованные часы.

Эйнштейновское определение процедуры синхронизации часов основано на независимости скорости света в пустоте от направления распространения. Пусть из точки A в момент времени t1 по часам A отправляется короткий световой импульс (рис. 1). Пусть время прихода импульса в B и отражения его назад на часах B есть t'. Наконец, пусть отраженный сигнал возвращается в A в момент t2 по часам A. Тогда по определению часы в A и B идут синхронно, если t' = (t1 + t2) / 2.


Рисунок 1. Синхронизация часов в СТО.

Существование единого мирового времени, не зависящего от системы отсчета, которое принималось как очевидный факт в классической физике, эквивалентно неявному допущению о возможности синхронизации часов с помощью сигнала, распространяющегося с бесконечно большой скоростью.

Итак, в разных точках выбранной системы отсчета можно расположить синхронизованные часы. Теперь можно дать определение понятия одновременности событий, происходящих в пространственно-разобщенных точках: эти события одновременны, если синхронизованные часы показывают одинаковое время.

Рассмотрим теперь вторую инерциальную систему K', которая движется с некоторой скоростью υ в положительном направлении оси x системы K. В разных точках этой новой системы отсчета также можно расположить часы и синхронизировать их между собой, используя описанную выше процедуру. Теперь интервал времени между двумя событиями можно измерять как по часам в системе K, так и по часам в системе K'. Будут ли эти интервалы одинаковы? Ответ на этот вопрос должен находиться в согласии с постулатами СТО.

Пусть оба события в системе K' происходят в одной и той же точке и промежуток времени между ними равен τ0 по часам системы K'. Этот промежуток времени называется собственным временем. Каким будет промежуток времени между этими же событиями, если его измерить по часам системы K?

Для ответа на этот вопрос рассмотрим следующий мысленный эксперимент. На одном конце твердого стержня некоторой длины l расположена импульсная лампа B, а на другом конце – отражающее зеркало M. Стержень расположен, неподвижно в системе K' и ориентирован параллельно оси y' (рис. 2). Событие 1 – вспышка лампы, событие 2 – возвращение короткого светового импульса к лампе.

В системе K' оба рассматриваемых события происходят в одной и той же точке. Промежуток времени между ними (собственное время) равен τ = 2l / c. С точки зрения наблюдателя, находящегося в системе K, световой импульс движется между зеркалами зигзагообразно и проходит путь 2L, равный

где τ – промежуток времени между отправлением светового импульса и его возвращением, измеренный по синхронизованным часам C1 и C2, расположенными в разных точках системы K.


Рисунок 2. Относительность промежутков времени. Моменты наступлений событий в системе K' фиксируются по одним и тем же часам C, а в системе K – по двум синхронизованным пространственно-разнесенным часам C1 и C2. Система K' движется со скоростью υ в положительном направлении оси x системы K.

Но согласно второму постулату СТО, световой импульс двигался в системе K с той же скоростью c, что и в системе K'. Следовательно, τ = 2L / c.

Из этих соотношений можно найти связь между τ и τ0:

Таким образом, промежуток времени между двумя событиями зависит от системы отсчета, то есть является относительным. Собственное время τ0 всегда меньше, чем промежуток времени между этими же событиями, измеренный в любой другой системе отсчета. Этот эффект называют релятивистским замедлением времени. Замедление времени является следствием инвариантности скорости света.

Эффект замедления времени является взаимным, в согласии с постулатом о равноправии инерциальных систем K и K': для любого наблюдателя в K или K' медленнее идут часы, связанные с движущейся по отношению к наблюдателю системой. Этот вывод СТО находит непосредственное опытное подтверждение. Например, при исследовании космических лучей в их составе обнаружены μ-мезоны – элементарные частицы с массой, примерно в 200 раз превышающей массу электрона. Эти частицы нестабильны, их среднее собственное время жизни равно τ0 = 2,2·10 –6 с. Но в космических лучах μ-мезоны движутся со скоростью, близкой к скорости света. Без учета релятивистского эффекта замедления времени они в среднем пролетали бы в атмосфере путь, равный cτ0 ≈ 660 м. На самом деле, как показывает опыт, мезоны за время жизни успевают пролетать без распада гораздо большие расстояния. Согласно СТО, среднее время жизни мезонов по часам земного наблюдателя равно , так как β = υ / c близко к единице. Поэтому средний путь υτ, проходимый мезоном в земной системе отсчета, оказывается значительно больше 660 м.

В настоящее время уже необходимо принимать во внимание релятивистский эффект замедления хода часов при транспортировке атомных часов на большие расстояния.

СТО устанавливает зависимость пространства и времени от скорости движения материальных тел. Кроме того, она устанавливает неразрывную связь пространства и времени, поскольку они изменяются синхронно, и притом в противоположных направлениях: при больших скоростях движения тел их линейный размер сокращается в направлении движения, а ритмика течения времени растягивается. Поэтому рассмотрение физических событий должно относиться е единому четырехмерному пространственно-временному континууму.

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами. Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи. Формула Эйнштейна

выражает фундаментальный закон природы, который принято называть законом взаимосвязи массы и энергии.


Следует обратить внимание, что при малых скоростях движения (υ

Счастье - это жить для тех, кого любишь, зная, что тебя ждут и есть куда спешить. © Автор неизвестен ==> читать все изречения.

Читайте также: