Реферат по теплофизике на тему

Обновлено: 25.06.2024

В конце XIX в. многие ученые считали, что развитие физики завершилось по следующим причинам:

1. Больше 200 лет существуют законы механики, теория всемирного тяготения, законы сохранения (энергии, импульса, момента импульса, массы и электрического заряда).

2. Разработана МКТ.

3. Подведен прочный фундамент под термодинамику.

4. Сформулирована Максвелловская теория электромагнетизма.

5. Релятивистский закон сохранения энергии – массы.

В конце XIX начале XX века открыты В. Рентгеном  X-лучи (рентгеновские лучи), А. Беккерелем  явление радиоактивности, Дж. Томсоном  электрон. Однако классическая физика не сумела объяснить эти явления.

Теория относительности А. Эйнштейна потребовала коренного пересмотра понятии пространства и времени. Специальные опыты подтвердили справедливость гипотезы Дж. Максвелла об электромагнитной природе света. Можно было предположить, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но это предположение нужно было подтвердить сопоставлением теоретических и экспериментальных данных. Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

Изучая материалы по вопросу об отражении и поглощении световой энергии, я предположил, что абсолютно черное тело – это тело, которое поглощает всю энергию. Однако возможно ли такое на практике? Я думаю, не только мне показался этот вопрос интересным.

Цель реферата: доказать, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов.


  1. Изучить теорию абсолютно черного тела;

  2. Изучить теорию относительности А. Эйнштейна;

  3. Изучить гипотезы Дж. Максвелла об электромагнитной природе света.

Абсолютно чёрное тело  физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно черного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит еще и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно черного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно черного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце.

Термин был введён Густавом Кирхгофомв1862 году. Практическая модель


Рис. 1. Модель абсолютно чёрного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела:

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию - так называемой ультрафиолетовой катастрофе.

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина


  • uν  плотность энергии излучения

  • ν  частота излучения

  • T  температура излучающего тела

  • F  функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Из первой формулы Вина можно вывести закон смещения Вина(закон максимума) и закон СтефанаБольцмана, но нельзя найти значения постоянных, входящих в эти законы.

Второй закон излучения Вина





  • где uν плотность энергии излучения

  • ν  частота излучения

  • Tтемпература излучающего тела

  • C1,C2 константы.





  • где uνплотность энергии излучения

  • νчастота излучения

  • Tтемпература излучающего тела

  • hпостоянная Планка

  • kпостоянная Больцмана

  • cскорость света в вакууме

Закон Рэлея  Джинса

Основная статья: закон РэлеяДжинса





Тем не менее закон излучения РэлеяДжинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой РэлеяДжинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка


Рис. 1. Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:


где I(ν)dνмощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν +dν.


,

где u(λ)dλмощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ +dλ.

Закон Стефана  Больцмана

Общая энергия теплового излучения определяется законом СтефанаБольцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:


,

где jмощность на единицу площади излучающей поверхности, а


Вт/(м²·К 4 )постоянная СтефанаБольцмана.

Таким образом, абсолютно чёрное тело при T= 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:


где ε - степень черноты (для всех веществ ε Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:


где Ттемпература в кельвинах, а λmaxдлина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Черно  тельное излучение


Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и не поляризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна , его давление равно . Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фонзаполняющее Вселенную излучение с температурой около 3 К.

Цветность черно  тельного излучения

Температурный интервал в Кельвинах

до 1000

Красный

Закон излучения Кирхгофа

Закон излучения Кирхгофафизический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы, химического состава и проч.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела.

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:


По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функция совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом СтефанаБольцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньшую единицы, а значит, и меньшую чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретениякуба Лесли.

Применения закона Кирхгофа в астрофизике

В астрофизике закон Кирхгофа часто применяется в следующем виде:


,

где jνкоэффициент излучения(энергия, излучаемая единичным объёмом в единичном интервале частот в единичный телесный угол за единицу времени); ανкоэффициент поглощения с учётом вынужденного испускания (αν= χνρ = 1/lν, где ρплотность вещества, а χνиlνсоответственно непрозрачность и эффективная длина пробега фотонов для частоты ν);Bν(T)интенсивность излучения абсолютно чёрного тела.

Закон Кирхгофа справедлив только для случаев теплового равновесия. Однако, его часто применяют и для неравновесных систем, когда излучение не находится в равновесии с веществом и его распределение по частотам существенно отличается от планковского. При этом часто (но не всегда) предположение о термодинамическом равновесии между частицами излучающего вещества оказывается хорошим приближением. Степень отклонения от закона Кирхгофа может служить мерой отличия излучения космических объектов от теплового.

На основании проведенных в реферате анализа литературных данных можно сделать вывод, что

Нетрудно заметить, что существующие законы физики XIX в. были поверхностны, они не связывали воедино все характеристики (длина волны, температура, частота и т.д.) физических тел. Все вышеперечисленные законы дополняли друг друга, но для полного понимания данного вопроса необходимо было привлечение квантовых представлений о природе света. Создание квантовой теории позволило объяснить многие явления, такие как явление абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн. Также позволило объяснить взаимосвязь поглощательной способности и цвета тела, зависимость светимости тела от его температуры. Впоследствии эти явления были объяснены и классической физикой.

icon

Средний срок выполнения: 2 дня

Последние работы на эту тему по предмету "физика"

ВВЕДЕНИЕ Исторически термодинамика возникла как наука, изучающая переход теплоты в механическую работу, что диктовалось необходимостью дать теоретические основы работы тепловых машин. Принцип построения термодинамики довольно прост. В ее основу положены три экспериментальных закона и уравнение со

ВВЕДЕНИЕ Термодинамика – это раздел физики, в котором с наиболее общих позиций (без обращения к молекулярным представлениям) рассматриваются процессы обмена энергией между изучаемым объектом и окружающей средой. Термодинамика – это учение о связи и взаимопревращениях различных видов энергии, тепл

ВВЕДЕНИЕ Теплоемкость представляет собой одно из важнейших физических свойств твердого тела, характеризующее изменение состояния вещества с температурой. Изучение теплоемкости является одним из основных методов исследования структурных и фазовых превращений в сплавах. Из температурной зависимости

Последние работы на эту тему по предмету "теплоэнергетика и теплотехника"

ВВЕДЕНИЕ Данные по теплоемкости смесей и чистых веществ необходимы для многих научных и технических расчетов. Теплоемкость является весьма чувствительным свойством вещества, которое позволяет исследовать его структуру, силы взаимодействия атомных групп и атомов в молекуле и довольно часто использу

Написать Реферат, согласно методическим указаниям. Тема реферата: Проектирование теплообменной аппаратуры и теплотехнический контроль.

Последние работы на эту тему по предмету "безопасность жизнедеятельности"

ВВЕДЕНИЕ Топливно-энергетический комплекс России представляет совокупность энергетических систем: газо-, угле-, нефтяного снабжения, нефтепродуктообеспечения, электроэнергетики и др. Каждая из этих систем состоит из взаимосвязанных отдельных технологических процессов, управляемых и контролируемых

Введение Первый закон термодинамики позволяет исследовать практически любые тепловые процессы, происходящие в макроскопических системах, даже если отсутствует информация о точных деталях микроскопической детализации исследуемых явлений. Он является всеохватывающим, его можно и даже нужно использо

Предмет Теплофизика,факультет Безопасность жизнедеятельсности. Требования ВУЗа во вложении. Максимальная допустимая для меня стоимость 550 р.Если больше проходите мимо


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar

avatar

avatar

avatar

Спасибо большое Анне! Она меня спасла. Выполнила работу за одну ночь, ответственно подошла к выполнению задания и качественно его выполнила! Рекомендую

Последние размещённые задания


Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Срок сдачи к 27 февр.

Курсовая, Автоматизация технологических процессов и производств

Срок сдачи к 2 мар.

Конспект по чтению

Срок сдачи к 28 февр.

На тему "Угрозы экономической безопасности и механизм их реализации"

Статья, экономика и аудит

Срок сдачи к 7 мар.

Формирование и планирование прибыли от реализации продукции (работ, услуг): состояние и пути совершенствования

Срок сдачи к 22 мар.

Контрольная, Морская Астрономия

Срок сдачи к 28 февр.

выполнить задания по экономике фирмы

Бизнес-план, экономика фирмы и бизнес-планирование

Срок сдачи к 1 мар.

Очень сильно помогает

Срок сдачи к 28 февр.

Очень сильно помогает

Срок сдачи к 28 февр.

Лабораторная, Дифференциальная психология

Срок сдачи к 4 мар.

Решение задач бух учет

Решение задач, Бухгалтерский учет

Срок сдачи к 28 февр.

Решение задач, ох

Срок сдачи к 27 февр.

Решить две задачи

Решение задач, прикладная математика

Срок сдачи к 26 февр.

Решение задач с чертежом все на формате а4 рукописно

Контрольная, Математика и основы Судовождения

Срок сдачи к 28 февр.

Решение задач, Инженерная графика

Срок сдачи к 27 февр.

Контрольная, Морская Астрономия

Срок сдачи к 28 февр.

Контрольная, финансы железных дорог

Срок сдачи к 1 мар.

Помочь с проектом по предпринимательству и проектной деятельности

Контрольная, Проектная деятельность

Срок сдачи к 31 мар.

planes
planes

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

Основные параметры физико-климатических факторов. Воздушный и радиационный режим помещения. Факторы, определяющие микроклимат помещения. Точка росы и выпадение конденсата. Влажностный режим помещения. Температура поверхностей ограждающих конструкций.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 18.01.2012
Размер файла 13,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Основные параметры физико-климатических факторов

Климат - совокупность погодных условий, повторяющихся из года в год. На климат влияют: высота, географическое положение, близость больших водоемов, течение, преобладающие ветра. Воздух (температура, влажность, ветер), температура и влажность грунта, осадки, солнечная радиация.

2. Факторы, определяющие микроклимат помещения

Тепловая обстановка в помещении определяется совместным действием ряда факторов: температуры, подвижности и влажности воздуха помещения, наличием струйных течений, распределением параметров состояния воздуха в плане и по высоте помещения (всё вышеперечисленное характеризует воздушный режим помещения), а также радиационным излучением окружающих поверхностей, зависящим от их температуры, геометрии и радиационных свойств (характеризующим радиационный режим помещения). Комфортное сочетание этих показателей соответствует условиям, при которых отсутствует напряжение в процессе терморегуляции человека.

3. Воздушный и радиационный режим помещения

Процессы перемещения воздуха внутри помещений, движения его через ограждения и отверстия в ограждениях, по каналам и воздуховодам, обтекания здания потоком воздуха и взаимодействия здания с окружающей воздушной средой объединяются общим понятием воздушный режим здания. В отоплении рассматривается тепловой режим здания. Эти два режима, а также влажностный режим тесно связаны между собой. Аналогично тепловому режиму при рассмотрении воздушного режима здания различают три задачи: внутреннюю, краевую и внешнюю.

К внутренней задаче воздушного режима относятся следующие вопросы:

а) расчет требуемого воздухообмена в помещении (определение количества поступающих в помещения вредных выделений, выбор производительности систем местной и общеобменной вентиляции);

б) определение параметров внутреннего воздуха (температуры, влажности, скорости движения и содержания вредных веществ) и распределения их по объему помещений при различных вариантах подачи и удаления воздуха. Выбор оптимальных вариантов подачи и удаления воздуха;

в) определение параметров воздуха (температуры и скорости движения) в струйных течениях, создаваемых приточной вентиляцией;

г) расчет количества вредных выделений, выбивающихся из-под укрытий местных отсосов (диффузия вредных выделений в потоке воздуха и в помещениях);

д) создание нормальных условий на рабочих местах (душирование) или в отдельных частях помещений (оазисы) путем подбора параметров подаваемого приточного воздуха.

Радиационный режим. Лучистый теплообмен.

Важной составляющей сложного физического процесса, обуславливающего тепловой режим помещения, является теплообмен на его поверхностях.

Лучистый теплообмен в помещении имеет особенность: он происходит в замкнутом объеме в условиях ограниченных температур, определенных радиационных свойств поверхностей и геометрии их расположения. Тепловое излучение поверхностей в помещении можно рассматривать как монохроматическое, диффузное, подчиняющееся законам Стефана-Больцмана, Ламберта и Кирхгофа, инфракрасное излучение серых тел.

Как один из видов поверхностей в помещении своеобразные радиационные свойства имеет оконное стекло. Оно частично проницаемо для излучения. Оконное стекло, хорошо пропускающее коротковолновое излучение, практически непрозрачно для излучения с длиной волн более 3-5 мкм, которое характерно для теплообмена в помещении.

Воздух помещения при расчете лучистого теплообмена между поверхностями обычно считают лучепрозрачной средой. Он состоит в основном из двухатомных газов (азота и кислорода), которые практически прозрачны для тепловых лучей и сами не излучают тепловой энергии. Незначительное содержание многоатомных газов (водяного пара и углекислого газа) при малой толщине слоя воздуха в помещении практически не изменяет этого свойства.

4. Радиационная температура

физический климатический радиационный температура

tR - усредненная температура поверхностей ограждающих конструкций - стен, потолка и пола. Она играет важную роль, так как большая часть теплопотерь организмом человека (45-60 %) обуславливается более низкой температурой внутренних поверхностей помещения. Точно температуру tR можно определить, зная коэффициенты облученности всех поверхностей помещения, но упрощенно tR определяют как усредненную температуру по площадям окружающих поверхностей:

где ? - температура поверхности конструкции.

не нормируется, так как в определенной степени зависит от температуры воздуха в помещении, но СНиПом рекомендуется не превышать предельно допустимый перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции ?tн=(tв- ?в)max.

В жилых помещениях максимальная разность температур не должна быть более: для наружных стен - 4 ?С, для покрытий и чердачных перекрытий - 3 ?С, для перекрытий над подвалами и подпольями - 2 ?С. Ограничение указанного перепада температур связано с недопустимостью выпадения конденсата на поверхности ограждения. Комфортное состояние человека зависит от соотношения значений температур внутреннего воздуха и поверхностей ограждающих конструкций помещения.

Выпадение конденсата возможно, если температура внутренней поверхности опустится ниже точки росы - температуры, при которой водяной пар, содержащийся в воздухе данной влажности, станет насыщенным. tp- точка росы - это t при которой фактическая упругость достигает максимального значения. Температура, при которой относительная влажность воздуха достигает 100 % (е = Е), называется точкой росы, остается неизменной и равной 100%.

Температуру, при которой начинается конденсация влаги (точку росы tр), можно определить, зная температуру воздуха в помещении и относительную влажность воздуха ?.

6. От чего зависит влажностный режим помещения?

-Выделение влаги находящимися в помещении людьми

-Выделение влаги при приготовление влаги при стирке сушки белья мытья полов

-Выделения влаги того или ионного производства

-Влажность ограждающих конструкции

Подобные документы

Архитектурно-строительная характеристика здания. Расчетные параметры внутреннего микроклимата. Подбор оборудования для приточной системы. Воздушный баланс помещения. Определение коэффициентов теплопередачи. Аэродинамический расчет систем вентиляции.

курсовая работа [268,3 K], добавлен 23.05.2016

Размещение светильников на плане помещения с учётом требований к освещённости рабочих поверхностей, определение мощности осветительной установки, параметров размещения её узлов у учётом запыленности помещения и коэффициентов отражения света от стен.

контрольная работа [45,1 K], добавлен 17.11.2012

Роль и задачи искусственного освещения. Уровень насыщенности помещения светом. Характеристика различных типы осветительных приборов. Выбор светильников в зависимости от помещения и условий работы. Основные направления экономии затрат на освещение.

реферат [15,1 K], добавлен 16.09.2010

Теплотехнический расчет наружных стен, чердачного перекрытия, покрытия над подвалом. Сопротивление теплопередаче наружных дверей, заполнений световых проемов. Расчет теплопотерь помещения, затраты на нагрев инфильтрующегося воздуха. Система вентиляции.

курсовая работа [212,1 K], добавлен 07.08.2013

Акустическое проектирование помещения ночного клуба. Требуется коррекция звукоизоляции помещения (уровень шума вблизи клуба превышает нормативные значения). Определение требуемого количества поглощения, подбор и размещение звукопоглощающих материалов.

курсовая работа [839,0 K], добавлен 22.12.2010

Светотехнический и электротехнический проект освещения помещения. Выбор источника света, нормируемой освещенности, светового прибора. Схема электроснабжения, компоновка осветительной сети. Напряжение, источники питания установки, защитная аппаратура.

курсовая работа [822,7 K], добавлен 14.01.2016

Подбор рекуператора для помещения. Принципиальная схема работы рекуператора. Коэффициенты теплопередачи пластины теплообменника. Зависимость температур приточного воздуха в рекуператоре от наружного. Уменьшение потребления энергии в калорифере.

Читайте также: