Реферат по теме квадратные уравнения в трудах диофанта

Обновлено: 05.07.2024

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

История квадратных уравнений

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

«Обезьянок резвых стая

А двенадцать по лианам Всласть поевши, развлекалась

Стали прыгать, повисая

Их в квадрате часть восьмая

Сколько ж было обезьянок,

На поляне забавлялась

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений. Соответствующее задаче уравнение Бхаскара пишет под видом x2 - 64x = - 768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем: x2 - б4х + 322 = -768 + 1024, (х - 32)2 = 256, х - 32= ±16, x1 = 16, x2 = 48.

Квадратные уравнения в Европе XVII века

Определение квадратного уравнения

Уравнение вида ax 2 + bx + c = 0, где a, b, c - числа, , называется квадратным.

Коэффициенты квадратного уравнения

Числа а, b, с – коэффициенты квадратногоуравнения.а – первый коэффициент (перед х²), а ≠ 0;b - второй коэффициент (перед х);с – свободный член (без х).

Какие из данных уравнений не являются квадратными?

1. 4х² + 4х + 1 = 0;2. 5х – 7 = 0;3. - х² - 5х – 1 = 0;4. 2/х² + 3х + 4 = 0;5. ¼ х² - 6х + 1 = 0;6. 2х² = 0;

7. 4х² + 1 = 0;8. х² - 1/х = 0;9. 2х² – х = 0;10. х² -16 = 0;11. 7х² + 5х = 0;12. -8х²= 0;13. 5х³ +6х -8= 0.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Тема: Квадратные уравнения в трудах Диофанта.

Цель: изучить способы решения диофантовых уравнений первой степени

1.научиться приёмам работы с научной литературой;

2.изучить материалы о творчестве Диофанта, в частности о его вкладе в теорию

3.научиться решать неопределённые уравнения первой степени и квадратные уравнения методом Диофанта;

4.обобщить изученный материал, подготовить презентацию.

Диофант представляет одну из наиболее трудных загадок в истории науки. Нам не известны ни время, когда он жил, ни предшественники его, которые работали бы в той же области.

Зато место жительства Диофанта хорошо известно — это знаменитая Александрия, центр научной мысли эллинистического мира.

В одном из древних рукописных сборников задач в стихах жизнь Диофанта описывается в виде следующей алгебраической загадки, представляющей надгробную надпись на его могиле:

Прах Диофанта гробница покоит; дивись ей — и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребёнком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Отсюда нетрудно подсчитать, что Диофант прожил 84 года.

ЧИСЛА И СИМВОЛЫ.

Диофант начинает с основных определений и описания буквенных символов, которые он будет применять.

Диофант формулирует для относительных чисел правило знаков:

Правила сложения и вычитания для новых чисел Диофант не излагает, он просто пользуется ими в своих книгах. И все же отрицательные числа Диофант применяет только в промежуточных вычислениях, а в качестве решения всегда выбирает положительное рациональное число.

Собственно говоря, до Диофанта никаких уравнений - ни определённых, ни неопределённых - просто не было. Рассматривались задачи, которые мы теперь можем свести к уравнениям, и не более того.

Наконец, во введении Диофант формулирует два основных правила преобразования уравнений: правило переноса члена уравнения из одной части в другую с обратным знаком и правило приведения подобных членов.

п.3. РЕШЕНИЕ ДИОФАНТОВЫХ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ.

Методы решения неопределённых уравнений составляют основной вклад Диофанта в математику. Известно, что в символике Диофанта был один только знак для неизвестного. Решая неопределённые уравнения, он применял в качестве нескольких неизвестных произвольные числа, вместо которых можно было взять и любые другие, что и сохраняло характер общности его решения.

Решение уравнений в целых числах – один из самых красивых разделов математики. Ни один крупный математик не прошел мимо теории диофантовых уравнений. Ферма, Эйлер, Лагранж, Гаусс, Чебышев оставили неизгладимый след в этой интересной теории.

Долгое время надеялись найти общий способ решения диофантовых уравнений. Однако в 1970г. ленинградский математик Матиясевич доказал, что такого общего способа быть не может.

Я изучила способ решения диофантовых уравнений: – метод перебора – применяется для решения простейших задач.

Задача 1

Во дворе стоят скутеры и автомобили, всего у них вместе 18 колёс. Сколько скутеров и сколько автомобилей во дворе?

Составляется уравнение с двумя неизвестными переменными, в котором х – число автомобилей, у – число скутеров:

Нажмите, чтобы узнать подробности

С уравнениями мы знакомы давно, но с квадратными уравнениями мы познакомились только в этом году. Меня заинтересовала эта тема, т.к. я и раньше любила решать уравнения. Великого древнегреческого ученого Диофанта мы едва затронули в курсе алгебры. Как оказалось, у Диофанта была своя система решения уравнений и он даже написал 13 книг посвященных этому. Так давайте узнаем о Диофантовых уравнениях поподробнее.

Научно-практическая конференция исследовательских работ обучающихся муниципальных бюджетных общеобразовательных организаций

Выполила: Сыроватская Татьяна Юрьевна,

обучающаяся 8 класса Б

Руководитель: Назарьева Татьяна Николаевна,

2. Основная часть.

2.1. Немного о Диофанте. …………………………………….……4

2.2. Арифметика Диафанта…………………………………………5

2.3. Диофантовы уравнения………………………………………. 6

2.4. Как составлял и решал Диофант квадратные уравнения…….9

2.5. Применение диофантовых уравнений………………………..10

4. Список литературы и источников……………………………………..15

Почему я выбрала эту тему

С уравнениями мы знакомы давно, но с квадратными уравнениями мы познакомились только в этом году. Меня заинтересовала эта тема, т.к. я и раньше любила решать уравнения. Великого древнегреческого ученого Диофанта мы едва затронули в курсе алгебры. Как оказалось, у Диофанта была своя система решения уравнений и он даже написал 13 книг посвященных этому. Так давайте узнаем о Диофантовых уравнениях поподробнее.

Цели исследования:

Узнать, кто такой Диофант

Изучить тему диофатовых уравнений

Разобраться в решении диофантовых уравнений и их применении.

Гипотеза исследования

Умение решать диофантовы уравнения поможет решать олимпиадные задания, а также подготовиться к решению ряду задач № 19 ЕГЭ.

Задачи исследования:

изучить литературу, интернет-ресурсы;

научиться решать неопределённые уравнения первой степени и квадратные уравнения методом Диофанта, узнать, когда они не имеют решений;

разобрать решение различных задач, в том числе задания №19 ЕГЭ;

обобщить изученный материал, подготовить презентацию.

Основная часть.

Немного о Диофанте.

Диофант был первым греческим математиком, который рассматривал дроби наравне с другими числами. Диофант также первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде.

В честь Диофанта назван кратер на видимой стороне Луны.

Диофант представляет одну из наиболее трудных загадок в истории науки. Нам не известны ни время, когда он жил, ни предшественники его, которые работали бы в той же области.

В одном из древних рукописных сборников задач в стихах жизнь Диофанта описывается в виде следующей алгебраической загадки, представляющей надгробную надпись на его могиле:

Прах Диофанта гробница покоит; дивись ей — и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребёнком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Она эквивалентна решению следующего уравнения:

>+>+>+5+>+4> х= + + + 5 + + 4

Отсюда нетрудно подсчитать, что Диофант прожил 84 года.

Арифметика Диафанта

Основное произведение Диофанта — Арифметика в 13 книгах. К сожалению, сохранились только 6 первых книг из 13.

Лист из Арифметики (рукопись XIV века). В верхней строке записано уравнение (см. приложение2)

Бо́льшая часть труда — это сборник задач с решениями (в сохранившихся шести книгах их всего 189), умело подобранных для иллюстрации общих методов. Главная проблематика Арифметики — нахождение положительных рациональных решений неопределённых уравнений. Рациональные числа трактуются Диофантом так же, как и натуральные, что не типично для античных математиков.

Сначала Диофант исследует системы уравнений второго порядка от двух неизвестных; он указывает метод нахождения других решений, если одно уже известно. Затем аналогичные методы он применяет к уравнениям высших степеней. В VI книге исследуются задачи, относящиеся к прямоугольным треугольникам с рациональными сторонами.

Диофантовы уравнения – алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвестных в уравнениях больше числа уравнений.

1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.

2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.

3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении , так и при вычитании их суммы.

4. Для числа 13=2²+3² найти два других, сумма квадратов которых равна 13.

Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая , что коэффициент перед x можно взять и другой. Решая уравнения

Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения

Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2²+3²=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В, чего Диофант не допускал. Очевидно, k=2- наименьшее натуральное число , при котором А и В положительны .

Исследование Дифантовых уравнений обычно связано с большими трудностями. Более того, можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма , позволяющего по любому целому числу x узнавать , разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.

Современной постановкой диофантовых задач мы обязаны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена. В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений, поиском способов их решений. Называется оно диофантовым анализом и диофантовой геометрией, поскольку использует геометрические способы доказательств.

Простейшее Диофантово уравнение ax+by=1,где a и b – цельные взаимопростые числа, имеет бесконечно много решений (если x 0 и y 0 -решение, то числа x=x 0 +bn, y=y 0 -an, где n- любое целое , тоже будут решениями). Рассмотрим простое диофантово уравнение

Найдем частное решение методом подбора х=7, у=2.

Вычтем из уравнения 1) второе равенство, получим

5 и 8 взаимно простые (НОД=1), 5 не делится на 8, следовательно делится на (х-7)

Существует более удобный способ подбора частного решения.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х - 8у = 19 х = .

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = = .

Если у =1, то х = = .

Если у = 2, то х = = = 7 Z.

Если у =3, то х = = .

Если у = 4 то х = = .

Итак, частным решением является пара (7;2).

Тогда общее решение: n Z.

Диофантовы уравнения могут и не могут иметь решение.

7(5x+4y) делится на 7, а 25 не делится на 7, т.к. эти части равны, такого быть не может, получили противоречие, значит это уравнение не имеет решений. Мы рассмотрели множество таких уравнений и пришли к выводу, что уравнение вида ax+by=c, не имеют решение, если a и b делятся на целое число d, а с не делится на d, то диофантовое уравнение не имеет решений.

Другим примером Диофантовых уравнений является

x 2 + у 2 = z 2 .

Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря, уравнению удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма x²+y²=4(k²+k+t²+t)+2 не делится на 4, в то время как z²=4m² делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и w взаимно простые. На самом деле, если бы они имели общий делитель d1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того , v и w разной чётности: иначе бы y и z были бы чётными. Из равенства x²=(z+y)(z-y) следует, что u²=vw. Поскольку v и w взаимно просты, а их произведение является квадратом , то каждый из множителей является квадратом . Значит найдутся такие натуральные числа p и q, что v=p², w= q² . Очевидно, числа p и q взаимно просты и имеют разную чётность . Теперь имеем

В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и q разной чётности , pq , такие, что

х =2pq, у =p²-q², z = p 2 + q 2 .(6)

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

х =2pq, у = p²-q², z = p 2 + q 2 ,

где m и n — целые взаимо простые числа. Все остальные его натуральные решения имеют вид:

x=2kpq,y=k(p²-q²),z=k(p 2 + q 2 ),

где k-произвольное натуральное число

Как составлял и решал Диофант квадратные уравнения

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х, другое же меньше, т. е 10 - х. Разность между ними 2х. Отсюда уравнение

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения

Применение диофантовых уравнений.

Диофантовы уравнения в олимпиадных задачах





Диофантовы уравнения в экономике

Задача 1. Как, имея монеты в 5 копеек и в 3 копейки, заплатить кассиру в магазине 13 копеек?

Решение: х - количество монет по 5 коп., у- количество монет по 3 коп. Составим и решим уравнение 5х + 3у= 13. Подберём частное решение х=2, у=1, тогда 5·2+3·1=13,

5х + 3у = 5·2+3·1, перенесём все слагаемые в левую часть и сгруппируем

5·(х-2) + 3·(у-1) =0, обозначим х-2 = х1, у-1 = у1, тогда уравнение становиться однородным, 5х1+3у1=0, отсюда , у1 кратно 5, т.е. у1 =5n, х1 = -3n, где n- любое целое число, вернёмся к старым неизвестным х-2= -3n , х= 2-3n,

Ответ: х= 2-3n, у =1+ 5n , где n- любое целое число.

Замечание: Если х будет отрицательным, это значит сдача, т.е. продавец должна будет вернуть.

Задача. 2. Для перевозки зерна имеются мешки, в которые входит либо 60 кг, либо 80 кг зерна. Сколько надо заготовить тех и других мешков для загрузки 1 т зерна таким образом, чтобы все мешки были полными? Какое наименьшее количество мешков при этом может понадобиться?

Решение: Для неизвестных х и у , обозначающих количество мешков по 60 и по 80 кг соответственно, имеем уравнение 60х+80у=1000, сократив обе части уравнения получим 3 х+5 у =50. Надо решить это уравнение в целых неотрицательных числах. Одно целочисленное решение этого уравнения

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Муниципальное общеобразовательное учреждение

Диофант. Диофантовы уравнения

ученица 11 б класса

Сегодняшние школьники решают различные уравнения. В части С заданий ЕГЭ встречается интересное уравнение, которое называется Диофантово уравнение. В своих работах Диофант не только поставил проблему решения неопределённых уравнений в рациональных числах, но и дал некоторые общие методы их решения. Эти методы будут очень полезны для сегодняшних одиннадцатиклассников, которым предстоит сдавать экзамен по математике.

Диофант внес такой же огромный вклад в развитие математики, как и Архимед. Так, например, поступал Архимед: определяя площади эллипса, сегмента параболы, поверхности шара, объёмы шара и других тел, он применял метод интегральных сумм и метод предельного перехода, однако нигде не дал общего абстрактного описания этих методов. Учёным XVI–XVII веков приходилось тщательно изучать и перелагать по-новому его сочинения, чтобы выделить оттуда методы Архимеда. Аналогично обстоит дело и с Диофантом. Его методы были поняты и применены для решения новых задач Виетом и Ферма, т.е. в то же время, когда был разгадан и Архимед.

Зато место жительства Диофанта хорошо известно — это знаменитая Александрия, центр научной мысли эллинистического мира.

Чтобы исчерпать всё известное о личности Диофанта, приведём дошедшее до нас стихотворение-загадку:

Прах Диофанта гробница покоит; дивись ей — и каменьМудрым искусством его скажет усопшего век.Волей богов шестую часть жизни он прожил

Похожие работы

2014-2022 © "РефератКо"
электронная библиотека студента.
Банк рефератов, все рефераты скачать бесплатно и без регистрации.

"РефератКо" - электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю


1 чел. помогло.

2. Решение Диофантовых уравнений……………………………………………………..4-7

2.1. Диофантовы уравнения с одним неизвестным ……………………………..4-5

2.2. Неопределенные уравнения II -ой степени вида x 2 + y 2 = z 2 ………….5-6

6. Список используемой литературы ……………………………………………………16

Прах Диофанта гробница покоит; дивись ей - и камень.

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком.

И половину шестой встретил с пушком на щеках.

Только минула седьмая. С подругой он обручился.

С нею, пять лет проведя, сына дождался мудрец;

Только полжизни отцовской, возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

(Перевод Боброва С.Н.)

Используя современные методы решения уравнений можно сосчитать, сколько лет прожил Диофант.

Пусть Диофант прожил x лет. Составим и решим уравнение:

Умножим уравнение на 84, чтобы избавиться от дробей:

Таким образом, Диофант прожил 84 года.*( Энциклопедический словарь юного математика. составитель Савин А.П.– Москва: педагогика, 1989 г. )

При исследовании диофантовых уравнений обычно ставятся следующие вопросы:

1. Имеет ли уравнение целочисленные решения;

2. Конечное, или бесконечное множество его целочисленных решений;

3. Решить уравнение на множестве целых чисел, т. е. найти все его целочисленные решения

4. Решить уравнение на множестве целых положительных чисел;

Отсюда целью моей работы является:

- Исследовать варианты решения уравнений с одной неизвестной;

-Исследовать варианты уравнений с двумя неизвестными;

-Найти общие закономерности результатов решений поставленных задач.

Материал, представленный в данной работе, основывается на исследовании олимпиадных задачах и экзаменационных работах.

I ^ . Диофант и его труд ы

Вывод: На основании вышеизложенного материала следует сделать вывод о том, что Диофант Александрийский не останавливается на одном решении, он старается обнаружить второе и последующее в поставленной задаче.

2. Решение Диофантовых уравнений.

2.1. Диофантовы уравнения с одним неизвестным.

где - целые числа.

Теорема. Если уравнение с целыми коэффициентами имеет целый корень, то этот корень является делителем числа (свободного члена уравнения). Таким образом, при отыскании целых корней уравнения с целыми коэффициентами достаточно испытать лишь делители свободного члена.*(Приглашение в элементарную теорию чисел. А. Э. Сергеев, Э. А. Сергеев.)

Задача 1 . Решить в целых числах уравнение

Решение. Свободный член уравнения имеет следующие делители .

Среди этих чисел и будем искать целые корни данного уравнения. Подстановкой

убеждаемся, что корнями являются числа 1 и – 3.

Задача 2 . Решить в целых числах уравнение

2 x 4 + 7 x 3 - 12 x 2 - 38 x + 21 = 0.

Решение . Свободный член уравнения имеет следующие делители

Подстановкой в исходное уравнение убеждаемся, что из этого множества только

число -3 является его целым корнем.

2.2. Неопределенные уравнения II -ой степени вида x 2 + y 2 = z 2

Существует еще одна частная задача на неопределенные уравнения – теперь уже второй степени, возникшая примерно за две тысячи лет до Диофанта в Древнем Египте.

Если стороны треугольника пропорциональны числам 3, 4 и 5, то этот треугольник – прямоугольный. Этот факт использовали для построения на местности прямых углов. Поступали довольно просто. На веревке на равном расстоянии друг от друга завязывали узлы (Рис. 1)


Рис. 1.

В точке С где надо было построить прямой угол, забивали колышек, веревку натягивали в направлении, нужном строителям, забивали колышек в точке В (СВ = 4) и натягивали веревку так, чтобы АС = 3 и АВ = 5. Треугольник с такими длинами сторон называют египетским. Мы, конечно, понимаем, что безошибочность такого построения следует из теоремы, обратной теореме Пифагора. Действительно,

3 2 + 4 2 = 5 2 . Говоря иначе, числа 3, 4, 5 – корни уравнения

Сразу же возникает вопрос: нет ли у этого уравнения других целочисленных решений?

Один из путей решения уравнения в целых числах оказался довольно простым. Запишем подряд квадраты натуральных чисел, отделив их друг от друга запятой. Под каждой запятой запишем разность между последовательными квадратами:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196 … .

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 … .

А теперь внимание! Нет ли и в нижней строке квадратных чисел? Есть! Первое из них 9 = 3 2 , над ним 16 = 4 2 и 25 = 5 2 , знакомая нам тройка 3, 4, 5.

если то получилась первая пифагорова тройка;

2.3. Примеры решения задач.

Задача 1 .Найти все пары натуральных чисел, удовлетворяющих уравнению

Решение. Разложим левую часть уравнения на множители и запишем уравнение вида: . Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что , получим две системы уравнений, решив которые мы сможем найти искомые числа:

Первая система имеет решение , а вторая система имеет решение .

Задача 2 . Доказать, что уравнение

не имеет целых решений.

^ 3. Мои исследования.

1. Найти все натуральные числа с, для которых уравнение Зх + 5у = с имеет решение в неотрицательных целых числах.

Ясно, что при с = 3,5, 6, 8, 9 уравнение Зх + 5 у = с имеет решение в неотрицательных числах х и у, а при с = 1, 2, 4, 7 таких решений уравнение не имеет. Заметим также, что если З n + 5т = с, ( n , m Є N ), то 3( n +1) + 5т = с + 3, поэтому, так как 3*1 + 5*1 = 8, то уравнение Зх + 5 у = с при с = 8, 8 + 3 = 11, 11 + 3 = 14, 17, 20, 23. имеет решение. Аналогично, так как 3*3 = 9 и 5*2 = 10, то при с = 9, 9 + 3 = 12, 15, 18. и при с = 10, 13, 16, 19. уравнение Зх + 5 у = с имеет решение в неотрицательных целых числах. Но в последовательностях 8 + 3 t , 9 + 3 t , 10 + 3 t , где t = 0,1, 2, 3. содержатся все натуральные числа больше 7. Таким образом, при любом натуральном с > 1 уравнение Зх + 5 у = с имеет решение в неотрицательных целых числах х и у. Приведу еще один способ решения задания. Этот способ менее изощренный, чем ранее приведенный, но более универсальный. Состоит он в том, что сначала мы находим все целочисленные решения уравнения по формулам (1), а затем в силу неотрицательности х и у получаем некоторые ограничения на целочисленный параметр t . Итак, из 3*2 + 5*(-1) = 1 следует, 3*(2с) + 5*(-с) = с, то есть х 0 =2с и у 0 =-с. Откуда, по формулам (1) получаем х = 2с- 5 t , у = -с + 3 t . Далее, из условий 2 c -5 t ≥0 и -с + 3 t ≥0 получаем t Є [ c /3,2 c /5]. Таким образом, для решения задачи нам надо указать все такие натуральные значения с, при которых отрезок [ c /3, 2 c /5] содержит хотя бы одно целое число. Ясно, что если длина отрезка

2 c /5 – c /3 = c /15 не менее единицы, то в нем обязательно содержится целое число. Отсюда следует, что при с ≥15 уравнение 3х +5у=с разрешимо в неотрицательных целых числах. Случаи, когда 1≤с≤14, можно легко проверить простым перебором. Найдем, что с Є . Таким образом, получаем ответ: с Є U < z Є Z │ z ≥8 >.

^ 2. Решить в целых числах уравнение:

Заменив получим , следовательно

является решением данного уравнения. Рассмотрим такие диофантовы уравнения:

x 2 -Dy 2 =1. Мы будем искать минимальные (по x) решения этого уравнения в натуральных x и y. Например, для D=13 минимальное решение такое: 649 2 -13*180 2 =1. Легко показать, что для D - полного квадрата решений не существует. Рассмотрим минимальные решения D

3 2 - 2*2 2 =1; 2 2 - 3*1 2 =1; 9 2 - 5*4 2 =1; 5 2 - 6*2 2 =1; 8 2 - 7*3 2 =1; 3 2 - 8*1 2 =1; 19 2 - 10*6 2 =1.

Нас будут интересовать только те D, минимальные решения которых больше всех ему предшествующих. Здесь это 2, 5, 10. Среди всех D≤1000 не полных квадратов, найдите те у которых минимальное решение (по x) больше (по x) всех минимальных решений для меньших D. В ответе укажите сумму таких D.

^ 3. Решить диофантово уравнение:

Далее находим у из последнего равенства, т.е. у=5-2х-7и и z =-3 x +2у+и. Подставляя в последние равенство выражение для у, находим, что z =-3х+2(5-2х-7и)+ и=-7х -13и +10.

^ 4. Найти натуральное число, которое при делении на 3 дает остаток 2, а при делении на 5- остаток 3.

Обозначим искомое число через х. Если частное от деления х на 3 обозначим через у, а частное от деления на 5 через z , то по теореме о делении с остатком получим х=3у+2, х=5 z +3. Таким образом, нам надо решить в натуральных числах уравнение 5 z -3у+1=0. Применяя описанный ранее алгоритм решения этого уравнения, получаем z =1+3 t , y = 2+5 t ( t Є Z ) и, значит, x =5 z +3=5(2+3 t )+3= 8+15 t . Так как х по условию должен быть натуральным числом, то параметр t в ответе должен принимать только неотрицательные целые значения, т.е. Х=8+15 t , t Є Z .

^ 5. Куплены фломастеры по 7 рублей и карандаши по 4 рубля за штуку, всего на сумму 53 рубля. Сколько куплено фломастеров и карандашей?

6. Разность двух натуральных чисел равна 66, а их НОК равно 360. Найти эти числа.

Пусть а и b данные натуральные числа, тогда, по условию, имеем систему уравнений: Так как

а| 360, b | 360, то 360 = а*n, 360 = b*т, где n , m Є N. Отсюда получаем

, , и, подставляя эти выражения в первое уравнение системы, приведя к общему знаменателю, имеем 60 m -60 n =11 mn , откуда находим

. Так как m >0 и n - натуральное число, причем n m и 60-11 n >0, то перебором находим n =4, n =5, тогда m =15, m =60, а значит, =90, =24 и =72, =6. Таким образом, получаем, что две пары чисел удовлетворяют условию задачи:

а =90, b =24 и a =72, , b =6. *( Форков А.В. Математические олимпиады в школе. – Москва: Айрис - пресс, 2003 г. )

Вывод: На основании проведенных мною исследований по Диофантовым уравнениям следует сделать вывод о том, что можно использовать различные подходы при их решении.

Каждое из возрастающих от единицы чисел, начиная с трех, является первым, начиная от единицы, называется многоугольником и имеет столько углов, сколько в нем содержится единиц, стороной же его будет число, которое следует за единицей, т. е. 2. Тогда 3 будет треугольником, 4 — четырехугольником, 5 — пятиугольником и т. д. О квадратах хорошо известно, что они получаются от умножения некоторого числа на самого себя. Доказывается также, что каждый многоугольник, умноженный на число, зависящее от количества его углов, и сложенный с квадратом некоторого числа, тоже зависящего от количества его углов, может быть представлен как некоторый квадрат. Если три числа имеют одинаковые разности, то восемь раз взятое произведение наибольшего и среднего, сложенное с квадратом наименьшего, будет квадратом, сторона которого равна сумме наибольшего и двух средних.

Действительно, пусть три числа АВ, В Г и ВД имеют одинаковые разности; нужно доказать, что 8АВ*ВГ, (сложенное с АВ 2 , образует квадрат, сторона которого равна сумме АВ и 2ВГ.


8АВ*ВГ разложим на 8ВГ 2 и 8АГ*ВГ.) Затем каждое из упомянутых разделим пополам, получим 4АВ*ВГ, 4ВГ 2 и 4АГ*ВГ т. е. 4ВГ*ГД, ибо АГ равно ГД; вместе же с ДВ 2 получится АВ 2 . Второе из произведений 4АГ-ГВ, сложенное с ДВ 2 , дает В А 2 . Теперь остается узнать, каким образом АВ 2 вместе с 4АВ*ВГ и 4ВГ 2 даст в сумме квадрат. Если мы положим АЕ, равным ВГ, то 4АВ*ВГ преобразуется в 4ВА*АЕ, которое, будучи сложено с 4ГВ 2 или с 4АЕ 2 , сделается равным 4ВЕ*ЕА (ВА*АЕ + АЕ 2 = АЕ*(АЕ + АВ) = ВЕ*ЕА.), а оно, сложенное с АВ 2 , сделается равным квадрату на сумме BE и ЕА, как одной прямой (4ВЕ-ЕА + АВ 2 = (BE + ЕА) 2 .). Но сумма BE и ЕА равна сумме АВ и 2АЕ, т. е. 2ВГ. Что и требовалось доказать. Если дано любое количество чисел с одинаковыми разностями, то разность между наибольшим и наименьшим равняется разности чисел, умноженной на уменьшенное, на единицу количество заданных чисел. Пусть даны любые числа АВ, ВГ, ВД, BE с одинаковыми разностями, нужно показать, что разность между


АВ и BE равна разности между АВ и ВГ, умноженной на количество АВ, ВГ, ВД, BE, уменьшенное на единицу.

Действительно, поскольку предполагается, что АВ, ВГ, ВД, BE имеют между собой одинаковые разности, то, значит, АГ, ГД, ДЕ будут между собой равными. Следовательно, ЕА равняется АГ, умноженному на количество АГ, ГД, ДЕ; количество же АГ, ГД, ДЕ будет на единицу меньше количества АВ, ВГ, ВД, BE; таким образом, ЕА кратно АГ в число раз, на единицу меньшее количества АВ, ВГ, В Д, BE. И АЕ представляет разность между наибольшим и наименьшим числами, а АГ есть их одна общая разность. Простым же языком говоря, то существуют треугольные, четырехугольные , пятиугольные и т.д.
^

Треугольные числа


Последовательность треугольных чисел:


1, 3, 6, 10, 15, 21, 28, 36, 45, 55, в,


  • Сумма двух последовательных треугольных чисел даёт полный квадрат (квадратное число).

  • Чётность элемента последовательности меняется с периодом 4: нечётное, нечётное, чётное, чётное.

Квадратные числа


Квадратные числа представляют собой произведение двух одинаковых натуральных чисел, то есть являются полными квадратами:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, …, n ².
^

Пятиугольные числа

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, …, *( Арифметика и книга о многоугольных числах. Перевод с древнегреческого )

Вывод: С помощью геометрической интерпретации, Диофант вывел формулы последовательностей многоугольных чисел, что вызывает интерес у математиков.


5. Заключение.

В заключительной части своей работы мне особенно хотелось подчеркнуть, что изучив специальную литературу, посвященную диофантовым уравнениям, я расширил свои математические навыки и получил дополнительные знания о самом Диофанте, его последователях, а также о влиянии его научных трудов на дальнейшее развитие научной математической мысли. Именно благодаря методам Диофанта были разгаданы методы самого Архимеда. И если история интеграционных методов Архимеда в основном завершается созданием интегрального и дифференциального исчисления Ньютоном и Лейбницем, то история методов Диофанта растягивается еще на несколько сотен лет, переплетаясь с развитием теории алгебраических функций и алгебраической геометрии. Развитие идей Диофанта можно проследить вплоть до работ Анри Пуанкаре и Андре Вейля. Именно Диофант открыл нам мир арифметики и алгебры. Поэтому история Диофантова анализа показалась мне особенно интересной.


6. Список используемой литературы.

1. Арифметика и книга о многоугольных числах. Перевод с древнегреческого

3. Задания городских и районных олимпиад.

4.Новоселов С.И. Специальный курс элементарной алгебры. – М:Советская наука, 1956

5. Перельман А.Я. Живая математика. – Москва, 1962 г.

6. Приглашение в элементарную теорию чисел. А. Э. Сергеев, Э. А. Сергеев.

7. Форков А.В. Математические олимпиады в школе. – Москва: Айрис-пресс, 2003 г.

8.Черкасов О.Ю. Математика. Интенсивный курс подготовки к экзамену.- М.: Рольф. 2000.

9.Энциклопедический словарь юного математика. Составитель Савин А.П.– Москва: педагогика, 1989 г.

Читайте также: